
ACTA PHYSICA POLONICA A No. 3 Vol. 142 (2022)

Proceedings of the 4th Jagiellonian Symposium on Advances in Particle Physics and Medicine

Unsupervised Learning for Pixel Mask
Clustering and Cluster Tracking in
LHCb’s Velopix Sensor Calibration

M.W. Majewski∗, P. Radoń and T. Szumlak

AGH University of Science and Technology in Krakow,
30 Mickiewicza Avenue, 30-059 Kraków, Poland

Doi: 10.12693/APhysPolA.142.418 ∗e-mail: mwmajewsk@gmail.com

The silicon vertex detector is one of the core elements of the LHCb spectrometer. Its upgrade version
features an innovative pixel sensor. The readout chip branches from the Medipix family of dedicated
pixel ASICs. One of its operational challenges with the future data taking at the Large Hadron Collider
will be the ability to detect faulty pixels and monitor them. In this work, we propose an innovative
method for clustering faulty pixels and tracking their evolution in time. We compare the two methods
of clustering (DBSCAN and OPTICS) and their influence on the proposed tracking method using
a simulated dataset of masked pixels.
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1. Introduction

The LHCb detector is a single-arm forward spec-
trometer located at CERN’s Large Hadron Collider
(LHC). One of its main goals is the study of B-
flavoured physics. LHCb differs from other main
experiments at LHC in its design. It focuses on de-
tecting particles at a low angle in relation to the
beam [1]. High precision measurements are possi-
ble so far due to the state-of-the-art vertex detector
VELO (Vertex Locator). After a technical stop at
LHC, VELO was upgraded from a silicon strip de-
tector to a silicon pixel detector Velopix [2]. Velopix
belongs to the family of matrix detectors that origi-
nated from the Medipix Collaboration. This family
of detectors has been used in other experiments [3]
in particle physics as well as in medical imaging [4]
and aboard the International Space Station [5].

The upgraded VELO modules will be located
very close to the beam (up to 5.1 mm [1]). They
will be susceptible to high amounts of ionising radi-
ation for a prolonged periods of time. Due to this,
we are preparing methods that will help to address
the problems that may develop due to the radiation
effects. Velopix is a digital hybrid detector, and the
solutions that were applied to the previous gener-
ation of the detector are not directly transferable
to the new one. The output from the sensors of
Velopix is digitised. When the threshold of the elec-
trical signal is exceeded at a group of pixels, the
sensor chip will send information about the particle
hit. If the threshold level for a pixel is set too low,
the pixel will produce false information about a par-
ticle hit (due to naturally occurring noise) and flood

the readout channel with unnecessary information,
which may cause a throttling problem. Because of
that, noisy pixels are masked and their activity is
ignored. Masking is one of the critical parts of the
VELO calibration procedure. Just one bad chan-
nel can saturate the readout data link, rendering
a given sensor useless†1.

Masked pixels are less problematic when they are
evenly distributed across the sensor, but when clus-
ter together they can cause a problem for the parti-
cle track reconstruction algorithm. A simple count-
ing of the masked pixels is obviously not enough to
detect potential structures of bad pixels. The need
for careful and robust monitoring of detector con-
dition and the need for a solution for tracking the
clusters of masks in the new Velopix motivates this
work to use unsupervised learning algorithms in the
proposed solution of this problem.

2. Clustering

The Velopix sensor (ASIC) is a pixel matrix
256 × 256 pixels. Typically, the masked pixels are
uniformly distributed across the matrix, but in some
cases, a cluster of masked pixels may occur. Masked
pixels can emerge and disappear in the next calibra-
tion, but they can also persist. If such clusters per-
sist permanently, this is a significant warning sign

†1The VELO DAQ system operates in the so-called trig-
gerless mode, which means that a noisy channel can send
data many times within a single bunch crossing window
of 25 ns.
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indicating the need for additional action to mitigate
the adverse effects of the inactive group of pixels.
A group of masked pixels together in close proxim-
ity can be considered a cluster.

