Proceedings of the 4th Jagiellonian Symposium on Advances in Particle Physics and Medicine

Multichannel Decay: Alternative Derivation of the *i*-th Channel Decay Probability

F. $GIACOSA^{a,b,*}$

^a Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland ^b Institute for Theoretical Physics, J.W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany

Doi: 10.12693/APhysPolA.142.436

*e-mail: fgiacosa@ujk.edu.pl

In the study of decays, it is quite common that an unstable quantum state/particle has multiple distinct decay channels. In this case, besides the survival probability p(t), also the probability $w_i(t)$ that a decay occurs between (0, t) in the *i*-th channel is a relevant object. The general form of the function $w_i(t)$ was recently presented in *PLB* **831**, 137200 (2022). Here, we provide a novel and detailed "joint" derivation of both p(t) and $w_i(t)$. As it is well known, p(t) is not an exponential function; similarly, $w_i(t)$ is not one either. In particular, the ratio w_i/w_j (for $i \neq j$) is not a simple constant as it would be in the exponential limit. The functions $w_i(t)$ and their mutual ratios may therefore represent a novel tool to study the non-exponential nature of the decay law.

topics: decay law, unstable particles, multichannel decay

1. Introduction

In the study of unstable states, both in quantum mechanics (QM) and in quantum field theory (QFT), the survival probability p(t) (the probability that the state formed at t = 0 has not decayed yet at a later time t > 0) is of crucial importance [1–15]. Yet, usually unstable states can decay in more than a single decay channel [16]. Then, an equally useful and relevant object is the decay probability $w_i(t)$ that the decay has occurred between 0 and t > 0 in a certain *i*-th channel. Of course, the equality

$$p(t) + \sum_{i=1}^{N} w_i(t) = 1$$
(1)

must hold for each t because at any given time the state has either decayed in one of the N possible channels or it is undecayed (*tertium non-datur*). As it is well established, the survival probability p(t) can be well approximated with an exponential expression $p(t) \simeq e^{-t/\tau}$, but the latter is not exact as shown by direct and indirect experimental analyses [17–21]. Since p(t) is not an exponential, it follows that the functions $w_i(t)$ are also not such.

The explicit form for $w_i(t)$ was recently derived in [22]. The preliminary approximate expression was previously put forward in [11]. Here we present the novel joint determination of p(t) and $w_i(t)$ that makes use of the Lippmann–Schwinger equation at the level of operators, see e.g. [23].

2. Evaluation of p(t) and $w_i(t)$

Let H be the Hamiltonian of a physical system that contains an unstable state $|S\rangle$. We assume that H can be split into $H = H_0 + H_{int}$ with $H_{int} = \sum_{i=1}^{N} H_i$, where H_i is responsible for the *i*-th decay channel. The orthogonal-normalized-complete (ONC) eigenstates of the non-interacting Hamiltonian H_0 are $\{|S\rangle, |E, i\rangle\} : H_0 |S\rangle = M |S\rangle$, $H_0 |E, i\rangle = E |E, i\rangle$ with $E \ge E_{\text{th},i}$, where $E_{\text{th},i}$ is the energy threshold of the *i*-th channel; here, we assume as the definition that $E_{\text{th},1} \le E_{\text{th},2} \le \dots \le E_{\text{th},N}$. The ONC conditions of the underlying Hilbert space read

$$\langle S|S\rangle = 1, \quad \langle S|E,i\rangle = 0,$$

$$\langle E, i | E', j \rangle = \delta_{ij} \,\delta(E - E'),$$
 (2)

and

$$|S\rangle \langle S| + \sum_{i=1}^{N} \int_{E_{\text{th},i}}^{\infty} dE |E,i\rangle \langle E,i| = 1.$$
(3)

