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The theory of the magnetoresistance of the InSb quantum wire is presented. The quantum wire is
cylindrical in shape with a symmetric pair of delta-barriers inside. A tunable magnetic field parallel
with the axis of the quantum wire is considered. The dependence of the Fermi energy on the magnetic
field is calculated. The Landauer formula is used in the calculation of the resistance of a quantum wire.
When parameters of the quantum wire (its radius, amplitude of delta-barriers, and distance between
them, donor concentration) are appropriately chosen, the theory predicts the dependence of resistance
on the magnetic field manifesting well-defined minima. The minima are attributed to the resonant
tunnelling of the conduction electrons through the double delta-barrier.
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1. Introduction

Recently, in [1] we dealt with the problem of elec-
tron tunnelling between two qubits. Our exposition
of the problem was based on a model of a quantum
wire (QW) in which two equal delta-wells were con-
sidered. (We will use the acronym QW for quantum
wire.) The topic of the present paper is QW, which
has two delta-barriers. Thus, if the axis of the wire
is oriented in the z-direction, then we assume the
potential energy is

V (z) = γ
[
δ
(
z − a

2

)
+ δ

(
z +

a

2

)]
(1)

with γ > 0. We say that this potential energy
represents a symmetric, double barrier. The anal-
ysis of tunnelling through double barriers reveals
one interesting phenomenon, namely resonant tun-
nelling. This means that there are some energy val-
ues E = E(i) for which the tunnelling probability is
equal to one. The particle can cross the double bar-
rier quite freely at resonant energies, as if there were
no double barrier. We denote the absolute value of
the wave number kz as k and define the dimen-
sionless quantity κ = ka. From the 1D Schrödinger
equation with potential (1) it follows that the reso-
nant energies are determined by the positive roots
of the transcendental equation

κ = −γma
3

~2
tan(κ), (2)

E(i) =
~2κ2i
2ma2

, (3)

By using ~2/(2ma2) as the energy unit, we can write
the resonant energies as

ε(i) = κ2i , 0 < κ1 < κ2 < . . . . (4)
The parameter m > 0 is the effective mass of the
conduction electrons. The equations (2) and (3)
hold if the dispersion function of the conduction
electrons is quadratic, i.e., Ec(k) = ~2k2/(2m).
(Note, however, that (2) and (3) can be general-
ized. It is possible to derive analogues to them for
non-quadratic dispersion functions Ec(kz), see [2].
Important non-quadratic functions Ec(kz) were de-
rived for narrow-gap semiconductors, especially for
InSb, by Kane [3].)

Figure 1 is a sketch of a nanostructure involving
QW with two delta-barriers. We consider QW to be
as a thin cylinder made of n-type InSb, interrupted
at the positions z = ±a/2 by very thin semiconduc-
tor layers other than InSb. We then formulate the
Schrödinger equation for the conduction electrons in
the effective-mass approximation [4], approximating
the potential energy V (x) as expression (1). We do
not specify the material in which the InSb cylinder
may be embedded. (It may be, as well as the lay-
ers forming the double delta-barrier, a semiconduc-
tor that is satisfactorily lattice-matched with InSb,
such as In0.9Al0.1Sb (cf., e.g., [5].) We assume that
InSb is degenerate. This means that the donor con-
centration is higher than 1013 cm−3 [6]. The Fermi
energy EF in degenerate semiconductors lies inside
their conduction band. Therefore, degenerate semi-
conductors resemble metals. However, the value of
EF in degenerate semiconductors can be a thousand
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Fig. 1. Scheme of a quantum wire with two equal
delta-barriers.

times lower than in metals. The funnelled shapes
depicted in Fig. 1 at the ends of QW symbolize
mesoscopic leads. Horizontal arrows at z = ±L/2
suggest voltage terminals. Let b be the radius of
the considered QW. If there are no delta barriers in
QW, its conductance would be equal to πb2µene/L
(µe and ne are, respectively, the mobility and the
concentration of the conduction electrons). Accord-
ing to the transport theory of solids [7], mobility
depends on the relaxation time τ , which character-
izes the collisions of the conduction electrons with
defects and with phonons inside QW. We may esti-
mate mobility using the Drude formula µe = eτ/m.
We denote the QW resistance with no delta-barriers
as Rτ . When including the delta-barriers into ac-
count, we have to consider the additional resistance
Rδ. Assuming the resistances additivity when the
resistors are connected in series, we expect that the
total resistance of QW can be written as

RQW = Rδ +Rτ . (5)
(Doubt about the validity of this equation might
arise if the lengths L and a were comparable. We
assume, however, that L� a.) It therefore remains
to determine the term Rδ. At enough low temper-
atures, ideally at T = 0, the Landauer formalism
is applicable, presuming a ballistic regime. (Note
that there exist two Landauer’s formulae. Here we
have in mind the formula concerning the “four ter-
minal definition” of the conductance [8, 9].) In our
case, the Landauer formula involves the probabil-
ity T with which the conduction electrons can tun-
nel through the double delta-barrier. Thanks to the
metallic character of the charge transport, the rele-
vant energies of the conduction electrons in QW are
close to the Fermi energy.

In terms of the corresponding conductances,
which we denote as GQW, Gδ, Gτ , the formula (5)
reads

1

GQW
=

1

Gδ
+

1

Gτ
. (6)

There are good reasons to argue that Gδ and Gτ
are independent quantities. That is why we may
say that (6) confirms the Matthiessen rule [7].

The vertical arrow depicted on the left side
in Fig. 1 indicates the magnetic field B applied in
the direction of the QW axis. As we will prove in
Sect. 3, the Fermi energy is a growing function of B.
This fact motivates us to foresee that the magnetic
field may serve as a control tool for the value of
the tunnelling probability T in the Landauer for-
mula, and then also for the value of the resistance
RQW. The possibility to control the QW resistance
by the longitudinal magnetic field becomes interest-
ing, as we will show exactly, owing to the Zeeman
effect.

