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In these proceedings, we present our recent results on the study of the process γd → π0ηd, where the
existence of a dibaryon in the ηd invariant mass distribution has been recently reported. As we will
show, many of the relevant aspects observed in the experiment, such as the shift of the ηd and πd
invariant mass distributions with respect to phase space, can be described with our model, where no
dibaryon is formed. Instead, we consider the interaction of the γ with the nucleons forming the deuteron
to proceed through γN → ∆(1700) → η∆(1232) → ηπ0N , followed by the rescattering of the π and η
with the other nucleon of the deuteron. Theoretical uncertainties related to different parameterizations
of the deuteron wave function are investigated.
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1. Introduction

In [1, 2], the γd → π0ηd reaction was investi-
gated, and a clear shift with respect to phase space
was observed in the ηd and πd invariant mass distri-
butions. These distributions were fitted by consider-
ing a phenomenological model in which a dibaryon
D12(2150) [I(JP ) = 1(2+)] and a pole near the ηd
threshold, with quantum numbers I(JP ) = 0(1−),
are introduced in the π0d and ηd invariant masses.
By fitting the data, the mass and width of both
dibaryons are obtained and found to be compati-
ble with the corresponding values determined in the
theoretical works claiming their existence [3–7]. In-
terestingly, the D12(2150) dibaryon found in [3, 4]
has been recently explained in [8] as a ∆(1232)np
triangle singularity of the reaction pp→ π+d, where
pp → ∆+p, followed by ∆+ → π+n, and the lat-
ter n together with the former p in the final state
get bound in the form of a deuteron. Having this
in mind, one can question whether the presence of
a dibaryon in the ηd invariant mass distribution of
the reaction γd → π0ηd is needed to explain the
energy dependence observed in the experiment for
the differential cross sections as a function of the ηd
and π0d invariant masses. It is our present topic of
research.

The γd → π0ηd process was theoretically inves-
tigated in [9, 10], with the ηNN interaction being
implemented considering different sets for the scat-
tering length of ηN [5, 11]. However, the two models
produce substantial differences in the respective ηd

and π0d invariant mass distributions, and it is not
clear if the existence of a dibaryon in the ηNN sys-
tem is compatible with the ηd invariant mass dis-
tribution found in [2].

The existence of a η bound state has been a long-
standing puzzle [12, 13] (for a review on the ηN
interaction, we refer the reader to [14]). While
theoretical calculations show that η bound states
can appear for medium and heavy nuclei [15, 16],
their widths are quite large compared to the cor-
responding binding, and no definite conclusion has
been drawn about the existence of such η bound
states in nuclei [17–19]. Even the existence of
η 3He and η 4He bound states is still uncertain
— while some models find a pole in the contin-
uum, others suggest that deeper potentials than
the current ones would be necessary in order to
bind the η in 3He or 4He [20, 21]. In this re-
spect, experimentally, the study of the dd →
η 4He→ π0n 3He, π−p 3He reactions do not find
any evidence about the existence of η 4He bound
states [22, 23].

In view of the difficulties of finding η bound states
in heavy nuclei, the search for an ηd bound state in
nature does not seem promising. This means that
some other dynamics should be responsible for the
ηd and πd invariant mass distributions found in the
γd → π0ηd reaction studied in [1, 2]. As we will
show in this work, the formation of ∆(1700) from
γN , together with its decay to η∆(1232), are basi-
cally the main mechanisms involved in the process
γd→ π0ηd.
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2. Formalism

In our approach, the deuteron is considered to be
a pn bound state with isospin I = 0 and orbital
angular momentum L = 0, i.e.,

|d〉 =
1√
2

(
|pn〉 − |np〉

)
. (1)

In this way, to describe the process γd→ π0ηd, we
take that the photon can interact both with the p
and n constituting the deuteron. Following [24, 25],
the interaction of a photon with a nucleon to pro-
duce a ηπ0N final state proceeds through the forma-
tion of the resonance∆(1700). This state, which was
found to be generated from the dynamics involved
in the s-wave interaction between pseudoscalars and
baryons from the decuplet in [26], couples mainly
to the η∆(1232) channel. The ∆(1232) decays to
πN , getting in this way a πηN final state from
γN → ∆(1700) → η∆(1232) → ηπN (see Fig. 1).
In the impulse approximation, i.e., without consid-
ering the rescattering of the η and π0, we there-
fore have four mechanisms of getting γd → π0ηd,
as shown in Fig. 1.