The decays $|S\rangle \rightarrow |E,i\rangle$ are encoded in the matrix elements

$$\langle S|H_j|E,j\rangle = \delta_{ij}\sqrt{\frac{\Gamma_i(E)}{2\pi}},$$
(4)

where $\Gamma_i(E)$ is the *i*-th decay width, which generally is a function of energy (it reduces to a constant in the exponential limit or the Breit–Wigner (BW) limit [24–26]). (Note, in (4) the sum over other d.o.f. such as spin and momenta has been implicitly taken into account; the functions $\Gamma_i(E)$ are assumed to be known for a specific quantum system, even though usually this is not a simple task.) An explicit expression for H that fulfills the properties listed above can be written in the form of the Friedrichs-Lee Hamiltonian [27, 28] (for various applications, see [29–41] and refs. therein)

$$H = H_0 + H_{int},\tag{5}$$

with

$$H_{0} = M |S\rangle \langle S| + \sum_{i=1}^{N} \int_{E_{\text{th}},i}^{\infty} dE E |E,i\rangle \langle E,i|,$$
(6)

$$H_{int} = \sum_{i=1}^{N} \int_{E_{\text{th},i}}^{\infty} dE \sqrt{\frac{\Gamma_i(E)}{2\pi}} \Big(|E,i\rangle \langle S| + |S\rangle \langle E,i| \Big).$$
(7)

Note, H actually represents an infinite class of models, since it depends on the functions $\Gamma_i(E)$.

The quantity $U(t) = e^{-iHt/\hbar}$ is a well-known time evolution operator. In our case, we are interested in the evaluation of the survival probability amplitude and the *i*-th channel decay amplitude

$$\langle S|U(t)|S\rangle, \quad \langle E, i|U(t)|S\rangle.$$
 (8)

In order to accomplish it, let us introduce the operator F(t) (F for "future") as

$$F(t) = \frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \ \mathrm{e}^{-\mathrm{i}Et/\hbar}}{E - H + \mathrm{i}\varepsilon} = \begin{cases} U(t), & \text{for } t > 0, \\ 0, & \text{for } t < 0. \end{cases}$$
(9)

The previous equation should be understood as an operatorial equation, i.e., for an arbitrary eigenstate $|\Psi_0\rangle$ with $H |\Psi_0\rangle = E_0 |\Psi_0\rangle$, one has

$$F(t) |\Psi_{0}\rangle = \frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \,\mathrm{e}^{-\mathrm{i}Et/\hbar}}{E - H + \mathrm{i}\varepsilon} |\Psi_{0}\rangle = \frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \,\mathrm{e}^{-\mathrm{i}Et/\hbar}}{E - E_{0} + \mathrm{i}\varepsilon} |\Psi_{0}\rangle = \begin{cases} \mathrm{e}^{-\mathrm{i}E_{0}t/\hbar} |\Psi_{0}\rangle, & \\ \mathrm{for} \ t > 0, \\ 0, & \mathrm{for} \ t < 0 \end{cases}$$
(10)

where the last equation is obtained by integrating on the lower half-plane of the complex variable Efor t > 0 and on the upper half-plane for t < 0. Formally, F(t) is not defined for t = 0 since the integral $\int_{-\infty}^{+\infty} dE \frac{1}{E - E_0 + i\varepsilon}$ does not converge. Now, we summarize (10) by writing

$$F(t) = \theta(t) U(t) \tag{11}$$

together with the choice $\theta(0) = \frac{1}{2}$, thus $F(0) = \frac{1}{2}$. Similarly, let us introduce the operator P(t) (*P* for "past")

$$P(t) = F^*(-t) = -\frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \,\mathrm{e}^{-\mathrm{i}\,Et/\hbar}}{E - H - \mathrm{i}\,\varepsilon} = \begin{cases} 0, & \text{for } t > 0, \\ U(t), & \text{for } t < 0 \end{cases}$$
(12)

hence $P(t) = \theta(-t)U(t)$ and $P(0) = \frac{1}{2}$. For each time t (including t = 0) we get a consistent result $U(t) = e^{-iHt/\hbar} = F(t) + P(t) =$

$$\frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \,\mathrm{e}^{-\mathrm{i}Et/\hbar}}{E - H + \mathrm{i}\varepsilon} - \frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \,\mathrm{e}^{-\mathrm{i}Et/\hbar}}{E - H - \mathrm{i}\varepsilon} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E \,\varepsilon \,\mathrm{e}^{-\mathrm{i}Et/\hbar}}{(E - H)^2 + \varepsilon^2} = \int_{-\infty}^{+\infty} \mathrm{d}E \,\delta(E - H) \,\mathrm{e}^{-\mathrm{i}Et/\hbar}.$$
(13)

Next, we return to the time evolution of the expectation values of (8). To evaluate them, we need to determine propagators defined as

$$G_{S}(E) = \left\langle S \left| \frac{1}{E - H + i\varepsilon} \right| S \right\rangle,$$

$$T_{i}(E', E) = \left\langle E', i \left| \frac{1}{E - H + i\varepsilon} \right| S \right\rangle.$$
(14)

