Multichannel Decay: Alternative Derivation of the i-th Channel Decay Probability

F. GIACOSA ${ }^{a, b, *}$
${ }^{a}$ Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
${ }^{b}$ Institute for Theoretical Physics, J.W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany

Doi: 10.12693/APhysPolA.142.436 ${ }^{*}$ e-mail: fgiacosa@ujk.edu.pl

Abstract

In the study of decays, it is quite common that an unstable quantum state/particle has multiple distinct decay channels. In this case, besides the survival probability $p(t)$, also the probability $w_{i}(t)$ that a decay occurs between $(0, t)$ in the i-th channel is a relevant object. The general form of the function $w_{i}(t)$ was recently presented in PLB 831, 137200 (2022). Here, we provide a novel and detailed "joint" derivation of both $p(t)$ and $w_{i}(t)$. As it is well known, $p(t)$ is not an exponential function; similarly, $w_{i}(t)$ is not one either. In particular, the ratio w_{i} / w_{j} (for $i \neq j$) is not a simple constant as it would be in the exponential limit. The functions $w_{i}(t)$ and their mutual ratios may therefore represent a novel tool to study the non-exponential nature of the decay law.

topics: decay law, unstable particles, multichannel decay

1. Introduction

In the study of unstable states, both in quantum mechanics (QM) and in quantum field theory (QFT), the survival probability $p(t)$ (the probability that the state formed at $t=0$ has not decayed yet at a later time $t>0$) is of crucial importance [1-15]. Yet, usually unstable states can decay in more than a single decay channel [16]. Then, an equally useful and relevant object is the decay probability $w_{i}(t)$ that the decay has occurred between 0 and $t>0$ in a certain i-th channel. Of course, the equality

$$
\begin{equation*}
p(t)+\sum_{i=1}^{N} w_{i}(t)=1 \tag{1}
\end{equation*}
$$

must hold for each t because at any given time the state has either decayed in one of the N possible channels or it is undecayed (tertium non-datur). As it is well established, the survival probability $p(t)$ can be well approximated with an exponential expression $p(t) \simeq \mathrm{e}^{-t / \tau}$, but the latter is not exact as shown by direct and indirect experimental analyses [17-21]. Since $p(t)$ is not an exponential, it follows that the functions $w_{i}(t)$ are also not such.

The explicit form for $w_{i}(t)$ was recently derived in [22]. The preliminary approximate expression was previously put forward in [11]. Here we present the novel joint determination of $p(t)$ and $w_{i}(t)$ that makes use of the Lippmann-Schwinger equation at the level of operators, see e.g. [23].

2. Evaluation of $p(t)$ and $w_{i}(t)$

Let H be the Hamiltonian of a physical system that contains an unstable state $|S\rangle$. We assume that H can be split into $H=H_{0}+H_{\text {int }}$ with $H_{\text {int }}=\sum_{i=1}^{N} H_{i}$, where H_{i} is responsible for the i-th decay channel. The orthogonal-normalizedcomplete (ONC) eigenstates of the non-interacting Hamiltonian H_{0} are $\{|S\rangle,|E, i\rangle\}: H_{0}|S\rangle=M|S\rangle$, $H_{0}|E, i\rangle=E|E, i\rangle$ with $E \geq E_{\mathrm{th}, i}$, where $E_{\mathrm{th}, i}$ is the energy threshold of the i-th channel; here, we assume as the definition that $E_{\mathrm{th}, 1} \leq E_{\mathrm{th}, 2} \leq$ $\ldots \leq E_{\mathrm{th}, N}$. The ONC conditions of the underlying Hilbert space read

$$
\begin{align*}
& \langle S \mid S\rangle=1, \quad\langle S \mid E, i\rangle=0 \\
& \left\langle E, i \mid E^{\prime}, j\right\rangle=\delta_{i j} \delta\left(E-E^{\prime}\right) \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
|S\rangle\langle S|+\sum_{i=1}^{N} \int_{E_{\mathrm{th}, i}}^{\infty} \mathrm{d} E|E, i\rangle\langle E, i|=1 . \tag{3}
\end{equation*}
$$