2. Mathematical formulation
of the problem

2.1. Probability of tunnelling
through the double delta-barrier

Our first task is to solve the Schrödinger equation

− ~2

2m

∂2ψk(x)

∂x2
+ γ
[
δ
(
x−a

2

)
+δ
(
x+

a

2

) ]
ψk(x) =

Ekψk(x), γ > 0. (7)

There are two solutions — we denote them as
ψ>k (x) and ψ<k (x), both with the eigen-energy
Ek = ~2k2

2m . We take k>0 and a>0. The wave
function ψ>k (x) expresses the motion of the conduc-
tion electron from left to right

ψ>k (x) =


e ikx+D← e− ikx, x < −a2 ,
M1 cos(kx)+M2 sin(kx), −a2 < x < a

2 ,

D→ e ikx, a
2 < x.

(8)

The coefficients D←, M1, M2, and D→ can be
uniquely determined [2]. The quantities |D←|2 and
|D→|2 are the reflection and transmission (tun-
nelling) coefficient, respectively. They represent
complementary probabilities, i.e.,
|D←|2 + |D→|2 = 1. (9)

We prefer to consider tunnelling probability as
a function of

εκ = κ2. (10)

(Recall that κ = ka.) According to our calculations,
the tunnelling probability is given by the formula

T (εκ) =
(E′k)4

(E′k)4 + 4γ2
[
E′k cos(ka) + γ sin(ka)

]2 ,
(11)

where

E′k =
∂Ek
∂k

=
~2k
m

. (12)

We define the dimensionless parameter

α =
mγa

~2
. (13)
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Fig. 2. Tunnelling probabilities Tα(εκ) for α equal
to (a) 10, (b) 5, and (c) 2. (The parameter α char-
acterizes the strength of the delta-barriers γδ(z ±
a/2).) For a = 20 nm, the energy εκ = 1 corre-
sponds to 0.6744 eV.

Fig. 3. Tunnelling probabilities Tα(εκ) for α equal
to (a) 0.2 and (b) 0.1. The first derivative T ′α(εκ)
for εκ → +0 is 3.125 and 12.5, respectively.

Then expression (11) is transformed as

Tα(εκ) =
1

1 + 4
(
α
κ

)2 [
cos(κ) + α

κ sin(κ)
]2 =

1

1 + 4α
2

εκ

[
cos(

√
εκ) + α√

εκ
sin(

√
εκ)
]2 . (14)

The tunnelling probabilities Tα(εκ) for some values
of α are presented in Figs. 2–4.

2.2. Resonant maxima

The derivative dTα(ε)/dε is positive for ε→ +0,
see Fig. 3. For higher values of α this derivative
can be very small. For instance, if α = 2, then

Fig. 4. For a = 15 nm, the unity in the horizontal
axis corresponds to 0.0121 eV. Then the position
of the maximum of the depicted curve, εκ = 4.116,
corresponds to 0.0498 eV.

dT (ε)/dε
∣∣
+0

= 1/144 ≈ 0.007. The function Tα(ε)

exhibits an infinite number of resonant maxima.
Their positions ε(i)α,max are defined by the equation
Tα(ε

(i)
α,max) = 1. This equation is tantamount to the

transcendental equation

cos(κ) +
α

κ
sin(κ) = 0, κ =

√
ε
(i)
α,max. (15)

When applied to double delta-barriers in InSb, (14)
becomes approximate for high values of εκ. This is
because the dispersion function of conduction elec-
trons in InSb is not exactly quadratic if the values
of Ek are higher than about 0.2 eV.

We want to expound an analysis focused mainly
on values of the function Tα(ε) around its first max-
imum. To get a small value of ε(1)α,max, we ought
to choose a small value of α. The lowest possible
value of ε(1)α,max is π/2 = 1.57 and it corresponds
to α → +0. However, it is not suitable to choose
a value that is too small for α. Namely, when ap-
proximating the delta-barrier as a limiting case of
a rectangular barrier of width w and height V0,
i.e., taking γ ≈ wV0, the parameter α is, according
to (13), proportional to V0. With α� 1, the height
V0 is unacceptably small. Therefore, as a compro-
mise, we opt for α = 1. Figure 4 is a plot of the
function T1(εκ) in an interval embracing the posi-
tion ε(1)1,max = 4.116.

3. Exemplification of parameters of a model
and derivation of Fermi energy

3.1. The case B = 0

Our option of the material of QW is n-InSb. Cor-
respondingly, we consider the effective mass m of
the conduction electrons in QW equal to 0.014m0

494



Resonances Expressed as Minima in Magnetoresistance. . .

(m0 is the electron mass in vacuum). Let us first es-
timate the value of V0 defining the amplitude of the
delta-barrier, γ ≈ wV0. As a result, (13) gives us

V0 ≈
~2α
mwa

. (16)

When inserting here w = 1 nm, α = 1, and
a = 15 nm, we obtain V0 ≈ 0.363 eV. This is
a reasonable value. We will consider throughout
the present paper the donor concentration nD =
1016 cm−3 = 1022 m−3. Since all donors are ion-
ized, the concentration of the conduction electrons
is equal to nD at low temperatures. (Formally, we
consider the zero temperature, T = 0.) The aver-
age distance between the conduction electrons is
n
−1/3
D ≈ 46.4 nm. If no magnetic field is applied, the

Fermi energy EF is fully determined by the value of
nD. As we take QW as a cylinder of radius b, the
number of conduction electrons in it is πb2LnD. We
will consider b = 40 nm and L = 1000 nm. Then
πb2LnD ≈ 50. We can conclude that the transport
of the conduction electrons along QW is ballistic
with few occasional collisions of electrons with point
defects.

