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The propagation characteristics of shear-horizontal waves in the half-space of n-type piezoelectric semi-
conductor under initial stresses are studied. The phase velocity in the transcendental equation is ob-
tained based on the three-dimensional theory of a piezoelectric semiconductor. The effects of different
boundary conditions, initial carrier density, and initial stresses on the phase velocity and attenuation
of shear-horizontal waves are analyzed. The results show that the effect of small initial stresses on the
dispersion is negligible, and the wave velocity decreases sharply with increasing initial stresses when it
is over a certain value. In particular, the initial stress has little effect on the imaginary part of the wave
velocity, and the attenuation will be amplified when the initial stress is large enough. These analytical
solutions will be valuable in the design of piezoelectric semiconductor devices.
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1. Introduction

Piezoelectric materials have been widely used
to make electromechanical transducers that con-
vert mechanical energy into electrical energy or
vice versa. In most cases, piezoelectric crystals are
treated as non-conducting dielectrics, but there is
in fact no clear division between conductors and
dielectrics. Recently, a third-generation semicon-
ductor with a piezoelectric effect, also known as
piezoelectric semiconductor (such as ZnO, GaN, SiC
and MoS2), is bringing up a new information tech-
nology revolution. Due to its wide bandgap, high
breakdown electric field, high thermal conductivity
and strong radiation resistance, it becomes a re-
search hotspot in the semiconductor field due to
the possibility of producing high temperature, high
frequency, and high voltage devices. Researchers
synthesized variety of piezoelectric semiconductor
nanostructures, such as fibers, tubes, ribbons, spi-
rals and films, and formed two new research areas
called piezo-electronics and piezo-phototronics [1].

A piezoelectric semiconductor is a material with
dual physical properties, both piezoelectric and
semiconductor properties. The core property of
piezoelectric semiconductor materials is the inter-
action between the internal electric field and the

charge carrier under bias voltage or mechanical
stress. Recently, researchers have done a lot of works
on the theoretical analysis of the stress–electric–
carrier coupling of a piezoelectric semiconductor.
For example, the results of the carrier distribution
and the electromechanical field of a piezoelectric
semiconductor bar under free and static tension, re-
spectively, are obtained by the linear piezoelectric
theory [2, 3]. The electromechanical fields distribu-
tion in a piezoelectric semiconductor rod nonuni-
formly doped with impurities producing holes and
electrons, and the second- and third-order nonlin-
ear solutions of static stretching of ZnO rods, con-
sidering the electric nonlinearity are analyzed [4, 5].
Luo et al. [6] and Yang et al. [7] studied the self-
equilibrium state of the piezoelectric p–n junction,
the coupling state of the p–n junction with bending
deformation in a composite piezoelectric semicon-
ductor fiber and the I–V characteristics under axial
tension [6, 7]. In addition, other problems have been
studied, such as cracks [8], extension of composite
fibers [9], and magnetically induced piezomagnetic–
piezoelectric semiconductor [10, 11].

Regarding the propagation of elastic waves in
piezoelectric semiconductor, the current researches
mainly focus on surface waves and guided waves,
while early researches mainly focus on bulk wave
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propagation [12, 13]. The dispersion and attenu-
ation of waves coupled with a multi-physical field
in a piezoelectric semiconductor were discussed by
Jiao et al. [14]. Researchers obtained the relation-
ship for the phase velocity and the spectrum of
the layered structure by constructing a layered
piezoelectric semiconductor model [15, 16]. Gu and
Jin [17] studied shear-horizontal (SH) waves in the
half-space of a piezoelectric semiconductor under a
biased electric field. Generalized Rayleigh surface
waves in a transversely isotropic piezoelectric semi-
conductor half-space were investigated by Cao et
al. [18]. Theoretical analysis and numerical calcu-
lations were also performed, including the propa-
gation characteristics of SH and Lamb waves in
a piezoelectric semiconductor plate, SH waves in
a multilayer piezoelectric semiconductor plate with
an imperfect interface, Rayleigh waves in a piezo-
electric semiconductor film/elastic half-space struc-
ture and surface waves in a piezoelectrical crystal
media [19–22]. Lately, new progress had also been
made in the reflection and transmission of Rayleigh
waves and elastic waves in piezoelectric sandwich
plates, considering the rotational effect [23–26].

