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We report the results of research on the sensitivity of the observables of the deeply bound pionic atom to
the pion–nucleon sigma term σπN . We calculate the uncertainties of determining the value of sigmaπN
with the accurate data of the deeply bound pionic atoms expected to be obtained at the RI Beam Factory
(RIBF), RIKEN. We find that the energy gap of the 1s and 2p pionic states, (Bπ(1s) − Bπ(2p)), and
the width of the 1s state for the lighter Sn isotope are expected to be important observables to precisely
determine the σπN value by taking into account the expected errors of the experiments.
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1. Introduction

The deeply bound pionic atom is known to be
a very useful system to investigate the pion prop-
erties and aspects of chiral symmetry at finite den-
sity [1]. Recently, experimental studies of the deeply
bound pionic atoms in Sn isotopes have been per-
formed at the RI Beam Factory (RIBF) [2, 3]. In [2],
the angular dependence of the formation spectra of
the (d, 3He) reaction was observed for the first time,
and the binding energies and widths of the pionic 1s
and 2p states were determined simultaneously. Then
the value of the pion–nucleus isovector parameter b1
was determined very precisely by the improved ex-
perimental analyses, and the reduction of the chiral
condensate |〈q̄q〉| was found concluded with a very
small error in [3]. Further experimental information
with quite good precision is also expected to be ob-
tained for pionic atoms in 111,123Sn by the (d, 3He)
reaction for the 112,124Sn targets [4]. We also men-
tion here a recent experimental achievement of high
precision measurements of the kaonic 3He and 4He
atoms [5]. Kaonic atoms are also interesting objects
to investigate the aspects of the strong interaction
symmetry in the flavor SU(3) at finite density.

The pion–nucleon sigma term σπN has been stud-
ied by various research groups. However, the σπN
value has not been determined accurately enough.
The reported σπN values are different between
phenomenological and lattice calculations and are

distributed in the range of σπN ' 30–60 MeV (see
for examples [6, 7]). Therefore, it seems very inter-
esting to determine the σπN value with regards to
the precise data of deeply bound pionic atoms ex-
pected to be obtained in the near future [4]. In [8, 9],
the σπN value is reported to be σπN = 57± 7 MeV
by using the χ2 fitting on the binding energies and
widths of all existing pionic atom data including
those in light nuclei. In our study, we especially fo-
cus on the observables of the deeply bound pionic
1s and 2p states, which are obtained precisely in the
experiment of RIBF.

In this article, we discuss the sensitivity of the
deeply bound pionic 1s and 2p state in Sn isotopes
to the pion–nucleon sigma term σπN in order to
investigate the possibility of the precise determina-
tion of the value of σπN . Comprehensive reports of
our studies can be found in [10]. We provide brief
explanations based on [10] in this article.

2. Formalism

We calculate the structure of the deeply bound
pionic atoms to see the σπN term dependence of
the observables of the deeply bound pionic atoms.
To study the structure of the pionic atoms, we solve
the Klein–Gordon equation [1, 11][
−∇2 + µ2 + 2µVopt(r)

]
φ(r) =

[
E−Vem(r)

]2
φ(r),

(1)
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where µ is the pion–nucleus reduced mass, E is the
eigen energy written as E = µ − Bπ − i

2Γπ with
the binding energy Bπ and the width of atomic
states Γπ, Vem is the electromagnetic interaction,
and Vopt is the pion–nucleus optical potential, which
we explain in detail below.

In this article, we consider the standard potential
widely used for a long time for the studies of pionic
atoms. One of the standard optical potential, the
so-called Ericson–Ericson type [12], is written as

2µVopt(r) = −4π
[
b(r) + ε2B0ρ

2(r)
]

+4π ∇
[
c(r) + ε−1

2 C0ρ
2(r)

]
L(r)∇, (2)

with
b(r) = ε1

[
b0 ρ(r) + b1

(
ρn(r)−ρp(r)

)]
, (3)

c(r) = ε−1
1

[
c0ρ(r) + c1

(
ρn(r)−ρp(r)

)]
, (4)

L(r) =

[
1 +

4π

3
λ
(
c(r) + ε−1

2 C0ρ
2(r)

)]−1

, (5)

where ε1 and ε2 are defined as ε1 = 1 + µ/M and
ε2 = 1+µ/(2M) with the nucleon massM . The pa-
rameters b and c indicate the s-wave and p-wave πN
interactions, respectively. Potential terms with pa-
rameters B0 and C0 are higher order contributions
to the optical potential, and λ the Lorentz–Lorenz
correction.