Let us determine the different contributions to
the amplitude in the impulse approximation. Fol-
lowing [25], the amplitude describing the vertex
γN → ∆(1700) is given by
− itγp∆∗ = gγp∆∗S

† · ε, (2)
where ∆∗ represents ∆(1700), ε is the polarization
vector for the photon, and S stands for the spin
transition operator connecting states with spin 3/2
to 1/2. The value of the s-wave coupling gγp∆∗ in
the preceding equation is taken to be 0.188 [25] (the
Clebsch–Gordan coefficient

√
2/3 associated with

the γN → ∆∗ transition is already embedded on
this value), which reproduces the experimental data
on the radiative decay width of ∆(1700) [27]. It is

Fig. 1. Diagrams representing different contribu-
tions to the γd → π0ηd process within the impulse
approximation, i.e., without considering the rescat-
tering of the π and η coming from the decay of
∆(1700) and ∆(1232), respectively.

interesting to note that the amplitude in (2) is the
same for proton as well as neutron since the pho-
ton must behave like an isovector particle in the
vertex in order to produce ∆(1700), an isospin 3/2
baryon.

In the case of the vertex ∆(1700) → ∆(1232)η,
we can consider
− itη∆∆∗ = − igη∆∆∗ , (3)

with gη∆∆∗ = 1.7 − i1.4 [26]. Finally, for the ∆ →
πN transition, following [8], we have

− it∆→πN = − f∗

mπ
S · pπTλ, (4)

where pπ(mπ) is the momentum (mass) of the pion,
f∗ = 2.13, and S(Tλ) is the spin (isospin) transition
operator acting on states with spin (isospin) 3/2
and taking them to 1/2. Note that the action of the
isospin operator produces a factor

√
2/3 for the two

types of ∆πN vertices appearing in the diagrams
in Fig. 1, namely ∆+π0p, ∆0π0n.

In this way, we assume that

− itimpulse =
4√
6

∫
d4q

(2π)
4

(
− f∗

mπ
S · pπ

)(
gγp∆∗ S

† · ε
)

(− igη∆∆∗)
[
− igd θ

(
qmax−|pdiN |

)]
×
[
− igd θ

(
qmax−|p

df
N |
)] MN

EN (q)

i

q0 − EN (q) + iε

MN

EN (pd−q)

i

p0
d − q0 − EN (pd−q) + iε

× M∆∗

E∆∗ (pd−q+k)

i

p0
d − q0 + k0 − E∆∗ (pd−q + k) + iε

× M∆

E∆ (pd−q+k−pη)

i

p0
d − q0 + k0 − p0

η − E∆ (pd−q + k−pη) + iε

× MN

EN (pd−q+k−pη−pπ)

i

p0
d − q0 + k0 − p0

η − p0
π − EN (pd−q+k−pη−pπ) + iε

, (5)

where pd, k, pη, and pπ represent, respectively,
the four-momentum of: the deuteron in the initial
state, the initial photon, and the η and π0 in
the final state. In (5), the four-momentum q is
related to the nucleon inside the deuteron, which

does not interact with the photon in Fig. 1. The
constant gd in (5) is the d ↔ pn coupling, with
a value of (2π)

3/2
2.68 × 10−3 MeV−

1
2 [8], while

pdiN (p
df
N ) represents the linear momentum of the
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nucleon in the rest frame of the deuteron in the
initial (final) state. In (5), qmax is a cut-off for the
momentum of the nucleons in the rest frame of
the deuteron. Within non-relativistic kinematics,
which is appropriate for the process, we can write

pdiN =
pd
2
− q, p

df
N =

pd+k−pη−pπ
2

− q. (6)

Next, we perform the dq0 integration of (5) by
means of Cauchy’s theorem, and we find

− itimpulse = −2i

√
2

3

∫
d3q

(2π)
3

(
f∗

mπ
S · pπ

)(
gγp∆∗ S

† · ~ε
)

(gη∆∆∗)

[
gd θ

(
qmax−

∣∣∣pd
2
−q
∣∣∣∣)]

×
[
gd θ

(
qmax−

∣∣∣pd+k−pη−pπ
2

− q
∣∣∣)] MN

EN (q)

MN

EN (pd−q)

1

p0
d − EN (q)− EN (pd−q) + iε

× M∆∗

E∆∗ (pd−q+k)

1

p0
d − EN (q) + k0 − E∆∗ (pd−q+k) + iε

× M∆

E∆ (pd−q+k−pη)