Namely, once these quantities are known, the time evolution is obtained by using the "future" representation F(t) of (9). For this, we write down the operatorial Lippmann–Schwinger equation

$$\frac{1}{E-H+\mathrm{i}\varepsilon} = \frac{1}{E-H_0+\mathrm{i}\varepsilon} \left[1 + H_{int} \frac{1}{E-H+\mathrm{i}\varepsilon} \right],\tag{15}$$

which can be proven considering the operator O defined as (note that when dealing with the operators, the order is important)

$$O = (E - H_0 + i\varepsilon) \left[\frac{1}{E - H + i\varepsilon} - \frac{1}{E - H_0 + i\varepsilon} \right] =$$

$$(E - H_0 + i\varepsilon) \frac{1}{E - H + i\varepsilon} - 1 =$$

$$(E - H_0 + i\varepsilon) \frac{1}{E - H + i\varepsilon} - (E - H + i\varepsilon) \frac{1}{E - H + i\varepsilon} =$$

$$(H - H_0) \frac{1}{E - H + i\varepsilon} = H_{int} \frac{1}{E - H + i\varepsilon}.$$
(16)

Then, the propagator of the unstable state S reads

$$G_{S}(E) = \left\langle S \left| \frac{1}{E - H + i\varepsilon} \right| S \right\rangle = \frac{1}{E - M + i\varepsilon} + \frac{1}{E - M + i\varepsilon} \left\langle S \left| H_{int} \frac{1}{E - H + i\varepsilon} \right| S \right\rangle = \frac{1}{E - M + i\varepsilon} + \frac{1}{E - M + i\varepsilon} \sum_{i=1}^{N} \int_{E_{th,i}}^{\infty} dE' \sqrt{\frac{\Gamma_{i}(E')}{2\pi}} T_{i}(E', E),$$
(17)

while the propagators for the transitions $|S\rangle \rightarrow |E,i\rangle$ are given by

F. Giacosa

$$T_{i}(E',E) = \left\langle E',i \left| \frac{1}{E-H+i\varepsilon} \right| S \right\rangle = \frac{1}{E-E'+i\varepsilon} \left\langle E',i \left| H_{int} \frac{1}{E-H+i\varepsilon} \right| S \right\rangle = \sqrt{\frac{\Gamma_{i}(E')}{2\pi}} \frac{G_{S}(E)}{E-E'+i\varepsilon}.$$
(18)

Plugging $T_i(E', E)$ into (17), we obtain the Dyson– Schwinger equation of the S propagator

$$G_S(E) = \frac{1}{E - M + i\varepsilon} - \frac{\Pi(E) G_S(E)}{E - M + i\varepsilon},$$
(19)

where the total self-energy $\Pi(E)$ and the partial self-energies $\Pi_i(E)$ read, respectively,

$$\Pi(E) = \sum_{i=1}^{N} \Pi_i(E)$$
 (20)

and

$$\Pi_i(E) = -\int_{E_{\text{th},i}}^{\infty} \frac{\mathrm{d}E'}{2\pi} \frac{\Gamma_i(E')}{E - E' + \mathrm{i}\varepsilon},\tag{21}$$

for which $\operatorname{Im}(\Pi_i(E)) = \Gamma_i(E)/2$ (optical theorem)[†]. Then,

$$G_S(E) = \frac{1}{E - M + \Pi(E) + i\varepsilon}$$
(22)

is the state S propagator being searched. As it is well known, this expression can be also obtained by performing the standard Dyson resummation, see e.g. [39]. We thus have provided a simple alternative derivation of this object.

The propagator $G_S(E)$ can be also rewritten as

$$G_S(E) = \int_{E_{\text{th},1}}^{+\infty} dE' \, \frac{d_S(E')}{E - E' + \mathrm{i}\varepsilon}$$
(23)

with

$$d_{S}(E) = -\frac{1}{\pi} \operatorname{Im}(G_{S}(E)) = \frac{\Gamma(E)}{2\pi} |G_{S}(E)|^{2}.$$
(24)