Taking the effective mass approximation and as-
suming a constant potential energy in the radial di-
rection, we can write the Schrödinger equation as

− ~2

2m

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+
∂2

∂z2

]
ψkz,ν,µ(r, φ, z)

+γ
[
δ
(
z +

a

2

)
+ δ

(
z − a

2

) ]
ψkz,ν,µ(r, φ, z) =

Ekz,ν,µψkz,ν,µ(r, φ, z). (17)
Here, kz ∈ (−kF, kF), ν=1, 2, . . . and µ=0,
±1,±2, . . . . One thing should be emphasized
in connection with (17) — the eigenfunctions
ψkz,ν,µ(r, φ, z) depend on the amplitude γ of the
double delta-barrier, but the eigenvalues Ekz,ν,µ do
not! Therefore, even if the calculation of the tun-
nelling probability concerning QW shown schemat-
ically in Fig. 1 must be based on (17), the deter-
mination of the Fermi energy, which is our goal in
this section, may be based on a simpler Schrödinger
equation where γ = 0, i.e.,

− ~2

2m

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+
∂2

∂z2

]
ψkz,ν,µ(r, φ, z) =

Ekz,ν,µψkz,ν,µ(r, φ, z). (18)
Thus, although the functions ψkz,ν,µ and ψ̃kz,ν,µ are
different, the set {Ekz,ν,µ} of the eigenvalues of (17)
and (18) is the same.

The energies Ekz,ν,µ lie inside the conduction
band of InSb. Owing to the finite value of the ra-
dius b, these energies are organized in subbands.
The subbands are enumerated by the indexes ν
and µ. The lowest subband has the indexes ν = 1

and µ = 0. Each eigenfunction ψ̃kz,ν,µ(r, φ, z) of
(18) may be considered as a product R(r)Φ(φ)χ(z).
Clearly, Φ(φ) ∼ e iµφ. We denote the R-function as
Rkz,ν,µ(r). It obeys the equation

− ~2

2m

[ d2

dr2
+

1

r

d

dr
− µ2

r2

]
Rkz,ν,µ(r) = ERkz,ν,µ,

(19)
where

E = Ekz,ν,µ −
~2k2z
2m

. (20)

Let us take kz = 0. The first task is to calculate the
eigenenergies E0,1,0 and E0,1,1. The solution of the
equation

d2f(ξ)

dξ2
+

1

ξ

df(ξ)

dξ
+
(

1− µ2

ξ2

)
f(ξ) = 0, (21)

which is finite in the point ξ = 0, is the Bessel func-
tion Jµ(ξ). The first roots of J0(ξ) and J1(ξ) are,
respectively, ξ1,0 = 2.4048 and ξ1,1 = 3.8317. (Re-
call that J−1(ξ) = −J1(ξ).) When comparing (19)
and (21), we observe that

ξ =

√
2mE⊥
~2

r, 0 < r < b, (22)

where the symbol E⊥ indicates the “perpendicular
part” of the eigenenergy. Hence,

E0,1,0 =
~2

2mb2
ξ21,0, E0,1,1 =

~2

2mb2
ξ21,1. (23)

Choosing b = 40 nm, we obtain E0,1,0 ≈ 9.837 meV
and E0,1,1 ≈ 24.974 meV. In the next section, we
will deal with the Schrödinger equation for the pres-
ence of the magnetic field B. Then the eigenenergies
under consideration will be functions E0,1,0(B) and
E0,1,1(B). Fermi energy, as we will show, is an in-
creasing function of the magnetic field. We assume
that the magnetic field is not too strong and so the
condition

E0,1,0(B) < E0,1,1(0) (24)
is fulfilled. Under the condition (24), the problem
we are dealing with is essentially one-dimensional if
we assess it from an “orbital” viewpoint. (Of course,
when the problem is assessed from the viewpoint of
the Zeeman effect, the condition B < 15 T need not
be required.)

The number of states of the conduction electrons
in the interval (kz, kz+ dkz) is 2dkz/(2π). (The spin
degeneracy gives a factor of 2 in the numerator.)
The wave numbers kz of the conduction electrons
lie in the interval (−kF, kF). At the zero tempera-
ture, clearly 2kF = π2b2nD, and the Fermi energy
is

EF(0) = E0,1,0(0) + ∆EF(0), ∆EF(0) =
~2k2F
2m .

(25)
With b = 40 nm, and nD = 1022 m−3, we find
that kF ≈ π2b2nD/2 ≈ 7.8957 × 107 m−1 and
∆EF(0) ≈ 0.017 eV. When ~2/(2ma2) is chosen as
the energy unit, the Fermi energy for B = 0 is

εF(0) = ε0,1,0(0)+∆εF(0)=
(
aξ1,0
b

)2
+
[
π2ab2nD

2

]2
.

(26)
Considering a = 15 nm, b = 40 nm, we ob-
tain ε0,1,0(0) = 0.1406 ξ21,0 ≈ 0.8132, ∆εF(0) ≈
1.4027 and εF(0) ≈ 2.2159. In the context of
the problem that we are solving, it is important
that εF(0) < ε

(1)
1,max.

495



V. Bezák

3.2. The case B > 0

The objective of this section is to calculate the
function EF(B). When the magnetic field is paral-
lel to the axis of QW, this simplifies the problem
solving.

3.2.1. Calculation ignoring spin
of the conduction electrons

At first, let us treat the problem as if the conduc-
tion electrons were spinless particles. Our intention
is to solve the Schrödinger equation

1

2m

(
− i~∇+ eA(r)

)2
ψ̃E(r) = E ψ̃E(r). (27)

(We posit that e > 0; so the charge of the electron
is −e.) Let r0, φ0 and z0 be the unit vectors of the
cylindrical system of coordinates. The vector poten-
tial can be defined as A(r) = φ0Aφ(r) = 1

2rBφ
0.