The decays $|S\rangle \rightarrow|E, i\rangle$ are encoded in the matrix elements

$$
\begin{equation*}
\langle S| H_{j}|E, j\rangle=\delta_{i j} \sqrt{\frac{\Gamma_{i}(E)}{2 \pi}} \tag{4}
\end{equation*}
$$

where $\Gamma_{i}(E)$ is the i-th decay width, which generally is a function of energy (it reduces to a constant in the exponential limit or the Breit-Wigner (BW) limit [24-26]). (Note, in (4) the sum over other d.o.f. such as spin and momenta has been
implicitly taken into account; the functions $\Gamma_{i}(E)$ are assumed to be known for a specific quantum system, even though usually this is not a simple task.) An explicit expression for H that fulfills the properties listed above can be written in the form of the Friedrichs-Lee Hamiltonian [27, 28] (for various applications, see [29-41] and refs. therein)

$$
\begin{equation*}
H=H_{0}+H_{i n t} \tag{5}
\end{equation*}
$$

with

$$
\begin{gather*}
H_{0}=M|S\rangle\langle S|+\sum_{i=1}^{N} \int_{E_{\mathrm{th}}, i}^{\infty} \mathrm{d} E E|E, i\rangle\langle E, i|, \tag{6}\\
H_{\text {int }}=\sum_{i=1}^{N} \int_{E_{\mathrm{th}, i}}^{\infty} \mathrm{d} E \sqrt{\frac{\Gamma_{i}(E)}{2 \pi}}(|E, i\rangle\langle S|+|S\rangle\langle E, i|) . \tag{7}
\end{gather*}
$$

Note, H actually represents an infinite class of models, since it depends on the functions $\Gamma_{i}(E)$.

The quantity $U(t)=\mathrm{e}^{-\mathrm{i} H t / \hbar}$ is a well-known time evolution operator. In our case, we are interested in the evaluation of the survival probability amplitude and the i-th channel decay amplitude

$$
\begin{equation*}
\langle S| U(t)|S\rangle, \quad\langle E, i| U(t)|S\rangle . \tag{8}
\end{equation*}
$$

In order to accomplish it, let us introduce the operator $F(t)$ (F for "future") as
$F(t)=\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \mathrm{e}^{-\mathrm{i} E t / \hbar}}{E-H+\mathrm{i} \varepsilon}= \begin{cases}U(t), & \text { for } t>0, \\ 0, & \text { for } t<0 .\end{cases}$
The previous equation should be understood as an operatorial equation, i.e., for an arbitrary eigenstate $\left|\Psi_{0}\right\rangle$ with $H\left|\Psi_{0}\right\rangle=E_{0}\left|\Psi_{0}\right\rangle$, one has

$$
\begin{align*}
& F(t)\left|\Psi_{0}\right\rangle=\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \mathrm{e}^{-\mathrm{i} E t / \hbar}}{E-H+\mathrm{i} \varepsilon}\left|\Psi_{0}\right\rangle= \\
& \quad \frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \mathrm{e}^{-\mathrm{i} E t / \hbar}}{E-E_{0}+\mathrm{i} \varepsilon}\left|\Psi_{0}\right\rangle=\left\{\begin{array}{c}
\mathrm{e}^{-\mathrm{i} E_{0} t / \hbar}\left|\Psi_{0}\right\rangle \\
\text { for } t>0 \\
0, \\
\text { for } t<0
\end{array}\right. \tag{10}
\end{align*}
$$

where the last equation is obtained by integrating on the lower half-plane of the complex variable E for $t>0$ and on the upper half-plane for $t<0$. Formally, $F(t)$ is not defined for $t=0$ since the integral $\int_{-\infty}^{+\infty} \mathrm{d} E \frac{1}{E-E_{0}+\mathrm{i} \varepsilon}$ does not converge. Now, we summarize (10) by writing

$$
\begin{equation*}
F(t)=\theta(t) U(t) \tag{11}
\end{equation*}
$$

together with the choice $\theta(0)=\frac{1}{2}$, thus $F(0)=\frac{1}{2}$. Similarly, let us introduce the operator $P(t)$ (P for "past")

$$
\begin{align*}
& P(t)=F^{*}(-t)=-\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \mathrm{e}^{-\mathrm{i} E t / \hbar}}{E-H-\mathrm{i} \varepsilon}= \\
& \left\{\begin{array}{l}
0, \quad \text { for } t>0, \\
U(t), \quad \text { for } t<0
\end{array}\right. \tag{12}
\end{align*}
$$