The function $d_S(E)$ is a correctly normalized energy distribution (or spectral function) of the unstable state (dE $d_S(E)$ is the probability that the state S has an energy between (E, E + dE)). Then one proceeds as usual to determine the survival probability amplitude

$$a(t) = \langle S | U(t) | S \rangle \stackrel{t \ge 0}{=} \langle S | F(t) | S \rangle =$$
$$\int_{-\infty}^{+\infty} \frac{i \, dE \, G_S(E) e^{-iEt/\hbar}}{2\pi} = \int_{E_{th,1}}^{+\infty} dE \, d_S(E) e^{-iEt/\hbar}.$$
(25)

This is indeed the amplitude that starting with $|S\rangle$, we still have $|S\rangle$ at the time t > 0. The survival probability

$$p(t) = \left| \int_{E_{\text{th},1}}^{+\infty} \mathrm{d}E \, d_S(E) \,\mathrm{e}^{-\,\mathrm{i}\,Et/\hbar} \right|^2 \tag{26}$$

emerges. This is indeed the starting point of many studies on the decay law [1–15].

As a consequence of the adopted formalism, once $G_S(E)$ is fixed, also $T_i(E', E)$ in (18) is determined. We then calculate the probability that the decay takes place in the *i*-th channel between 0 and t > 0 as

$$w_{i}(t) = \int_{E_{th,1}}^{+\infty} dE' \left| \langle E', i | U(t) | S \rangle \right|^{2} \stackrel{t \ge 0}{=}$$

$$\int_{E_{th,1}}^{+\infty} dE' \left| \langle E', i | F(t) | S \rangle \right|^{2} =$$

$$\int_{E}^{+\infty} dE' \left| \frac{i}{2\pi} \int_{-\infty}^{+\infty} dE T_{i}(E', E) e^{-iEt/\hbar} \right|^{2}$$

$$\sum_{E_{\mathrm{th},1}}^{J} \left| \frac{2\pi}{-\infty} \right|^{2\pi} \\ \times \int_{E_{\mathrm{th},1}}^{+\infty} \mathrm{d}E' \frac{\Gamma_i(E')}{2\pi} \left| \frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \mathrm{d}E \frac{G_S(E)}{E - E' + \mathrm{i}\varepsilon} \mathrm{e}^{-\mathrm{i}Et/\hbar} \right|^2$$

$$(27)$$

This is indeed the expression for the quantity $w_i(t)$ that we were looking for. However, it still involves the complex propagator $G_S(E)$, so it is better to recast it into a form that is simpler for practical applications. By introducing the spectral representation of (23) of the form

$$\frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}E}{E - E' + \mathrm{i}\varepsilon} G_S(E) \mathrm{e}^{-\mathrm{i}Et/\hbar} = \frac{\mathrm{i}}{2\pi} \int_{-\infty}^{+\infty} \mathrm{d}E \int_{E_{\mathrm{th},1}}^{+\infty} \mathrm{d}y \, \frac{d_S(y) \, \mathrm{e}^{-\mathrm{i}Et/\hbar}}{(E - E' + \mathrm{i}\varepsilon)(E - y + \mathrm{i}\varepsilon)} = \int_{E_{\mathrm{th},1}}^{+\infty} \mathrm{d}y \, \frac{d_S(y)}{E' - y} \left[\mathrm{e}^{-\mathrm{i}E't/\hbar} - \mathrm{e}^{-\mathrm{i}yt/\hbar} \right]$$
(28)

(note, the integrand contains no singularity), we obtain the expression [22]

$$w_{i}(t) = \int_{E_{\text{th},1}}^{+\infty} dE' \frac{\Gamma_{i}(E')}{2\pi} \times \left| \int_{E_{\text{th},1}}^{+\infty} dy \frac{d_{S}(y)}{E'-y} \left[e^{-iE't/\hbar} - e^{-iy't/\hbar} \right] \right|^{2}.$$
(29)

^{†1}It is often common to perform the replacements $\Pi_i(E) \to \Pi_i(E) + C_i$, where the latter are real subtraction constants such that $\operatorname{Re}(\Pi_i(M)) = 0$. In this way, the bare mass M of the unstable state is left unchanged by quantum the fluctuations.

This quantity can be calculated numerically when the functions $\Gamma_i(E)$ (and thus also $d_S(E)$) are known. Roughly speaking, it is ready to be used, just "plug in and calculate".