The operator nabla is ∇ = r0 ∂
∂r +(φ0/r) ∂

∂φ +z0 ∂
∂z .

Then ∇×A(r) = z0[Aφ(r)/r+ dAφ(r)/dr] = z0B

and [− i~∇+A(r)]2 = −~2∇2− i~eB ∂
∂φ+ 1

4e
2B2r2.

Thus, we can write (27) as[
− ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+
∂2

∂z2

)
− i

~ωL

2

∂

∂φ

+
mω2

L

8
r2 − Ekz,ν,µ

]
ψkz,ν,µ(r, φ, z) = 0, (28)

where

ωL =
eB

m
(29)

is the frequency. (See the “Problem” added to para-
graph 111 in [10]. The subscript ’L’ should sug-
gest that the frequency ωL is related with the Lan-
dau problem of free motion of a charged particle in
a constant magnetic field. Synonymously, we may
call ωL, like many authors, the effective cyclotron
frequency.)

As in the case when B=0, we seek the so-
lution of (27) in the form ψ̃kz,ν,µ(r, φ, z) '
Rkz,ν,µ(r)e iµφ e ikzz. By omitting the indexes in the
radial function R and in the energy E, we can write
down the equation

− ~2

2m

[
1

r

d

dr

(
r

dR

dr

)
− µ2

r2
R

]
− ~ωLµ

2
R

+

(
mω2

L

8
r2 +

~2k2z
2m

− E
)
R = 0. (30)

Eigenfunctions and eigenvalues of (30) are defined
by three quantum numbers, i.e., kz, ν, and µ. So
we write R ≡ Rkz,ν,µ(r) and E ≡ Ekz,ν,µ. The
quantum number ν is determined by the bound-
ary condition Rkz,ν,µ(b) = 0. As in Sect. 3.1, we
limit the further calculation to the special case when
µ = 0. At first, we take also kz = 0. The equa-
tion (30) with kz = 0 and µ = 0 is transformed
to

~2

2m

1

r

d

dr

(
r

dR

dr

)
+

(
E⊥ −

mω2
L

8
r2
)
R = 0.

(31)

We introduce the dimensionless variable u and the
dimensionless energy E⊥, respectively,

u = −mωL

2~
r2 and E⊥ =

E⊥
~ωL

. (32)

Then we use the denotation
R(r) ≡ R0,ν,0(r) = ρ(u). (33)

It is easy to verify that

r
dR

dr
= 2u

dρ

du
,

1

r

d

dr
= −mωL

~
d

du
,

~2

2m

1

r

d

dr

(
r

dR

dr

)
= −~ωL

(
u

d2ρ

du2
+

dρ

du

)
,

−1

8
mω2

Lr
2 =

1

4
~ωLu. (34)

Hence, the function ρ(u) obeys

u
d2ρ

du2
+

dρ

du
−
(
E⊥ +

u

4

)
ρ = 0. (35)

The substitution
ρ(u) = exp(−u/2)f(u) (36)

in (34) gives

u
d2f

du2
+ (1− u)

df

du
−
(
E⊥ +

1

2

)
f = 0. (37)

The equation

u
d2f

du2
+ (ζ − u)

df

du
− ηf = 0 (38)

was first studied by Kummer [11, 12]. Its ba-
sic solutions, denoted as M(η, ζ, u) and U(η, ζ, u)
in [11] (or as Φ(η, ζ;u) and Ψ(η, ζ;u) in [12]), are
confluent hypergeometric functions. (Maple calls
these functions KummerM and KummerU. Note
that there exists also the denotation 1F1(η, ζ;u) for
M(η, ζ;u). Users of Mathematica can find the func-
tion Hypergeometric1F1[η, ζ, u] in the list of special
functions.) We are considering η = E⊥+ 1/2, ζ = 1.
The function U(E⊥ + 1/2, 1;u) is irrelevant in our
problem. Thus, the radial function is

ρ(u) = exp(−u/2)M(η, 1, u). (39)

(We do not need to calculate the normalization coef-
ficient.) Let us introduce the dimensionless variable
β > 0 proportional to the magnetic field B

β = |u|r=b =
eb2

2~
B. (40)

The eigenenergies E⊥ are solutions of the equation
M(E⊥ + 1/2, 1,−β) = 0. (41)

We now focus our attention on the E⊥(β) function
corresponding to the lowest eigenenergy E⊥(B).
The problem is explained in detail in Appendix. The
function E⊥(β) is approaching the asymptotic value
E⊥(∞) = 1/2, while E⊥(B) ≈ ~ωL/2 for high val-
ues of B. This means that if the magnetic field is
strong, the energy E⊥ in the quantum wire is the
same as in the bulk material. If the variable β lies
in the interval 0 − −7, the function β E(β) differs
remarkably from β/2. This unequivocally manifests
the quantum size effect.
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Fig. 5. The functions β E⊥(β) (bold curved line)
and β E⊥(β) (thin curved line). The short hori-
zontal bars correspond to the exact values of the
lowest positive root of the equation M(E⊥(j) +
1/2, 1,−j) = 0, where j = βj , (j = 1, 2, . . . ). The
thin curved line was obtained by interpolation be-
tween the points (βj , βjE(βj). The function β E⊥(β)
is defined by (42).