The DBSCAN algorithm [6] operates on a rule of
clustering the neighbouring points within a certain
radius. It starts by picking the core point if at least
MinPts points are in the range ε. Then it proceeds
to mark those points as reachable points and repeats
the process on the newly discovered points until no
new points are found. A group of points found this
way is marked as a cluster and is excluded from the
further search. The algorithm repeats with a unique
core point if such exists. When all of the core points
have been checked, all remaining points are marked
as outliers.

The OPTICS [7] algorithm works in a very similar
basis to DBSCAN. It was designed to address the
problem of varying density in the dataset. It intro-
duces a core-distance metric for which point o is the
minimal range at which MinPts is reachable. The al-
gorithm also defines reachability distance, which for
points p, 0 is max(core-distance(o), distance(o, p)).
Based on those metrics, OPTICS builds a reacha-
bility graph and ordering list from which the assign-
ment of a point to the cluster is calculated.

We empirically chose DBSCAN parameters to be
set as ε = 5 and MinPts = 4. We use the “xi-steep”
strategy for finding clusters for the OPTICS algo-
rithm, which only requires the ε = 5 parameter to
be set.

3. Cluster features

Using the clusters found, we calculate the clus-
ter’s features: position, size, and shape.

1. Position pk=(x̄k, ȳk), where x̄k = 1
Nk

∑Nk

i xik,
ȳk = 1

Nk

∑Nk

i yik.
2. Size sk = {nk, dk} where nk is the num-

ber of pixels in the cluster divided by the
mean number of pixels in the given sensor’s
cluster. The density of a cluster is dk =
1
Nk

√
xik − x̄k)2 + (yik − ȳk)2.

3. Shape hk = {αk, ck}, where αk is the direc-
tional coefficient of the cluster measured by
the fit to the line yk(x) = αk x + bk. Here,
ck is the roundness of the cluster calculated
as its Pearson coefficient.

With those metrics, we can then define the spa-
cial characteristic vector as vk = [sk;hk]. Then
we define the cluster as a set of unique features
clusterk = pk,vk.

4. Cluster tracking

As mentioned earlier, clusters can appear and dis-
appear from calibration to calibration. They also
can persist in between calibrations. An example of
two calibrations with tracked clusters can be found

Fig. 1. Two consecutive calibrations with masks
(from simulation), with labeled and tracked clus-
ters. (a) Clusters labeled with the same integer are
chosen by the algorithm as consecutive generations
of the same cluster. (b) Clusters labeled as ‘new’
are clusters at the time step tn that were absent at
time step tn−1.

in Fig. 1. To find if the clusters themselves have
changed, we need a way of tracking them over time.
For that purpose, we introduce the pair-wise simi-
larity matrix M . Its i-th rows represent clusters at
tn−1 and its j-th columns represent clusters at tn.
The values ofM indicate the similarity between the
clusters in successive sensor calibrations. The ma-
trix M is constructed as a product of two matrices

Mi,j = Φi,j Vi,j , (1)

where Φi,j is define as

Φi,j =
1

dmin
max

(
dmin −Di,j , 0

)
. (2)

Here
Di,j = ||pi − pj ||. (3)

The matrix V is defined using the cosine similar-
ity between each pair of spacial characteristics vec-
tors v

Vi,j =
vi · vj

||vi|| ||vj ||
. (4)
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Fig. 2. Matrices used for the association of clus-
ters between calibrations. Rows represent clusters
in Fig. 1a, columns represent clusters in Fig. 1b.
Values indicate the spacial characteristics similarity
measure V (a) shape matrix, and positional similar-
ity measure Φ (b) distance matrix. The M matrix
is plot (c) (similarity score matrix).

An example of a similarity matrices shape and dis-
tance matrix can be found in Fig. 2. The matrix
M is used to tell if the clusters on two consecu-
tive calibrations are the same cluster. We choose
the threshold τmin. If Mi,j > τmin, then the clusters
i and j are marked as the same cluster. Otherwise,
if Mi,j ≤ τmin, the clusters are not connected. We
empirically choose τmin = 0.3. In Fig. 2 there are
exemplary shape and distance similarity matrices
as well as the calculated matrix M .