hence $P(t)=\theta(-t) U(t)$ and $P(0)=\frac{1}{2}$. For each time t (including $t=0$) we get a consistent result

$$
\begin{align*}
& U(t)=\mathrm{e}^{-\mathrm{i} H t / \hbar}=F(t)+P(t)= \\
& \frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \mathrm{e}^{-\mathrm{i} E t / \hbar}}{E-H+\mathrm{i} \varepsilon}-\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \mathrm{e}^{-\mathrm{i} E t / \hbar}}{E-H-\mathrm{i} \varepsilon}= \\
& \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E \varepsilon \mathrm{e}^{-\mathrm{i} E t / \hbar}}{(E-H)^{2}+\varepsilon^{2}}=\int_{-\infty}^{+\infty} \mathrm{d} E \delta(E-H) \mathrm{e}^{-\mathrm{i} E t / \hbar} . \tag{13}
\end{align*}
$$

Next, we return to the time evolution of the expectation values of (8). To evaluate them, we need to determine propagators defined as

$$
\begin{align*}
& G_{S}(E)=\langle S| \frac{1}{E-H+\mathrm{i} \varepsilon}|S\rangle \\
& T_{i}\left(E^{\prime}, E\right)=\left\langle E^{\prime}, i\right| \frac{1}{E-H+\mathrm{i} \varepsilon}|S\rangle . \tag{14}
\end{align*}
$$

Namely, once these quantities are known, the time evolution is obtained by using the "future" representation $F(t)$ of (9). For this, we write down the operatorial Lippmann-Schwinger equation
$\frac{1}{E-H+\mathrm{i} \varepsilon}=\frac{1}{E-H_{0}+\mathrm{i} \varepsilon}\left[1+H_{\text {int }} \frac{1}{E-H+\mathrm{i} \varepsilon}\right]$,
which can be proven considering the operator O defined as (note that when dealing with the operators, the order is important)

$$
\begin{align*}
& O=\left(E-H_{0}+\mathrm{i} \varepsilon\right)\left[\frac{1}{E-H+\mathrm{i} \varepsilon}-\frac{1}{E-H_{0}+\mathrm{i} \varepsilon}\right]= \\
& \quad\left(E-H_{0}+\mathrm{i} \varepsilon\right) \frac{1}{E-H+\mathrm{i} \varepsilon}-1= \\
& \quad\left(E-H_{0}+\mathrm{i} \varepsilon\right) \frac{1}{E-H+\mathrm{i} \varepsilon}-(E-H+\mathrm{i} \varepsilon) \frac{1}{E-H+\mathrm{i} \varepsilon}= \\
& \left(H-H_{0}\right) \frac{1}{E-H+\mathrm{i} \varepsilon}=H_{i n t} \frac{1}{E-H+\mathrm{i} \varepsilon} . \tag{16}
\end{align*}
$$

Then, the propagator of the unstable state S reads

$$
\begin{align*}
& G_{S}(E)=\langle S| \frac{1}{E-H+\mathrm{i} \varepsilon}|S\rangle=\frac{1}{E-M+\mathrm{i} \varepsilon}+\frac{1}{E-M+\mathrm{i} \varepsilon}\langle S| H_{i n t} \frac{1}{E-H+\mathrm{i} \varepsilon}|S\rangle= \\
& \quad \frac{1}{E-M+\mathrm{i} \varepsilon}+\frac{1}{E-M+\mathrm{i} \varepsilon} \sum_{i=1}^{N} \int_{E_{\mathrm{th}, i}}^{\infty} \mathrm{d} E^{\prime} \sqrt{\frac{\Gamma_{i}\left(E^{\prime}\right)}{2 \pi}} T_{i}\left(E^{\prime}, E\right) \tag{17}
\end{align*}
$$

while the propagators for the transitions $|S\rangle \rightarrow|E, i\rangle$ are given by
$T_{i}\left(E^{\prime}, E\right)=\left\langle E^{\prime}, i\right| \frac{1}{E-H+\mathrm{i} \varepsilon}|S\rangle=\frac{1}{E-E^{\prime}+i \varepsilon}\left\langle E^{\prime}, i\right| H_{i n t} \frac{1}{E-H+\mathrm{i} \varepsilon}|S\rangle=\sqrt{\frac{\Gamma_{i}\left(E^{\prime}\right)}{2 \pi}} \frac{G_{S}(E)}{E-E^{\prime}+\mathrm{i} \varepsilon}$.

