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We consider the propagation of nonlinear coupled pulses in an optical fiber with cubic-quintic self-and
cross-phase modulation. We model the system by extended Manakov equations incorporating higher-
order cross-coupling terms. We find that the pulse gets a certain minimum width for stable propagation
in the medium. However, the pulse width reduces in the presence of higher-order cross-coupling terms.
We make use of the Vakhitov–Kolokolov criterion and examine whether the pulse is linearly stable for
different values of the pulse power. We also simulate the dynamics of a coupled soliton by a purely
numerical routine.
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1. Introduction

Soliton is a nonlinear wave that emerges from
the interplay between non-linear and dispersion ef-
fects. During propagation, the shape and velocity
of the solitons remain unaltered. Interestingly, all
properties of solitons, except phase, remain invari-
ant after collisions. However, the propagation of
solitons in a particular medium is largely affected
by the variation of the frequency and intensity of
the pulse [1, 2]. More specifically, a high-frequency
solitary wave (short pulse) enhances the dispersive
effects, while its intensity affects the non-linearity
of the optical medium. In the optical medium, the
primary dispersive and nonlinear effects are respec-
tively the group velocity dispersion (GVD) and the
Kerr effects, which are responsible for the formation
of the fundamental soliton. The properties of the
shorter and highly intense pulse, however, are af-
fected by the presence of non-Kerr effects like quin-
tic non-linearity, stimulated Raman scattering, self-
steepening, two-photon absorption, third-order dis-
persion etc. Most of the non-Kerr effects start to
play if the optical pulse is very short (< 100 fs).
Mathematically, such pulses can be described by the
generalized Kundu–Eckhaus equation [3, 4]. There
exists several studies based on the model [5, 6]. Re-
cently, on the basis of the model, the existence of
dipole soliton was predicted under some parametric
conditions [7]. New types of solitary waves with the
combined properties of a dark and bright soliton
have been reported in [8].

For a pulse having a width greater than 100 fs
and of moderate intensity, the dominant non-Kerr
effect is quintic nonlinearity [3]. In this case, the
displacement vector of the dielectric medium be-
comes the square function of the electric-field am-
plitudes, and the refractive index of the medium,
if expressed in terms of the intensity of the medium,
can be written as n = n0 + n2I + n4I

2, where n0

is the linear refractive index, and n2 and n4 are the
refractive indexes of cubic and quintic nonlinear-
ities, respectively. Studies on cubic-quintic nonlin-
ear media have renewed considerable interest due to
the technological development for inducing artificial
higher order-nonlinearities in optical materials like
semiconductor doped glasses, chalcogenide glasses,
organic polymers [9–12] and possible applications.
The system supports interesting phenomenon which
include pulse compression [13], Town’s solitons [14]
and cicular soliton [15].

In addition to the scalar soliton, a single-mode
birefringent fiber or multi-mode fiber can support
a pair of solitons such as bright–bright, dark–dark,
which are coupled through cross-phase modula-
tion (XPM) [16, 17]. Recently, incoherently cou-
pled dark–bright (DB) vector solitons have been ob-
served experimentally. It was found that, unlike the
scalar soliton, the dark–bright vector solitons are
formed in single-mode fibers for both normal and
anomalous group velocity dispersion (GVD) [18].
All studies are based either on the Manakov model
or the Helmholtz–Manakov model, where XPM is
cubic. Since at a moderate intensity the quintic
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nonlinearity comes into play, it can induce inter-
modal interaction between pulses through quintic
XPM [3, 19, 20].

Our objective in this work is to envisage a the-
oretical study on the coupled bright solitons
(BB-type) considering cubic and quintic XPM, in
order to see what is the effect of cross-phase mod-
ulation (XPM) due to quintic nonlinearity on the
formation of BB-type solitons. We work with the
extended Manakov model within the framework of
variational approach. Based on a similar model,
Qi et al. [20] predicted the generation of soliton so-
lutions due the Darboux transformation and sym-
bolic computations [20]. Recently, Yan et al. [19]
found the existence of a bright–dark rogue wave and
a breather wave using Darboux dressing transfor-
mation and asymptotic expansion.