However, there exist unavoidable initial stresses
in piezoelectric semiconductor devices during man-
ufacturing and application processes. Although the
effect of initial stresses on elastic waves in vari-
ous structures had been widely studied and ex-
amined [27–35]; up to now there are few reports
on the propagation of surface waves in piezoelec-
tric semiconductor materials with initial stresses.
Therefore, the propagation behavior of SH waves in
the half-space of piezoelectric semiconductor with
initial stresses will be investigated analytically. And
the analytical solutions of phase velocity and atten-
uation of SH waves are obtained according with the
linear theory of piezoelectric semiconductor, which
can be of great help as theoretical guidance for the
design of various piezoelectric semiconductor de-
vices.

2. Basic equations

Let us consider the isotropic n-type piezoelectric
semiconductor half space shown in Fig. 1. The wave
propagates along the x1 direction and the polariza-
tion direction is along the x3 axis. It is assumed that
there exists a constant initial stress and the upper
surface is traction-free.

For piezoelectric semiconductor materials, the
linear governing equations with initial stresses con-
sist of the equations of motion, Gauss equations of
electrostatics, and the equations of charge conser-
vation of hole and electron, which can be shown
respectively as follows

Tji,j +
(
ui,kT

0
kj

)
,j

= ρ üi,

Di,i +
(
ui,jD

0
j

)
,j

= q n,

q ṅ+ Ji,i = 0,
(1)

where i, j, k = 1, 2, 3; ui, Tij , and Ji are the dis-
placement vector, the stress tensor, and the elec-
tric current, respectively; Di, ρ, and n are the
electric displacement vector, the mass density, and
the carrier density, respectively. The basic charge is
q = 1.6× 10−19 C, the initial stress and initial elec-
trical displacement are T 0

kj and D
0
j , respectively.

Correspondingly, the linearized constitutive
equations with ignored current carrier recombina-
tion and regeneration are

Tij = cijklSkl − ekijEk,

Di = eijkSjk + εijEj ,

Ji = q n0 µijEj − q s dijn,j ,
(2)

where i, j, k, l = 1, 2, 3; Sij , Ek, and n0 are the
strain tensor, the electric field, and the initial
carrier density, respectively; cijkl, eijk, and εij are
the elastic, piezoelectric, and dielectric constant,
respectively. The carrier mobility µij and diffusion
constants dij satisfy the Einstein relation [36]

µij
dij

=
q

kBTk
, (3)

where kB and Tk are the Boltzmann constant
and absolute temperature, respectively. The
strain–displacement relation and the electric field–
potential relations are

Sij =
1

2
(ui,j + uj,i) and Ei = −ϕ,i, (4)

where i, j = 1, 2, 3; ϕ is the electric potential. For
a piezoelectric semiconductor with the polarized
direction along the axis x3, the material constant
matrices can be written as follows

[c] =



c11 c12 c13 0 0 0

c21 c22 c23 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


,

[e]
T

=



0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 0


, [ε] =

 ε11 0 0

0 ε22 0

0 0 ε33

 .
(5)

Here, c44 = c55, c66 = (c11 − c22)/2, e24 = e15,
ε11 = ε22, and the superscript “T” indicates matrix
transposition.

According to the propagation characteristics of
SH waves, the anti-plane displacement component,
the electric potential, and the disturbed carrier den-
sity are described by the following fields

u1 = u2 = 0, u3 = u3 (x1, x2, t) ,

ϕ = ϕ (x1, x2, t) , and n = n (x1, x2, t) . (6)
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Fig. 1. A half-space of a piezoelectric semi-
conductor.