Plugging $T_{i}\left(E^{\prime}, E\right)$ into (17), we obtain the DysonSchwinger equation of the S propagator

$$
\begin{equation*}
G_{S}(E)=\frac{1}{E-M+\mathrm{i} \varepsilon}-\frac{\Pi(E) G_{S}(E)}{E-M+\mathrm{i} \varepsilon} \tag{19}
\end{equation*}
$$

where the total self-energy $\Pi(E)$ and the partial self-energies $\Pi_{i}(E)$ read, respectively,

$$
\begin{equation*}
\Pi(E)=\sum_{i=1}^{N} \Pi_{i}(E) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{i}(E)=-\int_{E_{\mathrm{th}, i}}^{\infty} \frac{\mathrm{d} E^{\prime}}{2 \pi} \frac{\Gamma_{i}\left(E^{\prime}\right)}{E-E^{\prime}+\mathrm{i} \varepsilon} \tag{21}
\end{equation*}
$$

for which $\operatorname{Im}\left(\Pi_{i}(E)\right)=\Gamma_{i}(E) / 2(\text { optical theorem })^{\dagger}$. Then,

$$
\begin{equation*}
G_{S}(E)=\frac{1}{E-M+\Pi(E)+\mathrm{i} \varepsilon} \tag{22}
\end{equation*}
$$

is the state S propagator being searched. As it is well known, this expression can be also obtained by performing the standard Dyson resummation, see e.g. [39]. We thus have provided a simple alternative derivation of this object.

The propagator $G_{S}(E)$ can be also rewritten as

$$
\begin{equation*}
G_{S}(E)=\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E^{\prime} \frac{d_{S}\left(E^{\prime}\right)}{E-E^{\prime}+\mathrm{i} \varepsilon} \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
d_{S}(E)=-\frac{1}{\pi} \operatorname{Im}\left(G_{S}(E)\right)=\frac{\Gamma(E)}{2 \pi}\left|G_{S}(E)\right|^{2} \tag{24}
\end{equation*}
$$

The function $d_{S}(E)$ is a correctly normalized energy distribution (or spectral function) of the unstable state $\left(\mathrm{d} E d_{S}(E)\right.$ is the probability that the state S has an energy between $(E, E+\mathrm{d} E))$. Then one proceeds as usual to determine the survival probability amplitude

$$
\begin{align*}
& a(t)=\langle S| U(t)|S\rangle \stackrel{t>0}{=}\langle S| F(t)|S\rangle= \\
& \quad \int_{-\infty}^{+\infty} \frac{\mathrm{id} E G_{S}(E) \mathrm{e}^{-\mathrm{i} E t / \hbar}}{2 \pi}=\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E d_{S}(E) \mathrm{e}^{-\mathrm{i} E t / \hbar} \tag{25}
\end{align*}
$$

This is indeed the amplitude that starting with $|S\rangle$, we still have $|S\rangle$ at the time $t>0$. The survival probability

[^0]\[

$$
\begin{equation*}
p(t)=\left|\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E d_{S}(E) \mathrm{e}^{-\mathrm{i} E t / \hbar}\right|^{2} \tag{26}
\end{equation*}
$$

\]

emerges. This is indeed the starting point of many studies on the decay law [1-15].

As a consequence of the adopted formalism, once $G_{S}(E)$ is fixed, also $T_{i}\left(E^{\prime}, E\right)$ in (18) is determined. We then calculate the probability that the decay takes place in the i-th channel between 0 and $t>0$ as

$$
\begin{align*}
& \left.w_{i}(t)=\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E^{\prime}\left|\left\langle E^{\prime}, i\right| U(t)\right| S\right\rangle\left.\right|^{2} \stackrel{t \geq 0}{=} \\
& \left.\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E^{\prime}\left|\left\langle E^{\prime}, i\right| F(t)\right| S\right\rangle\left.\right|^{2}= \\
& \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E^{\prime}\left|\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} E T_{i}\left(E^{\prime}, E\right) \mathrm{e}^{-\mathrm{i} E t / \hbar}\right|^{2} \\
& \times \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E^{\prime} \frac{\Gamma_{i}\left(E^{\prime}\right)}{2 \pi}\left|\frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} E \frac{G_{S}(E)}{E-E^{\prime}+\mathrm{i} \varepsilon} \mathrm{e}^{-\mathrm{i} E t / \hbar}\right|^{2} . \tag{27}
\end{align*}
$$