The parameters b0 and b1 in (3) are replaced
by a density-dependent form with the σπN term.
We follow the form proposed in [13, 14] based on
the Tomozawa [15]–Weinberg [16] and the Gell-
Mann–Oakes–Renner [17] relations. We determine
the value of the s-wave isovector potential parame-
ter b1 in terms of σπN as

b1(ρ) = bfree1

[
1− σπN

m2
πf

2
π

ρ

]−1

, (6)

where bfree1 is the isovector πN scattering length
in a vacuum, bfree1 = −0.0861 m−1

π [8, 9, 19],
and fπ is the pion decay constant in a vacuum,
fπ = 92.4 MeV [13]. In the derivation of the
s-wave isoscalar potential parameter b0 [12], we take
into account the double scattering effects with the
density-dependent b1 parameter in (6). As a result,
one has

b0(ρ) = bfree0 − 3

2π
ε1

[(
bfree0

)2
+2b21(ρ)

](3π2

2
ρ
) 1

3

,

(7)
where bfree0 is the isoscalar πN scattering length in
a vacuum, bfree0 = 0.0076m−1

π [8, 9, 18]. Thus, the
explicit σπN term inclusion requires consideration
of the density-dependent parameters b0 and b1 in
the optical potential. We use the potential param-
eters obtained in [19], with the exception of b0 and
b1, as shown in Table I.

In this article, we consider the Woods–Saxon
form for the nuclear densities that appeared in
the electromagnetic interaction Vem and the pion–
nucleus optical potential Vopt.

3. Results

In Fig. 1, we show the density dependence of
the parameters b0(ρ) and b1(ρ) defined respectively
in (7) and (6) for three different σπN values, i.e.,
σπN = 25, 45, and 60 MeV. A larger σπN value
makes stronger dependence of density on parame-
ters, and thus, it has a more repulsive pion–nucleus
s-wave interaction.

In Fig. 2, we show the calculated pionic radial
density distributions |Rnl(r)|2 in 123Sn with the
b0(ρ) and b1(ρ) parameters for cases σπN = 25, 45,
and 60 MeV. We can see a clear effect of σπN to the
pion wave function inside the nucleus. Densities are
pushed more outwards for larger σπN values due to
the stronger repulsive effects of the potential.

In Fig. 3, the binding energies and widths of the
deeply bound 1s and 2p states in 123Sn are plotted
as functions of σπN . We observe that each observ-
able depends on the value of σπN almost linearly
within the range of the σπN value considered here.
Thus, as for the sensitivity of observable to σπN , we
use the average slope of the line, namely the average
size of the shift of each observable due to the 1 MeV
variation of the σπN value, ∆σπN = 1 MeV.We note
here that Fig. 3 should not be used directly to de-
termine the value of σπN by binding energy and/or
width. The purpose of this figure is just to show the
sensitivities of the observables to the value of σπN .
We need a thorough analysis of the data in general
to determine the absolute value of σπN .

Fig. 1. The density dependence of the parameters
b0(ρ) (7) and b1(ρ) (6) is shown for different σπN
values as indicated in the figure.

TABLE I

Pion–nucleus optical potential parameters are ob-
tained in [19] for the so-called Ericson–Ericson po-
tential [12].

