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Super-Chandrasekhar white dwarfs are a timely topic in the last years in the scientific community due
to its connection to supernovae type Ia. Some early studies tackled the possibility of white dwarfs sur-
passing the Chandrasekhar limit by means of a magnetic field. More recently modified gravity has been
highlighted as the reason for these stars to surpass the Chandrasekhar limit and becoming a supernova
progenitor. However, in general simple assumptions are considered for the stellar structure and equation
of state, which can lead to unreliable conclusions. In this work we intend to be rigorous and consider
a realistic equation of state to describe the white dwarfs in general relativity and modified gravity,
taking into account a nuclear instability, that limits the maximum mass.
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1. Introduction

White dwarfs (WD) are stars that can reach den-
sities as high as ∼ 1011 g/cm3 in their interiors
with observed magnetic fields up to ∼ 109 G. The
masses are limited by the so-called Chandrasekhar
mass limit MCh = 1.44 M�, with M� represent-
ing the Solar mass. The radii of WDs are of the
order of 104 km, which renders a surface gravity,
log10(g), in the range of 8–10. These extreme prop-
erties make WDs a laboratory of tests for strong
gravity regimes, thus motivating their application
to the study of modified gravity theories. In this
way, we can constrain the parameter space of new
theories.

On the other hand, some peculiar, overluminous
type Ia supernovae have been linked to the possi-
ble existence of super-Chandrasekhar white dwarfs.
The origin of type Ia supernovae is understood as
the collapse of either a WD binary or a massive WD
above the Chandrasekhar limit.

2. Hydrostatic equilibrium equations

To model massive stars, relativistic hydrostatic
equilibrium equations are needed. For a perfect
fluid energy–momentum tensor and for a static
spherically symmetric spacetime, the Einstein’s

field equations Gµν ≡ Rµν − 1/2gµνR = 8πTµν

lead to the Tolman–Oppenheimer–Volkoff (T.O.V.)
equation [1, 2]. This equation reads in natural units
as

p′ = −(ρ+ p)
(4πpr +m/r2)

(1− 2m/r)
, (1)

where the prime indicates radial derivative and m
is the gravitational mass enclosed within a surface
of a radius, given by m′ = dm/dr = 4πρr2. To
solve this system, one needs the equation of state
p(ρ) and the boundary conditions m(r)|r=0 = 0,
p(r)|r=0 = pc, and ρ(r)|r=0 = ρc, where pc and ρc
are the pressure and density at the center of the
star, respectively. The numerical integration of (1),
once the equation of state (EoS) is provided, gives
the global properties of the stars.

When one considers a modification in the the-
ory of gravity, the field equations changed. Gener-
ally, the symmetric spacetime/perfect fluid energy–
momentum tensor is still used. In this case, one will
have T.O.V.-like equations for the hydrostatic equi-
librium equations that model relativistic stars.

For a specific theory called f(R,Lm) gravity,
which we considered earlier [3], the equations are

α′
(
p+ ρ

)
+ 2z = 0, (2)

p′ − z = 0, (3)
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e−β

3r2

[
2r2ρeβ +

(
2Rr2ρeβ + 3r2zα′ + 6prβ′

+2
(
2Rpr2 + 3p

)
eβ − 6p

)
σ

−
((
R− 3p

)
r2 + 3

)
eβ − 3rβ′ + 3

]
= 0, (4)

e−β

3r2

[
r2ρeβ+

(
Rr2ρeβ + 3r2zβ′ + 6prα′ − 6r2z′

−
(
Rpr2 + 6p

)
eβ + 6p

)
σ

+
(
Rr2 + 3

)
eβ − 3rα′ − 3

]
= 0. (5)

where α and β are metric potentials depending on
the radial coordinate r, and z is an auxiliary vari-
able which is the derivative of the pressure. For com-
plete details, see [4, 5]. Once EoS is defined, global
properties such as mass and radius can be found
from (1)–(5).

3. Critical mass

The critical mass of white dwarfs has been known
for a long time, when Stoner [7] considered special
relativity to describe Fermi–Dirac statistics of stars.
The mass was established as Mcrit ≈ KM3

P/µ
2m2

n,
where MP is the Planck mass, mn is the neutron
mass, and µ is the average molecular weight A/Z.
The constant K was determined as K = 3.72.
Later in the works of Chandrasekhar [7, 8], Lan-
dau [9], and Gamow [10], the value was corrected
to K = 3.09 using the Lane–Emden equations. To
reach this value, a simple EoS was used; it considers
the model of the non-interacting relativistic Fermi
gas of electrons. Although EoS can describe WDs
very well, the corrections were derived by Hamada–
Salpeter (HS) which accounts for electrostatic in-
teractions, Thomas–Fermi deviations, exchange en-
ergy and spin–spin interactions [11, 12]. However,
only the electrostatic corrections were found to be
non-negligible. The Chandrasekhar EoS is depen-
dent on µ, and the HS EoS — apart from the
dependence on µ — depends on the nuclear com-
position of a homogeneous star, which slightly de-
creases the mass limit compared to Chandrasekhar
results.

The electron pressure in HS EoS is lowered by
electrostatic attraction of electrons and ions. Fur-
ther and new developments when heavy elements
are important were considered in the Thomas-
Fermi [13] and Feynman–Metropolis–Teller mod-
els [14]. The role of the electron–ion interaction
in these models started to be considered in more
ways, i.e., inclusion of corrections of nuclear thresh-
olds such as inverse β-decay and pycnonuclear re-
actions [15, 16], leading to the investigations of
low mass neutron stars that could be generated

by massive white dwarfs made of oxygen–neon–
magnesium [17, 18], i.e., massive WDs near the
Chandrasekhar limit [19].