There is another useful way to express $w_i(t)$ mentioned in [22]. By introducing

$$I(t) = \frac{1}{\hbar} \int_{0}^{t} dt' a(t') e^{iE't'/\hbar} = \int_{0}^{t} dt' \left[\int_{E_{th,1}}^{+\infty} dy \, d_{S}(y) e^{-iyt'/\hbar} \right] e^{iE't'/\hbar} = \frac{1}{\hbar} \int_{E_{th,1}}^{+\infty} dy \, d_{S}(y) \int_{0}^{t} dt' e^{i(E'-y)t'/\hbar} \\ \int_{-\infty}^{+\infty} \frac{dy \, d_{S}(y)}{i(E'-y)} \left[e^{i(E'-y)t/\hbar} - 1 \right] = i e^{iE't/\hbar} \int_{E_{th,1}}^{+\infty} dy \, \frac{d_{S}(y)}{E'-y} \left[e^{-iE't/\hbar} - e^{iy/\hbar} \right],$$
(30)

we find

$$w_i(t) = \int_{E_{\text{th},i}}^{+\infty} \mathrm{d}E' \frac{\Gamma_i(E')}{2\pi} \left| \int_0^t \mathrm{d}t' \frac{a(t') \mathrm{e}^{\mathrm{i}E't'/\hbar}}{\hbar} \right|^2.$$
(31)

Once a(t) is calculated (a necessary step for getting the survival probability p(t)), $w_i(t)$ can be numerically evaluated from the previous expression.

Next, we recall some relevant properties and extensions.

• We can prove (1) by using the formal expression for the transitions $w_i(t)$ in (27) and the completeness relation of (3)

$$\sum_{i=1}^{N} w_i(t) = \sum_{i=1}^{N} \int_{E_{th,i}}^{+\infty} dE' |\langle E', i| U(t) |S \rangle|^2 = \langle S| U^{\dagger}(t) [\sum_{i=1}^{N} \int_{E_{th,i}}^{+\infty} dE' |E', i\rangle \langle E', i|]U(t) |S\rangle =$$

 $\langle S | U^{\dagger}(t) [1 - |S\rangle \langle S |] U(t) |S\rangle = 1 - p(t).$ (32) It is an important consistency check for the correctness of the obtained results.

• The exponential (or Breit-Wigner) limit [24-26] is obtained for Γ_i = const and $\Gamma = \sum_{i=1}^{N} \Gamma_i$ (no energy dependence). The survival probability p(t) and the decay probabilities $w_i(t)$ reduce to [11, 22]

$$p(t) = e^{-\Gamma/\hbar}, \quad w_i(t) = \frac{\Gamma_i}{\Gamma} \left(1 - e^{-\Gamma t/\hbar} \right),$$
$$w_i(t) \to \frac{w_i(t)}{w_j(t)} = \frac{\Gamma_i}{\Gamma_j} = \text{const.}$$
(33)

- In the general case, the ratio $w_i/w_j \neq \text{const}$ (for $i \neq j$). This fact is shown in [22] with the widths $\Gamma_i(E) = 2g_i^2\sqrt{E - E_{th,i}}/(E^2 + \Lambda^2)$ inspired by the expressions derived in [42] in the case of hydrogen-like atoms. In [11], w_i/w_j was also shown to be not a simple constant (in the framework of an approximate solution) for various choices of $\Gamma_i(E)$.
- The related interesting quantity is $h_i(t) = w'_i(t)$, where $h_i(t) dt$ is the probability that the decay takes place in the *i*-th channel in the interval (t, t + dt). In the BW limit, $h_i(t)/h_j(t) = \Gamma_i/\Gamma_j = \text{const, but this generally does not apply [11, 22].$
- In [43], the two-channel decay was studied by in the framework of the asymmetric double-delta potential $V(x) = V_0(\delta(x-a) + k\delta(x+a))$, where $k \neq 1$ means that two channels were represented by tunneling to "left" and to "right". The numerical accurate solutions of the Schrödinger equation clearly shown that $w_R(t)/w_L(t)$ as well as $h_R(t)/h_L(t)$ (where R stays for the right and L for the left) are not constant.
- The results can be extended to QFT. For this, the variable E must be replaced by $s = E^2$ (for the relativistic version of the Friedrichs– Lee approach, see e.g. [44–46]). The propagator reads $G_S(s) = [s - M^2 + \Pi(s) + i\varepsilon]^{-1}$, where $\Pi(s) = \sum_{i=1}^N \Pi_i(s)$ (with $\operatorname{Im}(\Pi_i(s)) = \sqrt{s}\Gamma_i(s)$) is the sum of the self energies for the N distinct decay channels. The spectral function is $d_S(s) = -\frac{1}{\pi}\operatorname{Im}(G_S(s))$ (e.g. [47, 48]). The survival probability p(t) takes an analogous form of (25) (e.g. [49, 50]