Potential parameters Values
c0 [m−3

π ] 0.223
c1 [m−3

π ] 0.25
B0 [m−4

π ] 0.042 i

C0 [m−6
π ] 0.10 i

λ 1.0
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Fig. 2. The radial density distributions |Rnl(r)|2
of the pionic 1s, and 2p states in 123Sn are plotted as
the functions of the radial coordinate r for different
σπN values, as indicated in the figures. The density-
dependent b0(ρ) and b1(ρ) parameters are used. The
vertical line shows the radius of 123Sn.

Based on Fig. 3, we evaluate that the average
shift size of the 1s state binding energy ∆Bπ(1s) in
123Sn is ∆Bπ(1s) = 6.2 keV for the 1 MeV varia-
tion of the σπN value, ∆σπN = 1 MeV. For the 2p
state, ∆Bπ(2p) = 1.7 keV. The shift of the width
of the 1s pionic state ∆Γπ(1s) in 123Sn is 5.9 keV
for the ∆σπ = 1 MeV variation. For the 2p state,
∆Γπ(2p) = 2.5 keV. We find that the sensitivi-
ties of the 1s state observables are stronger than
those of the 2p states. We also evaluate the gap
of the 1s and 2p states in 123Sn as |∆(Bπ(1s) −
Bπ(2p))| = 4.5 keV and |∆(Γπ(1s) − Γπ(2p))| =
3.4 keV, respectively. The sizes of the calcu-
lated sensitivity of the observables are compiled in
Table I.

These calculated sensitivities of the observables
can be compared with the accuracy of the most
recent experimental data [2, 3]. Typical errors of
up-to-date experiments for the deeply bound pionic
atom observables by the (d, 3He) reactions in the Sn
region are around 80 keV for the binding energy of
the 1s state and around 40 keV for the width of the
1s state. In addition, the gap of the binding energies
of the 1s and 2p states, Bπ(1s)−Bπ(2p), is impor-
tant as it can be determined so far more accurately
and its error is expected to be ∼ 10–15 keV for the
Sn region.

We consider the energy gap Bπ(1s) − Bπ(2p) in
123Sn and estimate the uncertainties of determin-
ing the σπN value by the expected experimental
errors and calculated sensitivities of the observ-
ables. The calculated sensitivity of the energy gap
|∆(Bπ(1s) − Bπ(2p))| for 123Sn is 4.5 keV. In this
case, the experimental error ∼ 10–15 keV of this en-
ergy gap can be interpreted as the uncertainty of the
σπN value ∼ 2.2–3.3 MeV, which is obtained by di-
viding the experimental error 10–15 keV by the ob-
servable sensitivity 4.5 keV for the 1 MeV change of
the σπN value.

Fig. 3. The binding energies (Bπ) and the widths
(Γπ) of the pionic 1s (a) and 2p (b) states, and (c)
the differences of Bπ and Γπ between these states in
123Sn are plotted as functions of σπN . The density-
dependent b0(ρ) and b1(ρ) parameters are used.

On the other hand, the expected size of the ex-
perimental error 80 keV of Bπ(1s) and the cal-
culated sensitivity 6.2 keV for the 1 MeV change
of σπN in 123Sn allow concluding that the ex-
pected uncertainty of the σπN value is large and
can be equal 13 MeV, which is estimated as
80 keV/(6.2 keV/∆σ = 1 MeV). Similarly, the
width of the 1s state for 123Sn provides the ex-
pected σπN uncertainty of 6.8 MeV for an ex-
perimental error 40 keV, which is estimated as
40 keV/(5.9 keV/∆σ = 1 MeV). Thus, we find from
the typical size of the experimental errors and the
calculated sensitivities of the observables that the
energy gap between the 1s and 2p states has a larger
possibility to provide important information to de-
termine the σπN value precisely.
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TABLE II

Calculated average shifts of the observables of deeply
bound pionic states are shown in the unit of keV for
the 1 MeV change of the σπN value, ∆σπN = 1 MeV.
Here, ∆(Bπ(1s)−Bπ(2p)) and ∆(Γπ(1s)−Γπ(2p)) in-
dicate the average shifts of the differences of the bind-
ing energies and widths between the 1s and 2p states,
respectively, for the σπN change ∆σπN = 1 MeV.
These numerical results are taken from [10].