In Sect. 2 we introduce a variational approach
to deal with the problem of bright–bright solitons
supported by the system [3]. We find the effective
potential for the pulse width and find the minimum
value of the pulse width. In Sect. 3, we find the lin-
ear spectrum corresponding to each component of
the soliton and present the linear stability analysis.
We check the dynamical stability by directly simu-
lating the time evolution of solitons. We restore the
physics unit from the normalized units and compare
it with the experimental result. We outline the main
result of the paper in Sect. 4.

2. Formulation of the problem within
variational framework

Propagation of a single pulse in cubic–cubic quin-
tic nonlinear media is described by the following
nonlinear Schrödinger equation [21–25]

iux = C utt + 2
(
α |u|2 + γ |u|4

)
u. (1)

Here, α and γ are the coefficients of the third-
and fifth-order nonlinear coefficients, respectively.
The numerical values of the parameters can be pos-
itive or negative depending on the properties of
the medium and the pulse frequency. For an ultra-
short optical pulse, there can be two interesting
effects, namely nonlinear dispersion/self-steepening
and Raman scattering resulting in velocity change
and frequency shift of the pulse [24]. However, these
effects are negligible for pulses with a width greater
than 100 fs at moderate intensity. If we allow two
such pulses to propagate simultaneously in a non-
linear medium, then the coupling comes into play
due to the inter-pulse interaction. Coupled vector
soliton can be treated as incoherently coupled two
orthogonal linearly polarized light waves in a bire-
fringent single-mode fiber [26], in which the modal
dispersion is the lowest. Mathematically, the simul-
taneous propagation of two pulses can be described
by the extended Manakov model [20]
iujx = Cjujtt+2

(
αj |uj |2+γj |uj |4

)
uj+βj |u3−j |2uj

+δj |u3−j |4uj + 2δ3−j |uj |2|u3−j |2uj , (2)

where uj(t, x) (j = 1, 2) represents the complex am-
plitudes or envelopes of the two pulses having or-
thogonal polarizations; Cj represents the group ve-
locity dispersion (GVD) coefficient. The parameters
αj and γj stand for the strengths of self-phase mod-
ulations arising due to cubic- and quintic- nonlin-
earity. The factor β represents the strength of cubic
cross-phase modulation XPM, whereas δj stands for
the quintic XPM. One can check that (2) is obtained
from (1) by substituting u =

∑2
j=1 aj uj and apply-

ing orthogonality condition or by substituting the
same in the Kundu–Eckhaus equation in the negli-
gible nonlinear dispersion limit [3, 19, 20]. Note that
(2) can also describe coupled pulse propagation in
a multimode fiber (MMF). The modal dispersion in
that case is large. However, the inter-modal disper-
sion can be optimized by choosing the appropriate
fiber. For example, in a graded index fiber where the
refractive index (r.i.) varies in a parabolic pattern
(called a parabolic index fiber), inter-modal disper-
sion is minimum. A step index fiber is one where
r.i. faces sharp changes and can act as a multimode
fiber with negligible inter-modal dispersion.

The action functional for (2) can be expressed as

I =

∫
dx

∫
dtL

(
u1, u

∗
1, u2, u

∗
2, u1x, u

∗
1x,

u2x, u
∗
2x, u1t, u

∗
1t, u2t, u

∗
2t

)
(3)

where

L =

2∑
j=1

[
i

2

(
ujxu

∗
j − u∗jxuj

)
+ Cj |ujt|2 − αj |uj |4

−2

3
γj |uj |6 − δj |u3−j |4|uj |2

]
− β|u1|2|u2|2.

(4)
The cubic-quintic nonlinear Schrödinger equation
supports both bright solitons [27, 28]. Clearly, (1)
follows the action principle in (4). Assuming a weak
XPM, we adopted a Gaussian-shaped function

uj(x, t) = Aj(x) exp

(
− t2

2aj(x)2
+ ibj(x)t

2 + iφj

)
(5)

as trial solutions of the coupled system. Here,
Aj(0), aj(0), and bj(0) represent the amplitude,
width and frequency chirp of the pulses at x = 0,
respectively, while the complex amplitude Aj(x),
the pulse width aj(x), the frequency chirp bj(x) will
all vary with the propagation distance. Understand-
ably, (3) describes bright–bright-type (BB-type) so-
lution [29].