This is indeed the expression for the quantity $w_{i}(t)$ that we were looking for. However, it still involves the complex propagator $G_{S}(E)$, so it is better to recast it into a form that is simpler for practical applications. By introducing the spectral representation of (23) of the form

$$
\begin{align*}
& \frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d} E}{E-E^{\prime}+\mathrm{i} \varepsilon} G_{S}(E) \mathrm{e}^{-\mathrm{i} E t / \hbar}= \\
& \frac{\mathrm{i}}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{d} E \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} y \frac{d_{S}(y) \mathrm{e}^{-\mathrm{i} E t / \hbar}}{\left(E-E^{\prime}+\mathrm{i} \varepsilon\right)(E-y+\mathrm{i} \varepsilon)}= \\
& \quad \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} y \frac{d_{S}(y)}{E^{\prime}-y}\left[\mathrm{e}^{-\mathrm{i} E^{\prime} t / \hbar}-\mathrm{e}^{-\mathrm{i} y t / \hbar}\right] \tag{28}
\end{align*}
$$

(note, the integrand contains no singularity), we obtain the expression [22]

$$
\begin{align*}
w_{i}(t) & =\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} E^{\prime} \frac{\Gamma_{i}\left(E^{\prime}\right)}{2 \pi} \\
& \times\left|\int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} y \frac{d_{S}(y)}{E^{\prime}-y}\left[\mathrm{e}^{-\mathrm{i} E^{\prime} t / \hbar}-\mathrm{e}^{-\mathrm{i} y^{\prime} t / \hbar}\right]\right|^{2} . \tag{29}
\end{align*}
$$

This quantity can be calculated numerically when the functions $\Gamma_{i}(E)$ (and thus also $d_{S}(E)$) are known. Roughly speaking, it is ready to be used, just "plug in and calculate".

There is another useful way to express $w_{i}(t)$ mentioned in [22]. By introducing

$$
\begin{align*}
& I(t)=\frac{1}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} a\left(t^{\prime}\right) \mathrm{e}^{\mathrm{i} E^{\prime} t^{\prime} / \hbar}= \\
& \left.\int_{0}^{t} \mathrm{~d} t^{\prime} \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} y d_{S}(y) \mathrm{e}^{-\mathrm{i} y t^{\prime} / \hbar}\right] \mathrm{e}^{\mathrm{i} E^{\prime} t^{\prime} / \hbar}= \\
& \frac{1}{\hbar} \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} y d_{S}(y) \int_{0}^{t} \mathrm{~d} t^{\prime} \mathrm{e}^{\mathrm{i}\left(E^{\prime}-y\right) t^{\prime} / \hbar} \\
& \quad+\infty \\
& \int_{-\infty}^{+\infty} \frac{\mathrm{d} y d_{S}(y)}{\mathrm{i}\left(E^{\prime}-y\right)}\left[\mathrm{e}^{\mathrm{i}\left(E^{\prime}-y\right) t / \hbar}-1\right]= \tag{30}\\
& \mathrm{i} \mathrm{e}^{\mathrm{i} E^{\prime} t / \hbar} \int_{E_{\mathrm{th}, 1}}^{+\infty} \mathrm{d} y \frac{d_{S}(y)}{E^{\prime}-y}\left[\mathrm{e}^{-\mathrm{i} E^{\prime} t / \hbar}-\mathrm{e}^{\mathrm{i} y / \hbar}\right]
\end{align*}
$$

we find

$$
\begin{equation*}
w_{i}(t)=\int_{E_{\mathrm{th}, i}}^{+\infty} \mathrm{d} E^{\prime} \frac{\Gamma_{i}\left(E^{\prime}\right)}{2 \pi}\left|\int_{0}^{t} \mathrm{~d} t^{\prime} \frac{a\left(t^{\prime}\right) \mathrm{e}^{\mathrm{i} E^{\prime} t^{\prime} / \hbar}}{\hbar}\right|^{2} \tag{31}
\end{equation*}
$$

Once $a(t)$ is calculated (a necessary step for getting the survival probability $p(t)), w_{i}(t)$ can be numerically evaluated from the previous expression.