Substituting (4) and (6) into (2), the remaining
stresses, electric displacements and current compo-
nents are given by displacement, electrical potential,
and carrier density as

T13 = c44
∂u3

∂x1
+ e15

∂ϕ
∂x1

,

T23 = c44
∂u3

∂x2
+ e15

∂ϕ
∂x2

,

D1 = e15
∂u3

∂x1
− ε11

∂ϕ
∂x1

,

D2 = e15
∂u3

∂x2
− ε11

∂ϕ
∂x2

,

J1 = −q n0 µ11
∂ϕ
∂x1
− q d11

∂n
∂x1

,

J2 = −q n0 µ11
∂ϕ
∂x2
− q d11

∂n
∂x2

.
(7)

Substituting (7) into (1) and assuming the initial
stress is along the x1 axis, the coupled wave equa-
tion has the following form

c44∇2u3 + T 0
1
∂2u3

∂x2
1

+ e15∇2ϕ = ρ ∂
2u3

∂t2 ,

e15∇2u3 − ε11∇2ϕ = q n,

∂n
∂t − n0 µ11∇2ϕ− d11∇2n = 0,

(8)
where ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2

is the two-dimensional
Laplace operator in Cartesian coordinates.

The dielectric constant of air is much smaller than
that of a piezoelectric semiconductor, so air can be
treated as a vacuum. The electric potential ϕ0 in
a vacuum satisfies the Laplace equation
∇2ϕ0 = 0. (9)

Therefore, the electrical displacement in a vacuum
satisfies

D0
2 = −ε0

∂ϕ0

∂x2
, (10)

where ε0 = 8.85× 10−12 F/m is the dielectric coef-
ficient in air.

In order to study wave propagation in a piezoelec-
trical semiconductor, we assume that the displace-
ment, electric potential, and the density of carrier
along the positive direction of the x2 axis tend to
be zero, so

u3 = 0, ϕ = 0, n = 0, with x2 → +∞. (11)

The electric potential in a vacuum along the nega-
tive direction of the x2 axis which satisfies the at-
tenuation condition, so

ϕ0 = 0, with x2 → −∞. (12)
The surface of the piezoelectric semiconductor half
space is traction-free, and the density of carrier on
the upper surface is zero, so

T23 (x1, 0) = 0 (13)

n (x1, 0) = 0. (14)
Note that (14) is the new boundary condition com-
pared to piezoelectric insulation material, which
means that the disturbance of the carrier density
will disappear.

As for the electrical boundary condition, both
short- and open-circuit conditions are discussed and
analyzed:

(i) the electrical short-circuit condition

ϕ (x1, 0) = 0, (15)

(ii) the electrical open-circuit condition

ϕ (x1, 0) = ϕ0 (x1, 0) , (16)

Ḋ2 (x1, 0) + J2 (x1, 0) = 0. (17)
Note that (17) is an additional property of the
piezoelectric semiconductor, which represents the
conservation of charge on the surface as the equa-
tion of the continuity of electric charge [37].

For plane waves propagating along the x1 direc-
tion, a trial solution of coupling wave (8) is assumed
as

u3 (x1, x2, t) = A3 e−kηx2 e ik(x1−ct),

ϕ (x1, x2, t) = AΦ e−kηx2 e ik(x1−ct),

n (x1, x2, t) = AN e−kηx2 e ik(x1−ct),

(18)
where i =

√
−1, k = 2π/λ is the wave number (only

real numbers are used in the calculation), λ is the
wavelength, c is the wave velocity, and η describes
the decay rate from the free surface x2 = 0 to be se-
lected with a positive real part. The coefficients A3,
AΦ , and AN , to be solved, are undetermined and
represent of the amplitude of mechanical displace-
ment, electrical potential, and the perturbation of
carrier density, respectively.