Inserting (3) in (2) and integrating over x from
−∞ to +∞, we get 〈L〉. From the vanishing con-
dition of the variational derivative of δ 〈L〉/δXj=0
for Xj(x) ≡ Aj(x), aj(x), bj(x) and φj , one can
find equations for variational parameters. A proper
combination of these equations lead us to write the
following equations for the parameters

aj |Aj |2 =
Ej√
π

= Pj , (6)
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a2
j

dbj
dx

= −Cj
a2
j

+ 4Cja
2
jb

2
j +

√
2 αjPj
aj

+
4

3
√
3

γjP
2
j

a2
j

+
2β a2

jP3−j(
a2
j + a2

3−j
)3/2 + Tj , (7)

with

Tj = 8PjP3−jCj
(a2
j + a2

3−j)δ3−j

a2
j (a

2
j + 2a2

3−j)
3/2

+8P 2
3−jCj

ajδj
a3−j(a2

j + 2a2
3−j)

3/2
(8)

and

bj = −
1

4
C−1
j a−1

j

daj
dx

. (9)

In (6), Pj stands for the initial energy of the optical
pulses. Mathematically, it represents the norm
Pj =

∫ +∞
−∞ dt |uj |2 of the system. Thus, (6) implies

the non-dissipative pulse propagation. Combin-
ing (7) with the frequency chirp evolution (8), we
get the evolution of the pulse width, i.e,

d2aj
dx2

=
4C2

j

a3
j

− 2
√
2 αjCjPj
a2
j

− 16

3
√
3

γjCjP
2
j

a3
j

− 8β CjajP3−j(
a2
j + a2

3−j
)3/2 + Tj . (10)

The effective potential V (a1, a2) for the coupled
pulse can be obtained as

C−1
j Pj

d2aj
dx2

= −∂Vj(a1, a2)

∂aj
, (11)

where effective potential for each component Vj is
given by

Vj = V SPj + V PX2
j + V PX3

j (12)
with

V SPj =
2PjCj
a2
j

−
2
√
2 αjP

2
j

aj
− 8

3
√
3

γjP
3
j

a2
j

,

(13)

V XP2
j = −8β PjP3−j√

a2
1 + a2

2

, (14)

V XP3
j = −

4P 2
j P3−jδ3−j

aj
√
a2
j+2a2

3−j

−
4PjP

2
3−jδj

aj−3

√
2a2
j+a

2
3−j

.

(15)
Clearly, the effective potential consists of three
terms whose origins are quite distinct. The first
term comes from self-phase modulation (cubic and
quintic) and second order group velocity dispersion.
The second and third terms stand for cubic- and
quintic XPM.

3. Dynamical interplay and linear stability
analysis of BB-type solitons

In order to understand the dynamical inter-play
among different types of nonlinearity and disper-
sive effect in the formation of BB-type solitons, we

Fig. 1. (a) Formation of a short pulse in the pres-
ence of quintic XPM. The dotted, dashed, and solid
curves give the effective potential for δ = 0.0, 0.1,
and 0.55, respectively, when P1 = P2 = 1.0. Other
parameters are fixed as: Cj = 1, α = 2, β = 2,
γ1 = −1, and γ2 = −1. (b) The dashed (j = 1)
and solid (j = 2) curves give the effective potential
for δ = 0.55 when P1 = 1.1 and P2 = 0.9. Other
parameters are fixed as: Cj = 1, α = 2, β = 2,
γ1 = −1, and γ2 = −1.

consider the effective potential given in (12). For
simplicity of presentation, we first consider that
the two orthogonal components have equal widths,
which implies that the ratio Pj/A2

j is the same for
both pulses. In this situation, two cases may arise,
namely (i) P1 = P2 and (ii) P1 6= P2. For a case (i),
we plot in Fig. 1, the effective potential Ṽj(= Vj/Pj)
as a function of the pulse widths aj . Three differ-
ent potentials are shown for the quintic XPM δ.
Here, we take δ1 = δ2 = δ. Figure 1 clearly demon-
strates the fact that for δ 6= 0, the soliton’s width
squeezes to form a shorter pulse. One can check that
the pulse width corresponding to the minima of the
curve for δ = 0 and δ 6= 0 squeezes up to 60%. We
further infer from the results in Fig. 1 that there
must be some threshold value of aj above which
the GVD dominates, and thus the pulse becomes
dispersive.
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Fig. 2. Stability of a short pulse in the presence
of quintic XPM. (a) The dotted, dashed, and solid
curves give the variation of spectral frequencies with
the pulse width of 0, 0.25, and 0.55, respectively,
when P1 = P2 = 1.0. (b) The dotted (j = 1), solid
(j = 2) curves give the spectral frequencies for δ =
0.55 when P1 = 1.1 and P2 = 0.9. Other parameters
are fixed as: Cj = 1, α = 2, β = 2, γ1 = −1, and
γ2 = −1.