5. Results

Drawing from our experience with the VeloPix
sensors during the testing phase, we have prepared
a simulation of the VeloPix masks emerging in the
calibrations. The simulation generates realistic clus-
ters of masks as well as background noise masks.
We tested both DBSCAN and OPTICS algorithms
for the ability to correctly spot the clusters and
their influence on cluster tracking during the time
progression of a mask simulation of a single sen-
sor [8]. We generated 3000 timesteps of single sen-
sor calibration. The ground truth of a dataset is
a nonzero pixel that belonged to a cluster gener-
ated less than 8 timesteps before the current one.
You can see the overall confusion matrix and the ac-
curacy of both methods in Table I. The DBSCAN
accuracy for recognising generated clusters is much
higher than OPTICS, and the false positive rate of
OPTICS is more than three times higher than DB-
SCAN. Both algorithms (DBSCAN and OPTICS)
were tested for tracking clusters in consecutive cal-
ibrations using the similarity matrix M . In Fig. 3,
you can see a sample simulation of 300 timesteps
and the number of recognised new and old clusters.

Fig. 3. Two progressions of the simulation, with
number of identified clusters. (a) The plot was made
with the OPTICS. (b) The plot was made with
DBSCAN. The color differentiates clusters that are
recognised as a continuation from the previous cali-
bration (old clusters) and clusters that are not asso-
ciated with clusters in the previous calibration (new
clusters).

TABLE I

Confusion matrix values in 3000 consecutive simula-
tion steps.

Value OPTICS DBSCAN
True Negative 7608 16207
False Positive 11680 3081
False Negative 1156 3167
True Positive 5665 3654
Accuracy 0.51 0.76
Precision 0.33 0.54

Here the old clusters are the clusters that prevail on
the matrix, from one calibration to the next. The
DBSCAN algorithm has proven to be more stable
and able to associate the clusters together (more
overall old clusters). On the other hand, the OP-
TICS algorithm was able to classify the same pixels
as belonging to any clusters for a prolonged number
of consecutive calibrations (Fig. 4). This means that
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Fig. 4. The fraction of pixels of a cluster cate-
gorised as belonging to any clusters (Y -axis) in next
consecutive calibrations (X-axis) since the cluster
introduction to calibration (number of timesteps
n = 300). Each line represents a different cluster
and is differentiated with random color. The num-
ber of detected pixels slowly decreases with time.
The OPTICS algorithm (a) recognises pixels of clus-
ters as belonging to a cluster (not necessarily the
same one) for a longer time. DBSCAN is more strict
in distinguishing the pixels that belong to clusters.

when using OPTICS with the tracking algorithm, it
classifies the pixels as belonging to a cluster more
frequently than DBSCAN, but is less able to track
the clusters correctly. From the standpoint of op-
erating the detector, the OPTICS algorithm would
more often falsely report more clusters.

6. Conclusions

In a very general way, an innovative approach
has been proposed for monitoring the condition of
pixel-based detectors using unsupervised machine
learning. It can be applied to any system with long-
term operation. The core innovation related to our
approach is to use the calibration parameters to
deduce the state of the detector rather than the
data collected by the detector. Also, to our knowl-
edge, it is one of the first applications of unsuper-
vised learning techniques to monitor silicon pixel

detectors used in the field of experimental high-
energy physics. Two different algorithms for density
clustering were tested in the simulated dataset of
Velopix calibrations masking. The DBSCAN algo-
rithm was able to most consistently identify clusters
with high accuracy and low number of false pos-
itives. The DBSCAN algorithm used with cluster
tracking via the cosine similarity of unique features
performed superior to the OPTICS algorithm. The
proposed algorithm shows the capability of recog-
nising and tracking clusters in the Velopix sensors
masking simulation. The ultimate test of this work
will take place after the upgrade of the LHCb de-
tector and the upcoming new run of LHC.

This method may be used in other sensors be-
longing to the Medipix family. Other sensors that
are descendants of Medipix might be using differ-
ent modes of operation that do not use masking or
may simply never need to mask pixels. However,
when masking is used, the algorithm presented in
this work can be used to detect damage in a pixel
ASIC and track its evolution. Additionally, detec-
tors that utilise multiple pixel sensors for tracking
it may be used to detect blind spots created by clus-
tered masks. The application of this algorithm will
prevent the manifestation of adverse effects of the
clusters of masks before the ASIC collects the data.
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