$$p^{\text{QFT}}(t) = \left| \int_{s_{th,1}}^{+\infty} \mathrm{d}s \, d_S(s) \mathrm{e}^{-\mathrm{i}\sqrt{s} t/\hbar} \right|^2, \qquad (34)$$

while the partial decay probability $w_i(t)$ reads

$$w_i^{\text{QFT}}(t) = \int_{s_{th,i}}^{+\infty} \mathrm{d}s \, \frac{\sqrt{s}\Gamma_i(s)}{\pi} \\ \left| \int_{s_{th,1}}^{+\infty} \mathrm{d}s' \, d_S(s') \left(\frac{\mathrm{e}^{-\mathrm{i}\sqrt{s}\,t/\hbar} - \mathrm{e}^{-\mathrm{i}\sqrt{s'}\,t/\hbar}}{s - s'} \right) \right|^2. \tag{35}$$

This expression can be calculated numerically once the functions $\Gamma_i(s)$ are known.

• In QFT, there is no BW limit and no exponential decay (the threshold is always present because $s \geq 0$). Setting $\Gamma_i(s)$ to a constant leads to some inconsistencies. An interesting model, discussed in [51], postulates $\Pi_i(s) = i \tilde{\Gamma}_i \sqrt{s - s_{\text{th},i}}$ for which $\Gamma_i(s) = \tilde{\Gamma}_i \sqrt{\frac{1}{s}(s - s_{\text{th},i})} \theta(s - s_{\text{th},i})$ (which reduces to

a constant for large s). Despite its simplicity, it allows the spectral functions of various broad hadrons to be fitted quite well. The function $w_i(t)$ turns out to be, as expected, non-exponential, in agreement with the QM case.

3. Conclusions

In this work, we presented a novel and simple way to obtain the expressions of the survival probability p(t) and the decay probability into the *i*-th channel $w_i(t)$ by using the Lippmann–Schwinger equation at the level of operators. The propagator for the state S and the transition propagator for S into any decay product are intertwined. In this way, p(t) and $w_i(t)$ naturally emerge, and the results coincide with the ones shown in [22]. In the future, the study of $w_i(t)$ in various physical systems is planned.

Acknowledgments

The author thanks L. Tinti, G. Pagliara and S. Mrówczyński for stimulating and useful discussions. Financial support from the OPUS project 2019/33/B/ST2/00613 is acknowledged.

References

- L. Fonda, G.C. Ghirardi, A. Rimini, *Rep. Prog. Phys.* 41, 587 (1978).
- [2] L.A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957); Sov. Phys. JETP 6, 1053 (1958)).
- [3] R.G. Winter, *Phys. Rev.* **123**, 1503 (1961).
- [4] J. Levitan, *Phys. Lett. A* **129**, 267 (1988).
- [5] D.A. Dicus, W.W. Repko, R.F. Schwitters, T.M. Tinsley, *Phys. Rev. A* 65, 032116 (2002).
- [6] M. Peshkin, A. Volya, V. Zelevinsky, *EPL* 107, 40001 (2014).
- [7] G. García-Calderón, R. Romo, *Phys. Rev.* A 93, 022118 (2016).
- [8] T. Koide, F. M. Toyama, *Phys. Rev. A* 66, 064102 (2002).
- [9] F.V. Pepe, P. Facchi, Z. Kordi, S. Pascazio, *Phys. Rev. A* **101**, 013632 (2020).
- [10] A. Kofman and G. Kurizki, *Nature* 405, 546 (2000).
- [11] F. Giacosa, Found. Phys. 42, 1262 (2012).
- [12] F. Giacosa, Phys. Rev. A 88, 052131 (2013).
- [13] K. Raczynska, K. Urbanowski, Acta Phys. Pol. B 49, 1683 (2018).
- [14] D.F. Ramírez Jiménez, N.G. Kelkar, *Phys. Rev. A* 104, 022214 (2021).
- [15] D.F. Ramírez Jiménez, N.G. Kelkar, J. Phys. A 52, 055201 (2019).