1

p0
d − EN (q) + k0 − p0

η − E∆ (pd−q+k−pη) + iε

× MN

EN (pd−q+k−pη−pπ)

1

p0
d − EN (q) + k0 − p0

η − p0
π − EN (pd−q+k−pη−pπ) + iε

. (7)

Since the reaction we are investigating involves
deuterons in the initial and final states, it is conve-
nient to introduce the corresponding wave function
ψ of the deuteron for a better comparison with the
data. To do this, following [8, 28], we can replace

gd θ
(
qmax −

∣∣∣pd
2
−q
∣∣∣) MN

EN (q)

MN

EN (pd−q)

× 1

p0
d − EN (q)− EN (pd−q) + iε

(8)

by −(2π)3/2 ψ( 1
2pd − q). Note that in our

case, the value gd used is compatible with the
following normalization of the deuteron wave
function∫

d3 q
∣∣ψ(q)

∣∣2 = 1. (9)

Similarly, we can substitute the other combi-
nation of gd, θ-function, and two-nucleon Green’s
function present in the amplitude given by (7) by
a − (2π)

3/2
ψ( 1

2 (pd+k−pη−pπ)− q). This way, we
can rewrite (7) as

timpulse = 2

√
2

3
gγp∆∗ gη∆∆∗

f∗

mπ
M∆M∆∗

∫
d3q

(2π)
3

(S · pπ)(S† · ε)[
E∆∗ (pd−q+k)

] [
E∆ (pd−q+k−pη)

]
× 1

p0
d − EN (q) + k0 − E∆∗ (pd−q+k) + iε

1

p0
d − EN (q) + k0 − p0

η − E∆ (pd−q + k−pη) + iε

× (2π)
3
ψ
(pd

2
−q
)
ψ

(
pd+k−pη−pπ

2
−q
)
. (10)

To estimate theoretical uncertainties, we will
use different well-known parameterizations for the
deuteron wave function, such as those of [29–32].

Next, (10) has the spin structure (S · pπ)(S† · ε),
and we need to evaluate the different spin transi-
tions considering the two possible polarizations of
the photon and the different spin projections of the
deuteron. To do this, first, we choose the photon
momentum to be parallel to the z-axis, such that
k = (0, 0, |k|). In this way, the polarization vec-
tors of the photon are given by ε1 = (1, 0, 0),
ε2 = (0, 1, 0). Then, we make use of the useful
property

∑
polar. SiS

†
j = 2

3δij−
i
3 εijkσk and the fact

that ∆ is produced at the vertex ∆∗ → ∆η, which

implies that the spin projections of ∆∗ and ∆ al-
ways coincide, i.e., m∆∗ = m∆. Then we can write

(S · pπ)
(
S† · ε

)
=
∑
m∆

pπiεjSi
∣∣m∆

〉〈
m∆

∣∣S†j =

2

3
pπ · ε−

i

3
εijkpπi

εjσk. (11)

By means of (11), we can now evaluate the corre-
sponding matrix elements for the different polariza-
tion vectors of the incident photon and the spin pro-
jections of the nucleons forming the deuteron. Let us
denote these matrix elements by Wλ

µ,µ′ , where the
indices µ, µ′ = −1, 0, 1 represent, respectively, the
spin projections ↓↓, ↑↓ + ↓↑, and ↑↑ of the nucleons
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Fig. 2. Some of the diagrams representing contri-
butions to the rescattering of the pion in the inter-
mediate state in s- (a) and p-waves (b). The thick
dot stands for the s-wave πN → πN interaction.
There are eight diagrams in total concerning the
rescattering of a pion in s-wave and another eight
diagrams for the rescattering of a pion in p-wave.
For the full set of diagrams, we refer the reader
to [33].

Fig. 3. Diagrams representing contributions to the
s-wave rescattering of an η with one of the nucleons
of the deuteron.

in the deuteron, and λ = 1, 2 represents the two
possible polarization vectors of the photon. In this
way, we have, for example,

Wλ
1,1 =

〈
↑↑
∣∣∣S · pπS† · ελ∣∣∣ ↑↑ 〉,

Wλ
1,0 =

〈
1√
2

(
↑↓ + ↓↑

)∣∣∣S · pπS† · ελ∣∣∣ ↑↑〉 ,
Wλ

1,−1 =
〈
↓↓
∣∣∣S · pπS† · ελ∣∣∣ ↑↑ 〉. (12)

Thus, the amplitude in the impulse approximation
obtained in (10) depends on the spin projections of
the deuteron in the initial (µ) and final (µ′) states,
as well as on the transverse polarization of the pho-
ton (λ). It is then convenient to use the notation
tλµ,µ′ . In Table I, we list all Wλ

µ,µ′ matrix elements
obtained in the impulse approximation.