3.1. Stability criteria for critical mass

3.1.1. Gravitational instability

When considering a one-parameter sequence of
equilibrium stars with EoS for different central den-
sities ρc, one can show that [20]

∂M

∂ρc
> 0,

for stable equilibrium
configurations,

and
∂M

∂ρc
< 0,

for unstable equilibrium
configurations.

If the M(ρc) curve has only one critical point
(∂M/∂ρc = 0), it will mark the onset of stability
under radial oscillations, thus defining the maxi-
mum mass allowed due to gravity. In general, only
these gravitational stability criteria were used in
the works that studied white dwarfs in modified
gravity, and in addition, a simplistic Chandrasekhar
EoS was applied. When taking into account the im-
provements in EoS as shown in the previous section,
the maximum mass decreases. Moreover, when con-
sidering the onset of nuclear instabilities, they are
often reached before the onset of gravitational in-
stability, which limits even the maximum mass in
GR [21]. That is also important for modified grav-
ity, i.e., the onset of nuclear instability should be
taken into account since it will turn on before the
gravitational one.

3.1.2. Nuclear instability

Corrections in EoS can arise due to nuclear re-
actions with the latter coming from the effects of
inverse β-decay, which reduces the maximum mass
M of white dwarfs [22]. As the star goes to higher
density, the matter suffers compression and the elec-
trons combine with the nuclei, generating another
nucleus and a neutrino [23], AZX+e− →A

Z−1 Y +νe.
Electron capture leads to global star instability,
which can induce the core-collapse of the white
dwarf. The undergoing collapse depends on the re-
lation between electron capture and pycnonuclear
reactions. The instability of a pure 12C star, tak-
ing into account the general relativistic effects, has
been calculated [24], leading to a maximum mass
of M ≈ 1.366M�. The maximum Fermi energy of
electrons was computed to be 12.15 MeV, and for
a heterogeneous WD with 12C/16O, the configu-
ration becomes unstable when the 16O concentra-
tion exceeds 0.06, leading to a maximum mass of
M ≈ 1.365M�.

For the reaction to occur, one needs the Gibbs
energy per nucleon of the original nucleus to be
higher than that of the newly produced nucleus, i.e.,
g(p,A, Z) ≥ g(p,A, Z−1). For a detailed discussion
about neutronization, see Sect. V. in [23].
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4. Results and discussions

Considering the Hamada–Salpeter EoS [12] for
4He, 12C, 16O, 20Ne, 24Mg, 32S, 56Fe and using
the mass density threshold for electron capture [23],
we constructed stellar sequences of equilibrium con-
sidering general relativity and f(R,Lm) theories of
gravity in order to explore the maximum mass al-
lowed for stars.

In Fig. 1 we show the behavior of a star’s mass
versus the central energy density within general
relativity. The pink triangles indicate the onset
of gravitational instability (maximum mass point).
From those points to the right, the stellar mass
decreases with the increment of ρc, and thus this
region is unstable under radial oscillations. Addi-
tionally, the black stars mark the onset of nuclear
instabilities. From these points to the right side of
the sequences, stars are unstable due to the electron
capture reactions. As one can see, for light elements,
gravitational instability limits the maximum mass
of the star before the electron capture reactions
occur. However, for elements heavier than oxygen,
the electron capture reactions take place before the
maximum mass point is reached. As a result, nu-
clear instabilities are the main factor in restricting
the maximum stable mass.

In Fig. 2 we show the sequence of stellar masses
versus central energy density within f(R,Lm) grav-
ity for white dwarfs composed of 4He and 56Fe. We
have considered four values for the theory’s param-
eter. The values are: 0.00, 0.05, 0.10 and 0.50 km2.
For σ = 0.00 the theory recovers results of general
relativity.

In Fig. 2a, the element 4He was considered. We
can see an increment in masses according to an in-
crease in the value of σ. One can observe that when
σ 6= 0, the stability criterion is not applicable and
the gravitational instability disappears, i.e., the in-
stability criterion dM/dρc < 0 is not met. Such
behavior, in principle, could imply a white dwarf

Fig. 1. Mass vs central energy density using the
Hamada–Salpeter EoS for different star composi-
tions.

Fig. 2. Mass vs central energy density using the
Hamada–Salpeter EoS. (a) 4He WDs with four dif-
ferent values of the modified gravity parameter. (b)
56Fe WDs with four different values modified grav-
ity parameter.

with arbitrarily large mass, which is an unrealis-
tic result given the observational data. In this case,
what constraints the maximum mass is the electron
capture threshold marked by the black stars.

In Fig. 2b, the element 56Fe was considered. As
in the previous case, increasing the theory’s param-
eter also leads to an enhancement in the maximum
masses. However, as the density threshold for elec-
tron capture in 56Fe stars is remarkably smaller,
the effects of the modified theory become negligi-
ble. Therefore, the density threshold for electron
capture cannot be disregarded, and in particular it
drastically reduces the maximum stable mass. This
is important in the context of modified gravity theo-
ries used to generate high stellar masses. Once there
is a limit in the density regime, it must be respected,
otherwise misleading results will be obtained.

5. Conclusions

We have considered the stability of white dwarfs
within the modified gravity theory. We found that
the standard gravitational Chandrasekhar limit
does not exist. Therefore, the maximum mass of
a white dwarf is in the theory provided by nu-
clear instability, which is introduced due to electron
capture.
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