Next, we recall some relevant properties and extensions.

- We can prove (1) by using the formal expression for the transitions $w_{i}(t)$ in (27) and the completeness relation of (3)

$$
\begin{align*}
& \left.\sum_{i=1}^{N} w_{i}(t)=\sum_{i=1}^{N} \int_{E_{t h, i}}^{+\infty} \mathrm{d} E^{\prime}\left|\left\langle E^{\prime}, i\right| U(t)\right| S\right\rangle\left.\right|^{2}= \\
& \langle S| U^{\dagger}(t)\left[\sum_{i=1}^{N} \int_{E_{t h, i}}^{+\infty} \mathrm{d} E^{\prime}\left|E^{\prime}, i\right\rangle\left\langle E^{\prime}, i\right|\right] U(t)|S\rangle= \\
& \langle S| U^{\dagger}(t)[1-|S\rangle\langle S|] U(t)|S\rangle=1-p(t) . \tag{32}
\end{align*}
$$

It is an important consistency check for the correctness of the obtained results.

- The exponential (or Breit-Wigner) limit [24-26] is obtained for $\Gamma_{i}=$ const and $\Gamma=\sum_{i=1}^{N} \Gamma_{i}$ (no energy dependence). The survival probability $p(t)$ and the decay probabilities $w_{i}(t)$ reduce to [11, 22]

$$
\begin{align*}
& p(t)=\mathrm{e}^{-\Gamma / \hbar}, \quad w_{i}(t)=\frac{\Gamma_{i}}{\Gamma}\left(1-\mathrm{e}^{-\Gamma t / \hbar}\right) \\
& w_{i}(t) \rightarrow \frac{w_{i}(t)}{w_{j}(t)}=\frac{\Gamma_{i}}{\Gamma_{j}}=\mathrm{const} . \tag{33}
\end{align*}
$$

- In the general case, the ratio $w_{i} / w_{j} \neq$ const (for $i \neq j$). This fact is shown in [22] with the widths $\Gamma_{i}(E)=2 g_{i}^{2} \sqrt{E-E_{t h, i}} /\left(E^{2}+\Lambda^{2}\right)$ inspired by the expressions derived in [42] in the case of hydrogen-like atoms. In [11], w_{i} / w_{j} was also shown to be not a simple constant (in the framework of an approximate solution) for various choices of $\Gamma_{i}(E)$.
- The related interesting quantity is $h_{i}(t)=$ $w_{i}^{\prime}(t)$, where $h_{i}(t) \mathrm{d} t$ is the probability that the decay takes place in the i-th channel in the interval $(t, t+\mathrm{d} t)$. In the BW limit, $h_{i}(t) / h_{j}(t)=\Gamma_{i} / \Gamma_{j}=$ const, but this generally does not apply [11, 22].
- In [43], the two-channel decay was studied by in the framework of the asymmetric double-delta potential $V(x)=V_{0}(\delta(x-a)+$ $k \delta(x+a)$), where $k \neq 1$ means that two channels were represented by tunneling to "left" and to "right". The numerical accurate solutions of the Schrödinger equation clearly shown that $w_{R}(t) / w_{L}(t)$ as well as $h_{R}(t) / h_{L}(t)$ (where R stays for the right and L for the left) are not constant.
- The results can be extended to QFT. For this, the variable E must be replaced by $s=E^{2}$ (for the relativistic version of the FriedrichsLee approach, see e.g. [44-46]). The propagator reads $G_{S}(s)=\left[s-M^{2}+\Pi(s)+\mathrm{i} \varepsilon\right]^{-1}$, where $\Pi(s)=\sum_{i=1}^{N} \Pi_{i}(s)\left(\right.$ with $\operatorname{Im}\left(\Pi_{i}(s)\right)=$ $\left.\sqrt{s} \Gamma_{i}(s)\right)$ is the sum of the self energies for the N distinct decay channels. The spectral function is $d_{S}(s)=-\frac{1}{\pi} \operatorname{Im}\left(G_{S}(s)\right)$ (e.g. [47, 48]). The survival probability $p(t)$ takes an analogous form of (25) (e.g. [49, 50]