[keV] 123Sn 111Sn
|∆Bπ(1s)| 6.2 7.5
|∆Γπ(1s)| 5.9 12.9
|∆Bπ(2p)| 1.7 1.7
|∆Γπ(2p)| 2.5 3.6

|∆(Bπ(1s)−Bπ(2p))| 4.5 5.8
|∆(Γπ(1s)− Γπ(2p))| 3.4 9.3

We also calculate the average shifts of the observ-
ables of deeply bound pionic states in the lighter Sn
isotope, i.e., 111Sn. The results are summarized in
Table II. Large sensitivities to σπN are found for
pionic states in the lighter Sn isotope 111Sn. The
shift of the width of the 1s pionic states, ∆Γπ(1s),
in 111Sn is 12.9 keV for a ∆σπ = 1 MeV variation,
which is more than twice of ∆Γπ(1s) in 123Sn.

Additionally, we estimate the uncertainties of de-
termining the values of σπN in the lighter Sn iso-
tope 111Sn as well as in the case of 123Sn. As
for the calculated sensitivity of the energy gap
|∆(Bπ(1s) − Bπ(2p))| for 111Sn, the uncertainty of
the value of σπN is ∼ 1.7–2.6 MeV, which is esti-
mated as ∼ 10–15 keV/(5.8 keV/∆σ = 1 MeV). The
width of the 1s state ∆Γπ(1s) for 111Sn provides
the expected uncertainty of σπN of 3.1 MeV, which
is estimated as 40 keV/(12.9 keV/∆σ = 1 MeV).
Therefore, we also find that the width of the 1s
state in lighter Sn isotopes has a relatively small
uncertainty of the σπN value.

In [10], we also calculated the formation spectra
of the (d,3He) reactions in Sn isotope with the ef-
fective number approach [20–23]. We find that the
shapes of the spectrum have a reasonable sensitivity
to the σπN value at any scattering angle. Especially
the peak height of the pionic 1s state formation is
clearly reduced for the smaller σπN values.

4. Conclusions

Meson–nucleus bound states are known to be one
of the best objects to investigate meson proper-
ties and strong interaction features at finite nuclear
density under quasi-static circumstances. In addi-
tion to the pionic atoms considered in this article,
the kaon– and η–nuclear bound states provide im-
portant information on the Λ(1405) and N∗(1535)
baryon resonances and, for example, the η(958)–
nuclear bound states are expected to provide infor-
mation on the effects of the UA(1) anomaly at finite

density [24–26]. In this article, we have studied the
sensitivities of the observables of deeply bound pi-
onic atoms to the value of the pion–nucleon sigma
term σπN and investigate their experimental fea-
sibilities to determine the σπN value precisely by
considering the expected errors of up-to-date exper-
iments. We improved the theoretical formula and
implement the σπN term in the optical potential to
treat explicitly the density dependence on the po-
tential parameters b0 and b1. We have calculated
the various observables such as binding energies,
widths, and cross-sections, and studied their sensi-
tivities to the σπN value for the deeply bound pionic
atoms in 111Sn and 123Sn.

We found that the binding energies and widths
of the pionic 1s states have the largest sensitivi-
ties to the σπN value. Sensitivities tend to be even
larger for the lighter Sn isotopes. Considering the
expected errors of the experiments, we concluded
that the energy gap of the 1s and 2p pionic states,
|∆(Bπ(1s)−Bπ(2p))|, and the width of the 1s state
for the lighter Sn isotope are expected to be good
observables to accurately determine the σπN value.
The uncertainties to the σπN value due to exper-
imental errors to these observables are estimated
to be around 3 MeV. Thus, we can say that it is
very interesting to determine the value of σπN based
on precise data of the deeply bound pionic atoms.
As for the next step, in order to perform an ac-
tual determination of the value of the σπN term
from the experimental data, we need to solve the
expected difficulties, such as the well-known strong
correlation between the potential parameters [19]
and large uncertainties of the neutron distribution
of the nucleus.
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