We can now derive the dependence of the Fermi
energy EF on the magnetic field. The function
EF(B) depends uniquely on E⊥(B). Although us-
ing the Kummer function M(η, 1,−β) allowed us
to compute exactly the E⊥(B) function, basing
the Fermi energy calculation on something what
must be defined as the root of the transcendental
equation is simply impractical. Instead, it is useful
to replace βE⊥(β) with a simple explicit function
βE⊥(β). A very satisfactory function for this pur-
pose is

β E⊥(β) =


1.4458− 1.389 (1− e−0.31 β) + 0.5β,

if 0 ≤ β < 7,

0.5β, if 7 < β.
(42)

The results regarding the functions β E⊥(β) and
β E⊥(β) are shown in Fig. 5. Because E⊥(B) =
(~eB/m) E⊥(β), we have got

E⊥(B)=


2~2

mb2

[
1.4458− 1.389

(
1−e−0.155 eb

2B/~)]
+~eB

2m , if 0 ≤ B < 14 ~/(eb2),

~eB
2m , if 14 ~/(eb2) < B.

(43)
(We assume that the effective mass m depends neg-
ligibly on the magnetic field. We also ignore the en-
hancement of the value of m due to the confinement
of InSb in the nanostructure. According to [13], this
enhancement can be about 20%.)

3.2.2. The Zeeman splitting

If B 6= 0, we have to dichotomize the conduc-
tion electrons, taking the spin up and spin down
electrons separately. Each energy E⊥(B), which
has been calculated in Sect. 3.2.1 splits into two
energies,

E↑⊥(B) = E⊥(B)− g∗µBB,

E↓⊥(B) = E⊥(B) + g∗µBB. (44)

where µB = ~e/(2m0) is the Bohr magneton. (Re-
call that m0 is the electron rest mass.) The factor
g∗ (known as the effective Landé or the gyromag-
netic factor) is dimensionless. For a free electron
(in a vacuum), g∗ = −2. The value of |g∗| of the
conduction electrons in InSb is much higher than
2 due to the very small effective mass m and the
strong spin–orbit interaction. Nowadays, the reli-
able determination of g∗ in InSb nanostructures is
a hot topic. The generally accepted value of g∗ for
bulk InSb is −51.3 (see e.g. [14]). However, if InSb
is a component in nanostructures, thorough inves-
tigations [15, 16] revealed that the effective g-factor
may be more than 40% higher than its bulk value.
The value of |g∗| ' 50 is high and some authors have
called the effective g-factor of InSb “giant”. Two pe-
culiarities of the factor g∗ of InSb are worth men-
tioning. First, it is level-dependent. The level depen-
dence of g∗ is not interesting in our case, because
we are not considering other quantum numbers than
ν = 1 and µ = 0. The second peculiarity of the fac-
tor g∗ of InSb is its conspicuous anisotropy [13, 17].
For instance, the authors of [13] came to the conclu-
sion that |g∗| is equal to 52 in one direction and 26
in the other (perpendicular). The anisotropy of g∗,
which was later on reported in [17], was somewhat
nearer to isotropy. Reliable determination of the g∗
factor for a given orientation of the crystalline lat-
tice inside InSb QWs is undoubtedly difficult and we
do not want to discuss it here. In our calculations,
we will use the bulk value of the effective g-factor,
g∗ = −51.3.

The dependence of the Fermi energy EF on the
magnetic field results from

πb2nD=

∞∫
−∞

dkz
2π

{[
exp

(
E↑kz,1,0(B)− EF

kBT

)
+1

]−1

+

[
exp

(
E↓kz,1,0(B)− EF

kBT

)
+ 1

]−1}
. (45)

We will calculate the Fermi energy at the zero tem-
perature.

3.2.3. The Fermi energy E(0)
F (B)

in the approximation neglecting
the Zeeman splitting (g∗ = 0)

If we take formally g∗ = 0, then (43) at T = 0 is
simplified as

πb2nD =
1

π

kF∫
−kF

dkz =
2

π

kF∫
0

dkz =

2

π

√
2m

~2

√
E

(0)
F − E0,1,0(B). (46)

This equation gives the function
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E
(0)
F (B) =

~2

2m

(
π2b2nD

2

)2

+ E0,1,0(B) =

∆EF(0) + E⊥(B). (47)
(We have neglected the difference between E0,1,0(B)

and E⊥(B).) On the scale where ~2/(2ma2) is the
energy unit (see Fig. 2), (45) reads

ε
(0)
F (β) =

(
π2ab2nD

2

)2

+
2ma2

~2
E⊥(B) =

∆εF(0) +
2ma2

~2
E⊥(B). (48)

3.2.4. The Fermi energy EF calculated
for T = 0 with g∗ 6= 0

We define two wave numbers, k↑F and k↓F, related
to the Fermi energy EF as follows

k↑F =
√

2m
~2

√
EF − E0,1,0(B) + g∗µBB,

k↓F =
√

2m
~2

√
EF − E0,1,0(B)− g∗µBB. (49)

For T = 0, (45) is simplified to

πb2nD =
1

π


k↑F∫
0

dkz+

k↓F∫
0

dkz

 =
k↑F + k↓F

π
=

1

π

√
2m

~2

{√
EF − E0,1,0(B) + g∗µBB

+
√
EF − E0,1,0(B)− g∗µBB

}
. (50)

Using the denotation A = π2~b2nD/
√

2m, C =
EF − E0,1,0(B) and Q = g∗µB, we observe that
(50) is of type A =

√
C +QB +

√
C −QB which

is an algebraic equation for C. The solution is
C = A2/4 + Q2B2/A2. In this way, we derived the
dependence of the Fermi energy on the magnetic
field

EF(B) = E0,1,0(B) +
A2

4
+
Q2B2

A2
=

E⊥(B) +
A2

4
+
Q2B2

A2
. (51)

(The function E⊥(E) was defined by (43).) As the
magnetic field B increases, the spin-dependent term
in (51) is expected to be more and more important.
Nevertheless, our estimate yields a relatively small
value of the ratio

Q2

A2
= 2m

(
g∗µB

π2~b2nD

)2

. (52)

Indeed, with the parameter values we use, we have
A2 ≈ 0.068 eV, |Q| = 2.97 × 10−3 eV/T. Thus,
Q2/A2 = 1.297 × 10−4 eV/T2. Hence, if we take
B = 10 T, the spin-dependent term Q2B2/A2 ≈
0.013 eV is comparable with ∆EF(0) ≈ 0.017 eV.
On this occasion, however, we have to emphasize
that if nD � 1022 m−3, the spin-dependent term
in (51) (taken with the same magnetic field) be-
comes utterly dominant.