- [16] R.L. Workman, V.D. Burkert, V. Crede et al. (Particle Data Group), *Prog. Theor. Exp. Phys.* 2022, 083C01 (2022).
- S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, *Nature* 387, 575 (1997).
- [18] M.C. Fischer, B. Gutierrez-Medina, M.G. Raizen, *Phys. Rev. Lett.* 87, 040402 (2001).
- [19] N.G. Kelkar, M. Nowakowski, K.P. Khemchandani, *Phys. Rev. C* 70, 024601 (2004).
- [20] C. Rothe, S.I. Hintschich, A.P. Monkman, *Phys. Rev. Lett.* **96**, 163601 (2006).
- [21] A. Crespi, F.V. Pepe, P. Facchi, F. Sciarrino, P. Mataloni, H. Nakazato, S. Pascazio, R. Osellame, *Phys. Rev. Lett.* **122**, 130401 (2019).
- [22] F. Giacosa, Phys. Lett. B 831, 137200 (2022).
- [23] H. Müther, O.A. Rubtsova, V.I. Kukulin, V.N. Pomerantsev, *Phys. Rev. C* 94, 024328 (2016).
- [24] V. Weisskopf, E.P. Wigner, Z. Phys. 63, 54 (1930).
- [25] V. Weisskopf, E. Wigner, Z. Phys. 65, 18 (1930).
- [26] G. Breit, in: Handbuch der Physik, vol. 8/41/1, Springer, Berlin 1959.
- [27] K.O. Friedrichs, Commun. Pure Appl. Math. 1, 361 (1948).
- [28] T.D. Lee, *Phys. Rev.* **95**, 1329 (1954).
- [29] C.B. Chiu, E.C.G. Sudarshan,
 G. Bhamathi, *Phys. Rev. D* 46, 3508 (1992).
- [30] E.T. Jaynes, F.W. Cummings, *Proc. IEEE*. 51, 89 (1963).
- [31] O. Civitarese, M. Gadella, *Phys. Rep.* **396**, 41 (2004).
- [32] A.G. Kofman, G. Kurizki, B. Sherman, J. Modern Opt. 41, 353 (1994).
- [33] Z.W. Liu, W. Kamleh, D.B. Leinweber, F.M. Stokes, A.W. Thomas, J.J. Wu, *Phys. Rev. Lett.* **116**, 082004 (2016).
- [34] M. Scully, M. Zubairy, *Quantum Optics*, Cambridge University Press, Cambridge 1997.
- [35] G. Ordonez, T. Petrosky, I. Prigogine, *Phys. Rev. A* 63, 052106 (2001).
- [36] Z. Xiao, Z.Y. Zhou, *Phys. Rev. D* 94, 076006 (2016).
- [37] Z. Xiao, Z.Y. Zhou, J. Math. Phys. 58, 062110 (2017).
- [38] Z.Y. Zhou, Z. Xiao, *Phys. Rev. D* 96, 054031 (2017); erratum: *Phys. Rev. D* 96, 099905 (2017).

- [39] F. Giacosa, J. Phys. Conf. Ser. 16129, 012012 (2020).
- [40] P.M. Lo, F. Giacosa, Eur. Phys. J. C 79, 336 (2019).
- [41] D. Lonigro, Eur. Phys. J. Plus 137, 492 (2022).
- [42] P. Facchi, S. Pascazio, *Phys. Lett. A* 241, 139 (1998).
- [43] F. Giacosa, P. Kościk, T. Sowiński, *Phys. Rev. A* 102, 022204 (2020).
- [44] I. Antoniou, M. Gadella, I. Prigogine, G.P. Pronko, J. Math. Phys. 39, 2995 (1998).
- [45] Z.Y. Zhou, Z. Xiao, *Eur. Phys. J. C* 80, 1191 (2020).

- [46] Z.Y. Zhou, Z. Xiao, *Eur. Phys. J. C* 81, 551 (2021).
- [47] P.T. Matthews, A. Salam, *Phys. Rev.* 112, 283 (1958).
- [48] F. Giacosa, G. Pagliara, *Phys. Rev. C* 76 065204 (2007).
- [49] F. Giacosa, G. Pagliara, Mod. Phys. Lett. A 26, 2247 (2011).
- [50] P. Facchi, S. Pascazio, *Chaos Solitons Frac*tals **12**, 2777 (2001).
- [51] F. Giacosa, A. Okopińska, V. Shastry, *Eur. Phys. J. A* 57, 336 (2021).