$$
\begin{equation*}
p^{\mathrm{QFT}}(t)=\left|\int_{s_{t h, 1}}^{+\infty} \mathrm{d} s d_{S}(s) \mathrm{e}^{-\mathrm{i} \sqrt{s} t / \hbar}\right|^{2} \tag{34}
\end{equation*}
$$

while the partial decay probability $w_{i}(t)$ reads

$$
\begin{align*}
& w_{i}^{\mathrm{QFT}}(t)=\int_{s_{t h, i}}^{+\infty} \mathrm{d} s \frac{\sqrt{s} \Gamma_{i}(s)}{\pi} \\
& \left|\int_{s_{t h, 1}}^{+\infty} \mathrm{d} s^{\prime} d_{S}\left(s^{\prime}\right)\left(\frac{\mathrm{e}^{-\mathrm{i} \sqrt{s} t / \hbar}-\mathrm{e}^{-\mathrm{i} \sqrt{s^{\prime}} t / \hbar}}{s-s^{\prime}}\right)\right|^{2} \tag{35}
\end{align*}
$$

This expression can be calculated numerically once the functions $\Gamma_{i}(s)$ are known.

- In QFT, there is no BW limit and no exponential decay (the threshold is always present because $s \geq 0)$. Setting $\Gamma_{i}(s)$ to a constant leads to some inconsistencies. An interesting model, discussed in [51], postulates $\Pi_{i}(s)=\mathrm{i} \tilde{\Gamma}_{i} \sqrt{s-s_{\mathrm{th}, i}}$ for which $\Gamma_{i}(s)=$ $\tilde{\Gamma}_{i} \sqrt{\frac{1}{s}\left(s-s_{\mathrm{th}, i}\right)} \theta\left(s-s_{\mathrm{th}, i}\right)$ (which reduces to
a constant for large s). Despite its simplicity, it allows the spectral functions of various broad hadrons to be fitted quite well. The function $w_{i}(t)$ turns out to be, as expected, non-exponential, in agreement with the QM case.

3. Conclusions

In this work, we presented a novel and simple way to obtain the expressions of the survival probability $p(t)$ and the decay probability into the i-th channel $w_{i}(t)$ by using the Lippmann-Schwinger equation at the level of operators. The propagator for the state S and the transition propagator for S into any decay product are intertwined. In this way, $p(t)$ and $w_{i}(t)$ naturally emerge, and the results coincide with the ones shown in [22]. In the future, the study of $w_{i}(t)$ in various physical systems is planned.

Acknowledgments

The author thanks L. Tinti, G. Pagliara and S. Mrówczyński for stimulating and useful discussions. Financial support from the OPUS project 2019/33/B/ST2/00613 is acknowledged.