Fig. 6. (a) The thin curved line is the function
η
(0)
F (B) = ∆εF(0) + η

(0)
⊥ (B) calculated for g∗ = 0.

After correction with respect to the Zeeman effect,
the Fermi energy ηF(B) is plotted as a bold line.
(The calculation used a = 15 nm, b = 40 nm,
nD = 1022 m−3, g∗ = −51.3.) (b) The same curves
as in panel (a), but the vertical axis is rescaled in
electronvolts.

Thus, the dependence of the Fermi energy on the
magnetic field reads

EF(B) = E
(0)
F (B) + 2m

(
g∗µB

π2~b2nD

)2

B2. (53)

When replacing B by 2~β/(eb2) and multiplying
(53) by 2ma2/~2, we can obtain the function
εF(β). However, β is only a formal variable and we
actually need to pay attention to the dependence
of εF on the magnetic field B. We express this
dependency as the function ηF(B), taking into
account that ηF(B) = εF(β). So we prefer to define
dimensionless Fermi energy as the function

ηF(B) = εF

(
eb2B

2~

)
=

2ma2

~2
EF(B). (54)

Similarly η
(0)
F (B)=(2ma2/~2)E

(0)
F (B) and

η
(0)
⊥ (B)=(2ma2/~2)E

(0)

⊥ (B). We proved above
that E(0)

F (B) = ∆EF(0) +E⊥(B). So in dimension-
less formalism we can write (51) as

ηF(B) = ∆εF(0) + η⊥(B) +

(
2mg∗aµB

π2~2b2nD

)2

B2.

(55)
Numerically, when taking nD = 1022 m−3,
a = 15 nm, b = 40 nm, m/m0 = 0.014, |g∗| = 51.3,
we obtain ∆εF(0) = 1.4027 (recall (26)) and(

2mg∗aµB

π2~2b2nD

)2

=
0.01074

T 2
. (56)

It remains to carry out the transformation
of E⊥(B) to η⊥(B). The factor 2~2/(2m)
in (43) is transformed as 4(a/b)2. Then
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Fig. 7. Resistance given by the relation
[e2/(π~)](RQW(B)−Rτ (B)). The same param-
eters were used as in Fig. 6.

4(a/b)2× 1.4458 = 0.8133. By scrutinizing function
(43), we can also specify the exponent in its expo-
nential function, 0.155 × eb2/~ = 0.363 T−1,
and the term which is linear in B, i.e.,
(2ma2/~2)(e~/(2m)) = ea2/~ = 0.329 T−1.
The function η⊥(B) is shown as a thin line
in Fig. 6.

So, we can propound the final form of the dimen-
sionless function of our concern

ηF(B) =



1.4027 +
[
0.8133− 0.91 (1− e−0.363B)

+0.329B
]

+ 0.0107B2,

if 0 < B < 6,

1.4027 + 0.329B + 0.0107B2,

if 6 < B.

.

(57)
(This function is depicted as a bold curved line
in Fig. 6. The values of B are given in Tesla. The
two branches of function (57) are sewn together in
the point B = 6; hence the factor 0.91 in front of
(1 − e−0.363B).) Note also that for b = 40 nm,
condition (24) is surely fulfilled if B < 15 T
(see Fig. 6b).

4. Magnetoresistance

Using the parameters of the previous sections
(α = 1, a = 15 nm, b = 40 nm, nD = 5× 1022 m−3,
g∗ = −51.3, m = 0.014m0), we will now aim to
determine the dependence of the conductance GQW

and the resistance RQW = 1/GQW on the magnetic
field B. The key issue in our theory is that the bal-
listic resistance of QW can become zero at well-
defined magnetic fields. We especially have in mind
a pair of values, which we denote (for α = 1) as
{B<reson, B>reson}. These two values reflect the reso-
nant tunnelling corresponding to the first maximum
of the function T1(εκ). The two values of the mag-
netic field correspond to the two electron energies,
the first due to spin up and the second due to spin

down. It is also possible to consider an additional
(third) value of the magnetic field at which the bal-
listic resistance becomes equal to zero, see Fig. 7.

4.1. Ballistic approximation

The ballistic approximation in our case means
that no reason for the conductance value other than
the presence of the double delta-barrier is taken
into account. The ballistic theory has two ingre-
dients: (i) the calculation of the tunnelling prob-
ability T1 (recall that the subscript 1 specifies the
strength of the delta-barrier), and (ii) the calcu-
lation of the Fermi energy. The calculation of T1 is
a task of mechanics and the calculation of the Fermi
energy is a task of kinetics. The calculation of the
Fermi energy has nothing to do with the quantum-
mechanical calculation of the probability function
T1(εκ). The role of the Fermi energy is only to fix
two values of κ; we will denote them as κ↑F and κ↓F.

4.1.1. How the situation would appear
if the conduction electrons were treated

as spinless quasiparticles

It is useful to briefly discuss what our theory
would predict if the gyrofactor were zero. The anal-
ysis for g∗ = 0 was presented in Sect. 3.2.1. Gener-
ally, (κ(B))2 = εκ,1,0(β)− ε0,1,0(β), and so

(κF(B))2 = ε
(0)
F (β)− ε0,1,0(β) = ∆F(0). (58)

(Here we took (26) into account.) The value of κF
is independent of the B magnetic field. Taking into
account the probability function T1(εκ) (see Fig. 4),
we may employ the Landauer formula for the elec-
trical conductance

Gδ =
e2

π~
T1(κ2F)

1− T1(κ2F)
. (59)

The value of κF is fully determined by the donor
density nD. The study of resonant tunnelling would
presume having many samples of equal QWs, differ-
ing only in the donor density in them. If the prob-
ability T1(κ2F) for the value of nD was one, the bal-
listic conductance of QW would be infinite.