After evaluating the amplitude in the impulse ap-
proximation, the next contribution to the process
γd → π0ηd in our approach corresponds to the
rescattering of π and η. Note that π can rescat-
ter with one of the nucleons of the deuteron in the
s-wave as well as in the p-wave, i.e., relative orbital
angular momentum l = 0, 1 (we present some of the
corresponding diagrams in Fig. 2 [33]). In the former
case, we follow the approach of [34] to determine the
πN → πN amplitude in s-wave, while in the latter
case, ∆(1232) is exchanged, with the ∆→ πN ver-
tex being described by the amplitude in (4).

In the case of the rescattering of the η with one
of the nucleons of the deuteron, the N∗(1535) can
be generated in s-wave. As shown in [35], this latter

state couples mainly to KΣ and ηN , with the cou-
pling gηNN∗(1535) = 1.46− i0.43, and we have the
contributions shown in Fig. 3.

Following the same methodology to get the con-
tribution in the impulse approximation, we can de-
termine the amplitudes for the rescattering of a pion
in s- and p-waves as well as that related to the
rescattering of an η in the s-wave. For the explicit
expressions as well as for more details on the calcu-
lations, we refer the reader to [33].

Finally, we implement in our approach the
unstable nature of states like ∆∗(1700), ∆(1232),
and N∗(1535) by replacing ER− iε with ER− iΓR/2
in the different amplitudes, where R stands for
a resonance/unstable state. In the case of ∆(1232),
we consider an energy-dependent width

Γ∆ (M∆inv) = Γ∆
M∆

M∆ inv

(
qπ
qπ on

)3

, (13)

where qπ and qπ on are defined as

qπ =

√
λ
(
M2

∆ inv,M
2
N ,m

2
π

)
2M∆ inv

,

qπ on =

√
λ
(
M2

∆,M
2
N ,m

2
π

)
2M∆

, (14)

with
M2

∆ inv = E2
∆ −

∣∣p∆∣∣2. (15)

3. Results and discussions

Using the amplitudes discussed in the previous
section, we can determine the invariant mass distri-
butions for ηd and π0d in the final state as

dσ

dMηd
=

M2
d

8
∣∣k∣∣s

∣∣pπ∣∣∣∣pRηdη

∣∣
(2π)

4

∫
d cos(θπ)

∫
dΩRηd

η

×
∑
µ,λ

∑
µ′

∣∣tλµ,µ′ ∣∣2, (16)

dσ

dMπ0d
=

M2
d

8
∣∣k∣∣s

∣∣pη∣∣∣∣pRπdπ

∣∣
(2π)

4

∫
d cos(θη)

∫
dΩRπdπ

×
∑
µ,λ

∑
µ′

∣∣tλµ,µ′ ∣∣2, (17)

where the summation signs represent the sum over
the polarizations of the particles in the initial and
final states, with the bar over the sign indicating
averaging over the initial state polarization. In (16)
and (17), s is the standard Mandelstam variable,
pπ (pη) is the pion (eta) momentum in the global
center of mass frame, and pRηdη (pRπdπ ) denotes the
eta (pion) momentum in the rest frame of ηd (πd).
The variable ΩRηd

η (ΩRπd
π ) in (16) and in (17) is the

solid angle of η (π) in the ηd (πd) rest frame. Note
that we calculate the amplitudes in the global cen-
ter of mass frame, i.e., pd + k = 0, and p0

d + k0 is
taken as

√
s. Thus, we must boost pRπdπ and pRηdη to

the global center of mass frame. The expressions for
the boosted η and pπ momenta can be found in [33].
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Fig. 4. Differential cross sections obtained in the impulse approximation as a function of the ηd (panels (a)
and (b)) and π0d (panels (c) and (d)) invariant masses. Panels (a) and (c) show average cross sections for the
beam energy range Eγ = 950–1010 MeV, while panels (b) and (d) — for Eγ = 1010–1150 MeV. Experimental
data, shown as filled circles, are taken from [1]. The deuteron wave functions considered in the calculations are
based on the following parameterizations for the NN potentials: Bonn [29], Paris [30], Reidt Hard-Core (HC)
and Soft-Core (SC) [31] and Hulthén [32].