References

[1] L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978).
[2] L.A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957); Sov. Phys. JETP 6, 1053 (1958)).
[3] R.G. Winter, Phys. Rev. 123, 1503 (1961).
[4] J. Levitan, Phys. Lett. A 129, 267 (1988).
[5] D.A. Dicus, W.W. Repko, R.F. Schwitters, T.M. Tinsley, Phys. Rev. A 65, 032116 (2002).
[6] M. Peshkin, A. Volya, V. Zelevinsky, EPL 107, 40001 (2014).
[7] G. García-Calderón, R. Romo, Phys. Rev. A 93, 022118 (2016).
[8] T. Koide, F. M. Toyama, Phys. Rev. A 66, 064102 (2002).
[9] F.V. Pepe, P. Facchi, Z. Kordi, S. Pascazio, Phys. Rev. A 101, 013632 (2020).
[10] A. Kofman and G. Kurizki, Nature 405, 546 (2000).
[11] F. Giacosa, Found. Phys. 42, 1262 (2012).
[12] F. Giacosa, Phys. Rev. A 88, 052131 (2013).
[13] K. Raczynska, K. Urbanowski, Acta Phys. Pol. B 49, 1683 (2018).
[14] D.F. Ramírez Jiménez, N.G. Kelkar, Phys. Rev. A 104, 022214 (2021).
[15] D.F. Ramírez Jiménez, N.G. Kelkar, J. Phys. A 52, 055201 (2019).
[16] R.L. Workman, V.D. Burkert, V. Crede et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
[17] S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Nature 387, 575 (1997).
[18] M.C. Fischer, B. Gutierrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87, 040402 (2001).
[19] N.G. Kelkar, M. Nowakowski, K.P. Khemchandani, Phys. Rev. C 70, 024601 (2004).
[20] C. Rothe, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 96, 163601 (2006).
[21] A. Crespi, F.V. Pepe, P. Facchi, F. Sciarrino, P. Mataloni, H. Nakazato, S. Pascazio, R. Osellame, Phys. Rev. Lett. 122, 130401 (2019).
[22] F. Giacosa, Phys. Lett. B 831, 137200 (2022).
[23] H. Müther, O.A. Rubtsova, V.I. Kukulin, V.N. Pomerantsev, Phys. Rev. C 94, 024328 (2016).
[24] V. Weisskopf, E.P. Wigner, Z. Phys. 63, 54 (1930).
[25] V. Weisskopf, E. Wigner, Z. Phys. 65, 18 (1930).
[26] G. Breit, in: Handbuch der Physik, vol. 8/41/1, Springer, Berlin 1959
[27] K.O. Friedrichs, Commun. Pure Appl. Math. 1, 361 (1948).
[28] T.D. Lee, Phys. Rev. 95, 1329 (1954).
[29] C.B. Chiu, E.C.G. Sudarshan, G. Bhamathi, Phys. Rev. D 46, 3508 (1992).
[30] E.T. Jaynes, F.W. Cummings, Proc. IEEE. 51, 89 (1963).
[31] O. Civitarese, M. Gadella, Phys. Rep. 396, 41 (2004).
[32] A.G. Kofman, G. Kurizki, B. Sherman, J. Modern Opt. 41, 353 (1994).
[33] Z.W. Liu, W. Kamleh, D.B. Leinweber, F.M. Stokes, A.W. Thomas, J.J. Wu, Phys. Rev. Lett. 116, 082004 (2016).
[34] M. Scully, M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge 1997.
[35] G. Ordonez, T. Petrosky, I. Prigogine, Phys. Rev. A 63, 052106 (2001).
[36] Z. Xiao, Z.Y. Zhou, Phys. Rev. D 94, 076006 (2016).
[37] Z. Xiao, Z.Y. Zhou, J. Math. Phys. 58, 062110 (2017).
[38] Z.Y. Zhou, Z. Xiao, Phys. Rev. D 96, 054031 (2017); erratum: Phys. Rev. D 96, 099905 (2017).
[39] F. Giacosa, J. Phys. Conf. Ser. 16129, 012012 (2020).
[40] P.M. Lo, F. Giacosa, Eur. Phys. J. C 79, 336 (2019).
[41] D. Lonigro, Eur. Phys. J. Plus 137, 492 (2022).
[42] P. Facchi, S. Pascazio, Phys. Lett. A 241, 139 (1998).
[43] F. Giacosa, P. Kościk, T. Sowiński, Phys. Rev. A 102, 022204 (2020).
[44] I. Antoniou, M. Gadella, I. Prigogine, G.P. Pronko, J. Math. Phys. 39, 2995 (1998).
[45] Z.Y. Zhou, Z. Xiao, Eur. Phys. J. C 80, 1191 (2020).
[46] Z.Y. Zhou, Z. Xiao, Eur. Phys. J. C 81, 551 (2021).
[47] P.T. Matthews, A. Salam, Phys. Rev. 112, 283 (1958).
[48] F. Giacosa, G. Pagliara, Phys. Rev. C 76 065204 (2007).
[49] F. Giacosa, G. Pagliara, Mod. Phys. Lett. A 26, 2247 (2011).
[50] P. Facchi, S. Pascazio, Chaos Solitons Fractals 12, 2777 (2001).
[51] F. Giacosa, A. Okopińska, V. Shastry, Eur. Phys. J. A 57, 336 (2021).

[^0]: ${ }^{\dagger 1}$ It is often common to perform the replacements $\Pi_{i}(E) \rightarrow \Pi_{i}(E)+C_{i}$, where the latter are real subtraction constants such that $\operatorname{Re}\left(\Pi_{i}(M)\right)=0$. In this way, the bare mass M of the unstable state is left unchanged by quantum the fluctuations.