4.1.2. Formula regarding the Zeeman effect

As explained above, the possibility to control the
conductance by a longitudinal magnetic field is less
efficient for |g∗| = 0 than for |g∗| � 1. According
to (49), we can employ the functions

(κ↑F)2 = (ak↑F)2 ≡ η↑F(B) =

2ma2

~2
[
EF(B)− E0,1,0(B) + g∗µBB

]
,

(κ↓F)2 = (ak↓F)2 ≡ η↓F(B) =

2ma2

~2
[
EF(B)− E0,1,0(B)− g∗µBB

]
. (60)
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As in the previous section, the function
E0,1,0(B) ≈ E⊥(B) is cancelled

2ma2

~3
[EF(B)− E0,1,0(B)] =

∆εF(0) +

(
2mg∗aµBB

π2~2b2nD

)2

. (61)

With the chosen numerical values of the parameters
of our model, we have got the functions

η↑F(B) = 1.4027 + 0.2445B + 0.0107B2,

η↓F(B) = 1.4027− 0.2445B + 0.0107B2 . (62)
Now we define two probability functions
P↑1 (B) = T1(η↑F(B)), P↓1 (B) = T1(η↓F(B)). (63)
We can imagine QW as a conductor composed of
two channels distinguished by the spin number.
The conductance of QW can be expressed as the
sum

Gδ(B) = G↑δ(B) +G↓δ(B) =

e2

2π~

[
P↑1 (B)

1− P↑1 (B)
+
P↓1 (B)

1− P↓1 (B)

]
. (64)

Clearly,

lim
g∗→0

Gδ(B) = G
(0)
δ . (65)

Taking the inverse of expression (64), we obtain
the resistance of QW

Rδ(B) =
π~
e2

2
[
1− P↑1 (B)

][
1− P↓1 (B)

]
P↑1 (B) + P↓1 (B)− 2P↑1 (B)P↓1 (B)

.

(66)
This function is shown in Fig. 7. The minima of
Rδ(B) obviously correspond to the roots of the
equations P↑(B) = 1 and P↓(B) = 1. Inside the
interval of magnetic fields chosen in Fig. 7, there
are two roots of the equation P↑(B) = 1 (namely,
B↑1, reson ≈ 8.2 T, B↑2, reson ≈ 36 T) and one root of
the equation P↓(B) = 1 (namely, B↓reson ≈ 31 T).

4.2. Correction regarding residual resistance of QW

If the residual resistance Rτ of the quantum wire
under consideration were negligible, the resistance
RQW might be identified with the value of Rδ.
However, the residual resistance is not small. That
is why it is more convenient to plot the depen-
dence RQW −Rτ vs B, as in Fig. 7, rather than
RQW vs B. The residual resistance of the quantum
wire can be easily estimated as

e2

π~
Rτ =

L

π2b2nD

m

~τ
. (67)

When inserting a typical value of the relaxation
time, τ ≈ 10−12 s, we find that [e2/(π~)]Rτ is
roughly 0.77 in our case.

5. Conclusions

We have derived analytically the resistance of the
cylindrically shaped InSb quantum wire (QW). Our
theory deals with a special case: we assume that

QW hosts two equal delta-barriers. We have shown
that Fermi energy can be potently controlled by
a longitudinal magnetic field. When the quantum
wire parameters (i.e., radius b of QW, donor den-
sity nD, strength γ of delta-barriers, and distance a
between them) are adequately tuned, the resistance
of QW can manifest an unusual dependence on mag-
netic field. We presented a theory based on the Lan-
dauer formula. We proved that when the magnetic
field grows from zero, the resistance of QW initially
decreases until it reaches a minimum value. After-
wards the resistance increases with the growth of
the magnetic field. The situation repeats itself: af-
ter reaching a maximum, the resistance decreases
again as B grows and reaches the second minimum.
A third minimum is also predicted, see Fig. 7.

We recommend mapping the vicinity of the first
minimum since experimentation using relatively
high DC magnetic fields for the mapping of the
vicinity of the second and third minimum can be
difficult. (Note that nowadays it is not possible to
use higher DC magnetic fields than 45.5 T [18].)

The phenomenon described in this paper can be
used in the design of the spin selector. Indeed, let us
imagine two metallic current terminals joint on the
side with a vertical nanostructure shown schemat-
ically in Fig. 1: an input terminal joint at the po-
sition zin = −L/1 −∆ and the output terminal at
zout = L/2 + ∆. We can consider the experimental
arrangement in which the magnetic field B is local-
ized in the cylinder region 0 < r < b, but is much
weaker for r = R � b. Considering the electron
spins, the picture following from our theory is like
this: the input terminal hosts in the position r = R
a mixture of spins ↑ and ↓. On the other hand, the
electron spins at r = R in the output terminal are
polarized at Fermi energy, just like the spins ↑.

There is a possibility to utilize resonant tun-
nelling of electrons through double barriers in the
design of resonant tunnel devices. For instance,
recently Castro et al. [19] studied resonant tun-
nelling of electrons through the AlSb/GaInAsSb
double barriers. However, their samples were not
thin wires, and they did not focus on magnetoresis-
tance.