TABLE I

Spin transition elements Wλ
µ,µ′ . The subscripts µ and

µ′ are related to the polarizations of the deuteron in
the initial and final states. Note that Wλ

µ′,µ is the
negative of the complex conjugate of Wλ

µ,µ′ , thus, it
suffices to list any one of them.

µ µ′ Wλ
µ,µ′

1 1 2
3
pπ · ελ − i

3

(
pπxελy − pπy ελx

)
1 0 − i

3
√
2

(
−pπz ελy + ipπz ελx

)
1 −1 0

0 0 2
3
pπ · ελ

0 −1 − i

3
√
2

(
−pπz ελy + ipπz ελx

)
−1 −1 2

3
pπ · ελ + i

3

(
pπxελy − pπy ελx

)

Let us now discuss the results obtained. We start
with the invariant mass distributions found consid-
ering the impulse approximation. The results ob-
tained are shown in Fig. 4. In the experiment, two
different sets of photon beam energies are consid-
ered, 950–1010 MeV and 1010–1150 MeV. Thus,
to compare with the experimental data, we need
to calculate the ηd and π0d mass distributions for

different energies between 950–1010 MeV as well as
between 1010–1150 MeV and determine the average
values. In particular, we consider the energies 950,
980, and 1010 MeV for the first energy range and
1010, 1050, 1100, and 1150 MeV for the second en-
ergy range. In Fig. 4, panels (a) and (c) represent
the results obtained averaging the curves found for
Eγ = 950–1010 MeV, and panels (b) and (d) —
the results obtained averaging the curves found for
Eγ = 1010–1150 MeV. Panels (a) and (b) are re-
lated to the results obtained for the ηd invariant
mass distribution, while (c) and (d) — to the re-
sults obtained for the π0d invariant mass distribu-
tion. The different lines shown in Fig. 4 correspond
to the results obtained with different parameteri-
zations of the deuteron wave function. As can be
seen, the shift, with respect to phase space shown
by the data in [1], on the differential cross section
can be reproduced with the impulse approximation,
and it is a consequence of the dynamics considered
(see Fig. 1). Indeed, the mechanism in Fig. 1 favors
the π0 to go with as high energy as possible to place
the ∆(1232) on-shell. This leaves less energy for the
η, and the ηd invariant mass becomes smaller. Con-
versely, the π0 goes out with larger energy than ex-
pected from phase space leading to a πd invariant
mass bigger than the phase space contribution.

382



Studying the Process γd→ π0ηd

Fig. 5. Accumulation of events satisfying the
condition in (18) for values of qmax in the
range 0–1000 MeV.

Note, however, that the magnitude of the dis-
tributions shown in Fig. 4 is substantially affected
by the choice of the wave function parameteriza-
tion considered in the calculations. Such differences
are related to the typical momentum values of the
deuteron in the reaction considered. Indeed, as can
be seen in Fig. 5, the deuteron wave function gets
determined most frequently in the momentum range
300–400 MeV for different values of the photon en-
ergy.

This result has been found by generating random
numbers when calculating the phase-space integra-
tion for the differential cross sections. Then, by col-
lecting the events which satisfy the condition

θ
(
qmax −

∣∣∣pd
2
−q
∣∣∣)

×θ
(
qmax −

∣∣∣pd+k−pη−pπ
2

−q
∣∣∣) = 1, (18)

while changing qmax from 10 to 1000 MeV, in steps
of 10 MeV, we can define Ri as the number found
for the i-th value of qmax. In this way, the difference
Ri+1−Ri provides the fraction of events where ei-
ther | 12pd−q| or |

1
2 (pd+k−pη−pπ)−q| are between

qmax and qmax + 10 MeV.
Considering the momentum region 300–400 MeV,

as can be seen in Fig. 6, different parameterizations
of the deuteron wave functions produce substan-
tial differences precisely in this momentum region.
The different wave functions of the deuteron are re-
lated to different parameterizations of the NN po-
tential, parameterizations which are based on me-
son exchange potentials. Therefore, they should be
expected to work at distances where the nucleons
do not overlap. However, this should not be the
case for the momentum of the deuteron ranging be-
tween 300–400 MeV. Then the NN scattering mod-
els of [29–32] cannot provide precise descriptions for
the deuteron wave function in the momentum range
needed to study the reaction γd→ π0ηd.