If the initial energies of the pulses are taken
slightly differently, the system supports shorter
pulses in the presence of quintic cross coupling
terms. Figure 1 clearly shows that the minimum
occurs at a = 0.08 for P2 = 0.9, while at a = 0.177
for P1 = 1.1. This arises due to the fact that the
dispersive effect dominates over the nonlinear effect
for P1 > P2.

In order to check the linear stability of the cou-
pled stationary solitary waves, we make use of the
generalised Vakhitov–Kolokolov criterion [30–32].
To do this, we replace u1(t, x) → u1(t)e

− iω1x and
u2(t, x)→ u2(t)e

− iω2x in (1) with the ωj frequency
of the linear spectrum, and write

ω1 =
C1

2a2
1

− 2γ1P
2
1√

3a2
1

−
√
2α1P1

a1
− δ1P

2
2

a2

√
a2

2 + 2a2
1

− βP2√
a2

1 + a2
2

− 2P1P2δ2

a1

√
2a2

2 + a2
1

(16)

Fig. 3. Stability of a short pulse in the presence
of quintic XPM. (a) The dotted (j = 1) and solid
(j = 2) curves give the spectral frequencies for δ =
0.55 when P1 = 1.1 and P2 = 0.9. (b) Gradient of
optical power with spectral frequency for different
values of pulse width. Other parameters are fixed
as: Cj = 1, α = 2, β = 2, γ1 = −1, γ2 = −1, and
δ = 0.55.

and

ω2 =
C2

2a2
2

− 2γ2P
2
2√

3a2
2

−
√
2α2P2

a1
− δ2P

2
1

a1

√
a2

1 + 2a2
2

− βP1√
a2

2 + a2
1

− 2P1P2δ1

a2

√
2a2

1 + a2
2

(17)

for the first and second components, respectively.
Here, we deal with the case where the total pulse
energy is fixed such that P0 = P1 +P2. In Fig. 2 we
display the variation of ωj for equal energetic pulses
for different values of quintic XPM. Figure 2 clearly
shows that the changes of the sign of gradient of
ωj take place around aj ≈ 0.17, which is consistent
with the effective potential model (the minimum
of solid curve in Fig. 1). Interestingly, if the ener-
gies of the two pulses differ slightly (Fig. 2b), we
can see that the gradient of ωj for a lower ener-
getic pulse changes its sign at smaller value of aj .
Therefore, the coupled pulse in the presence of the
quintic XPM is also linearly stable for both P1 = P2

and P1 6= P2.
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Fig. 4. Stability of a short pulse in the presence of
quintic XPM. It shows ω1 versus ω2 for P1 = P2 =
1.0 (blue) and P1 = 1.1,P2 = 0.9 (black dashed).
Other parameters are fixed as: Cj = 1, α = 2, β = 2,
γ1 = −1, γ2 = −1 and δ = 0.55.

The changes of Pj with respect to the spectral
frequency ωj play an important role in the exam-
ination of the stability of solitary waves. For ex-
ample, if dPj

dωj
< 0, then the solitary wave is sta-

ble, otherwise it is unstable. This is the so-called
Vakhitov–Kolokolov stability criterion. In Fig. 3a,
it is clear that BB-type solitons are linearly stable
since dPj

dωj
< 0 is negative in both cases. The values

of dP1

dω1
and dP2

dω2
are equal for P1 = P2, but they

are unequal for P1 6= P2 (Fig. 3b). It is worth to
note that the sign of dPj

dωj
< 0 depends on the rela-

tive values of ω1 and ω2. Therefore, we need to find
the appropriate points in the ω1 − ω2 plane for the
stable coupled pulse propagation.

In view of the above, we plot in Fig. 4 the varia-
tion of the relative values of ω1 and ω2 for different
pulse widths. Here, the solid blue and black dashed
curves correspond to cases of P1 = P2 and P1 6= P2,
respectively. In the ω1 − ω2 plane, the spectral fre-
quency for BB-type solitons is positive only in the
first quadrant and thus it can give stable solitary
waves in the presence of cubic-quintic cross-phase
modulation.