The question arises whether the non-parabolicity
of the conduction band of InSb [3], which we have
neglected in our calculations, is important enough.
Incorporating non-parabolicity in the theory of the
present paper may lead to some quantitative (not
qualitative) improvements that (we believe) are not
very important. (We do not exclude that Fig. 7,
which shows our main result, may be somewhat
changed.)

For the sake of simplicity, we assumed in our the-
ory that the temperature is zero. So, the question
arises whether the experimental confirmation of the
result manifested in Fig. 7 does not require the
use of too low temperatures. At the temperature
of liquid helium T = 4.2 K, the thermal energy is
kBT ≈ 0.00036 eV and this value is one order of
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magnitude lower than the Fermi energy in the mag-
netic field at ∼ 10 T. Thus, the Fermi–Dirac dis-
tribution function may be approximated as a step
function. This means that the resistance RQW(B)
at T ∼ 1 K should be practically the same as at
T = 0.

One can also pose another question: what hap-
pens if we replace the two delta-barriers in QW with
a single rectangular barrier? Can we expect that the
function RQW(B) exhibits at least one minimum?
Our answer is affirmative if we consider the Fermi
energy above the barrier. Of course, the outcome de-
pends on the choice of the width a and the height
U0 of the barrier (along with the choice of donor
density in QW). Indeed, the function T (εκ), mean-
ing the probability of the transmission of electrons
through a rectangular barrier, if εκ > 2ma2U0/~),
resembles the function depicted in Fig. 2, with some
resonant energies at which the probability T (εκ) is
equal to one (cf. e.g. [20]). We can apply the Lan-
dauer formula. And the Zeeman effect should work
just like it does for the double delta-barrier.

Experiments with InSb quantum wires attract
nowadays much attention in connection with
the idea that they should be able to generate
(quasi)particles known as majoranas. (Majorana
was the author of the theory allowing the existence
of particles equal to their antiparticles.) In particu-
lar, one can mention the ambitious project in which
the use of InSb quantum wells was decisive. At-
tempts to create Majorana fermions in this project
were not successful [21, 22]. Nevertheless, the goal
to produce Majorana fermions is alluring, and hope
of their potential use in a future quantum computer
is still alive.

Two properties of InSb are extraordinary, namely
the small effective mass of conduction electrons and
their large (negative) effective gyrofactor. Further
inquiries for details related to InSb quantum wells
are most desirable.

Appendix

In this Appendix, we consider eigenfunctions and
eigenvalues with µ = 0 and kz = 0. The Kummer
function M(η, 1,−|u|) is defined as the sum

M(η, 1,−|u|) = 1 +

∞∑
n=1

(−1)n η(η+1)...(η+n−1)
(n!)2 |u|n =

1 +

∞∑
n=1

(−1)n (1+1/η)...(1+(n−1)/η)
(n!)2 (η|u|)n. (68)

In our case

η = EL(Bz) +
1

2
, |u| = mωL

2~
r2,

E⊥(Bz) =
1

~ωL
E⊥(Bz), ωL =

eBz
m

. (69)

In the literature (e.g. [11, 12]), the Kummer func-
tion M(a, b, z) was depicted and tabulated for pos-
itive values of z. If z < 0, we can employ the trans-
formation M(a, b,−z) = e−zM(b − a, b, z). In our
case,

M(η, 1,−|u|) = e−|u|M
(
1− η, 1, |u|

)
. (70)

Our aim is to derive the dependence of the eigenen-
ergy on the magnetic field. In other words, we will
calculate the function E⊥(Bz).

A. The lowest eigenenergy
in the fieldless case, B = 0

Let us consider the limit
lim

ωL→+0
M(η, 1,−|u|) = lim

ωL→+0
M(1− η, 1, |u|) =

∞∑
n=0

(−1)n

(n!)2

(
mE⊥(0)r2

2~2

)n
. (71)

(We have used (70). Clearly, |u| → +0 for
ωL → +0.) When using the variable

ξ =

√
2mE⊥(0)

~2
r (72)

(cf. the definition (22) in Sect. 3.1) and recalling
that

J0(ξ) =

∞∑
n=0

(−1)n
(n!)2

(
ξ2

4

)n
, (73)

we find that
lim

Bz→+0
R(r) ≡ lim

ωL→+0
ρ(u) = J0(ξ). (74)

We define the quantity

ξb =

√
2mE⊥(0)

~2
b. (75)

We denote the positive roots of
J0(ξb) = 0 (76)

as ξν,0. (The second subscript equal to zero means
that the magnetic number is zero, µ = 0.) The
first positive root of J0(ξ) is ξ1,0 ≈ 2.4048. The
corresponding eigenenergy according to Sect. 3.1.
is

E⊥(0) ≡ E0,1,0(0) =
~2

2mb2
ξ21,0. (77)

B. The lowest eigenenergy
for the given value of B > 0

We define the dimensionless quantity

β =
mωLb

2

2~
=
eb2B

2~
. (78)

Hence

~ωL =
2~2β
mb2

. (79)

We will calculate the function E⊥(B) expressing
the B-dependence of the lowest eigenenergy of
the Schrödinger equation under consideration. The
transcendental equation M(E⊥ + 1/2, 1,−β) = 0
gives the function E⊥(β) which diverges for β → +0.
However, the function βE⊥(β) converges. It is shown
in Fig. 3 in Sect. 2. One can prove that

lim
β→+0

βE⊥(β) =
1

4
ξ21,0. (80)

This is in agreement with (77). If the magnetic field
B is weak, then
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E⊥(B) =
~2ξ21,0
2mb2

+O(B2). (81)

On the other hand, if the magnetic field is strong,
then

E⊥(B) ≈ ~ωL

2
=

~eB
2m

. (82)

In terms of the classical mechanics, we can consider
a cyclotron radius rc determined by the energy E⊥.
The equations (81) and (82) correspond to the lim-
iting cases when rc � b and rc � b, respectively.
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