Fig. 6. Deuteron wave functions based on the fol-
lowing parameterizations for the NN potentials:
Bonn [29], Paris [30], Reidt Hard-Core (HC) and
Soft-Core (SC) [31] and Hulthén [32].

That being said, it is important to know if the
rescattering mechanisms shown in Figs. 2 and 3 are
relevant for describing the data on γd→ π0ηd. We
show the ηd and π0d distributions in Fig. 7 obtained
with the Bonn [29] and Hulthén models [32] for the
deuteron wave function to illustrate the uncertainty
related to the choice of the deuteron wave function
parameterization.

As can be seen in Fig. 7, independently of the
parameterization of the deuteron wave function,
the effect of rescattering is relevant and leads to
an increase in the strength of the mass distribu-
tion of about 50%. We also find that the rescat-
tering of a pion in p-wave, through the mechanism
πN → ∆(1232)→ πN , produces the dominant con-
tribution. The increase of the magnitude obtained
for the distributions when the rescattering is imple-
mented can be explained by the fact that the rescat-
tering mechanism in this case helps to share the mo-
mentum transfer between the two nucleons of the
deuteron and involves the deuteron wave function
at smaller momenta, where it is bigger (see Fig. 6).
Note, however, that even with the increase in the
magnitude produced by the rescattering, the mag-
nitude obtained for the differential cross sections for
Eγ = 950–1010 MeV is still smaller than that of the
experimental data.

To finalize this section, in Fig. 8, we show the
results obtained on the angular distributions with
the impulse approximation and with the inclusion
of the rescattering processes. Since, as can be seen
in Fig. 7, the contribution from the η rescattering
in s-wave is not significant, it is sufficient for com-
paring with the data to consider the effects from
the rescattering of a pion. The uncertainties asso-
ciated with the parameterizations of the deuteron
wave function (based on Bonn and Hulthén poten-
tials) are also shown. As can be seen in Fig. 8, the
differential cross sections are underestimated at the
forward angles, while at backward angles, they are
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Fig. 7. Differential cross sections as a function of the ηd (panels (a) and (b)) and π0d ((c) and (d)) invariant
masses, as obtained in the impulse approximation and by considering the rescattering of π in p-wave (orbital
angular momentum L = 1), as well as in s-wave (L = 0), and the rescattering of η in s-wave (L = 0). Panels
(a) and (c) represent average cross sections for the beam energy range Eγ = 950–1010 MeV, while panels (b)
and (d) — for (Eγ = 1010–1150 MeV). The experimental data, shown as filled circles, are taken from [1].

Fig. 8. Differential cross sections as a function of
the polar angle of the outgoing deuteron. The ex-
perimental data are taken from [2].

overestimated. Similar results have been found
in [9, 10], and we do not have an explanation for
such discrepancies, particularly since the forward
angle requires large deuteron momenta, and even
the large increase produced by the Hulthén wave
function is clearly insufficient to reach the experi-
mental values in the forward region.

4. Conclusions

In these proceedings, we have shown the results
found for the ηd and π0d mass distributions in the
process γd→ π0ηd. Our description of the reaction
is based on a realistic model for the γN → π0ηN
process, where first γN couples to the resonance
∆(1700), which decays to η∆(1232), and the sub-
sequent decay of ∆(1232) to πN produces the final
state π0ηd. Once a π and an η are produced, we can
also have the rescattering of these particles with the
nucleons of the deuteron. The needed couplings to
determine all these contributions, such as that of
∆(1700)→ η∆(1232), are provided by previous the-
oretical studies. Thus, predictions for observables of
the γd→ π0ηd reaction are obtained without fitting
to the data.

As we have shown, the shift of the data with
respect to phase space can be explained with the
above-mentioned dynamics, and there is no need
to consider the existence of dibaryons. Particu-
larly relevant for describing the data is the con-
tribution from the rescattering of a pion in p-
wave, which increases the magnitude found for
the differential cross sections with the amplitudes
in the impulse approximation considerably, (by as
much as 50%).
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We have also shown that the reaction investigated
involves large momenta of the deuteron, in a region
of momenta, where the nucleons inside the deuteron
clearly overlap, and it is difficult to give precise val-
ues of the deuteron wave function. This is the rea-
son why we used different parameterizations for the
deuteron wave function, which helped us quantify
the uncertainties of the theoretical calculation, and
they were found to be sizable.

With the mechanisms considered, the model pre-
dicts an angular distribution clearly peaking at
backward angles. This result is in clear conflict with
the experimental data, which correspond to a much
flatter distribution.
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