We calculate numerically the density profile of
a linearly stable BB-type coupled pulse at dif-
ferent time for the initial condition uj(t, 0) =
Aj exp[−t2/(2a2

j )] and the boundary condition
uj(−20, x) = uj(+20, x). The variation of density
profile in Fig. 5 clearly indicates that a solitary so-
lution remains stable and the effects of XPM reduce
the pulse widths.

In the above, we present the result considering
all parameters in normalized units. Sometimes it is
helpful to check feasibility by expressing the param-
eters in physical units. Writing (1), we have scaled
uj = (ηAeff)

1/2u′j such that |uj |2 becomes the wave
power [33]. The quantity Aeff is the effective mode

Fig. 5. Evolution of a short pulse in the presence
of cubic-quintic XPM. (a) The solid blue (j = 1)
and dashed red (j = 2) curves give density for δ =
0.0, a1 = a2 = 0.55 when P1 = P2 = 1. (b) Similar
to panel (a) but for δ = 0.25 and a1 = a2 = 0.41.
(c) Similar to panel (a) but for δ = 0.55 and a1 =
a2 = 0.3.

area of fiber associated with cubic nonlinearity. In
this work, the coefficient of cubic nonlinear terms
α and β are scaled by α̃ = | 2πn2

λAeff
| and qunitic

nonlinear terms γ and δ by γ̃ = | 2πn4

λAeff 1
|. Here

Aeff 1 ≈ 3
4Aeff [34]. When measuring z and τ we use

the units of dispersive length (LD) and initial pulse
width (T0), respectively [35]. Here, LD = T 2

0 /|2Cj |.
A typical value of Aeff varies from 25 to 126 µm2.
For the propagation of Gaussian shaped pulse at
a wavelength 1.55 µm and Cj = 1 ps2/(K m) in the
normal-GVD fiber for n2 = 2.7 × 10−13 cm2/W,
n2 = −7.8 × 10−23 cm2/W and Aeff = 40 µm2,
one can calculate α̃ = 2.736 × 103 W−1 K−1 m−1

and γ̃ = 2.63 W−2 K−1 m−1 [18, 36]. For the ini-
tial pulse uj(0, t) = (

Ej√
πaj

)1/2 e−t
2/(2a2j ), the pulse

width for stable propagation is ws = ajT0. In stan-
dard telecommunication, LD is approximately 5 Km
for the initial pulse power ' 200 mW, and thus
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T0 ≈ 3.3 ps. In the present variational calculation,
we get aj ∼ 0.5 for δ = 0 while aj ∼ 0.3 for δ = 0.55.
Therefore, we see that the coupled optical pulse of
the full width at half maximum (FWHM) . 1 ps
can be supported by a nonlinear media with cubic-
quintic self- and cross-phase modulations.

4. Conclusion

In this work, we have considered coupled optical
pulses of moderate intensity (frequency > 100 fs)
with special attention to cubic-quintic self-phase
and cross-phase modulations. We formulate the
problem within the framework of the variational ap-
proach and find the effective potential for the pulse
width. It is found that the effective potential at-
tains the minimum value for a particular value of
pulse width. The value of the optimal pulse width
changes with the strength of self- and cross-phase
modulation arising from the cubic–quintic interac-
tion. We find that the quintic cross-phase can play
a significant role in pulse compression. We remark
that the squeezing will be limited by nonlinear dis-
sipation and the Kundu–Eckhaus model should be
taken into account.

We made a linear stability analysis of the cou-
pled pulses by the use of the Vakhitov–Kolokolov
criterion and found that the pulse supported by
the system due to higher-order cross-coupling is
shorter and linearly stable. We find the region
of stability of the coupled pulses and see that it
depends on the relative energy value of the two
pulses.

We simulate the dynamics of the system us-
ing using the split-step Fourier method for pulses
with parameters obtained from optimization pro-
cedure followed by Vakhitov–Kolokolov criterion.
More specifically, we study the time evolution of
the pulse for different values of the XPM strengths.
It is found that the pulses are dynamically stable.
We also check the feasibility of the results using ex-
perimental parameters.
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