Substituting (18) into (8), we obtain a homo-
geneous linear equation on undetermined coeffi-
cients A3, AΦ , and AN as follows[
c44

(
η2−1

)
+ ρc2 − T 0

1

]
A3 + e15

(
η2−1

)
AΦ = 0,

e15k
2
(
η2−1

)
A3 − ε11k

2
(
η2−1

)
AΦ − qAN = 0,

n0µ11k
(
η2−1

)
AΦ +

[
d11k

(
η2−1

)
+ ic

]
AN = 0.

(19)
For the homogeneous linear equations described
above in (19), the sufficient condition for the ex-
istence of a non-trivial solution is that the matrix
of the determinant coefficients A3, AΦ and AN must
vanish. Therefore, η needs to satisfy
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∣∣∣∣∣∣∣
c44

(
η2−1

)
+ ρc2 − T 0

1 e15

(
η2−1

)
0

e15k
2
(
η2−1

)
−ε11k

2
(
η2−1

)
−q

0 n0µ11k
2
(
η2−1

)
d11k

(
η2−1

)
+ ic

∣∣∣∣∣∣∣ = 0. (20)

TABLE IMaterial properties of ZnO.

Parameter Value
c44 (×109) [N/m2] 43

e15 [C/m2] −0.48
ε11 (×10−11) [C2/(N m2)] 7.61

µ11 [m2/V] 1

d11 [m2/s] 0.026

ρ [kg/m3] 5700

For a given wave velocity c, (20) gives the values
of six undetermined coefficients η, which are three
pairs of complex roots that are positive and nega-
tive to each other. Due to its attenuation properties,
only three solutions with positive real parts are con-
sidered. Parameters ηj (j = 1, 2, 3) depend on the
wave velocity c and the wave number k.

Once ηj is known, we obtain a linear relationship
between A3, AΦ , and AN by substituting ηj into
(19), which can be expressed as

A3j = β1jAΦj , ANj = β2jAΦj , (21)
where the subscript j represents the case of different
ηj (j = 1, 2, 3), and AΦj is the undetermined am-
plitude. Parameters β1j , β2j denote the amplitude
ratios depending on the wave velocity and the wave
number. Therefore, the solution of the coupled wave
equation of mechanical displacement, electrical po-
tential of piezoelectric semiconductor, and density
of carrier can be rewritten as

u3 =

3∑
j=1

β1jAΦj e−kηjx2 e ik(x1−ct),

ϕ =

3∑
j=1

AΦj e−kηjx2 e ik(x1−ct),

n =

3∑
j=1

β2jAΦj e−kηjx2 e ik(x1−ct).

(22)
The amplitude ratios can be determined by (19) as

β1j =
e15

(
η2
j − 1

)
c44

(
η2
j − 1

)
+ ρc2 − T 0

1

,

β2j =
k2

q

(
η2
j − 1

)
(e15β1j − ε11) ,

(23)
for j = 1, 2, 3. Since the electric potential in vacuum
needs to satisfy Laplace equation (9), the electric
potential solution in vacuum can be expressed as

ϕ0 (x1, x2, t) = Φ0 (x2) e ik(x1−ct), (24)

where

Φ0 (x2) =
∑3

j=1
AΦj ekx2 . (25)

The above expressions (25) is a potential in vacuum.

By substituting (22) into (7), we obtain the
stress, electrical displacement, and electrical cur-
rent in the piezoelectric semiconductor half-space
as follows (with e ik(x1−ct) ignored uniformly)

T13 = ik
3∑
j=1

(
−c44β1j + e15

)
AΦj e−kηjx2 ,

T23 = −k
3∑
j=1

(
c44β1j + e15

)
ηjAΦj e−kηjx2 ,

D1 = ik
3∑
j=1

(
e15β1j − ε11

)
AΦj e−kηjx2 ,

D2 = −k
3∑
j=1

(
e15β1j + ε11

)
ηjAΦj e−kηjx2 ,

J1 = ik q
3∑
j=1

(
n0µ11 − d11β2j

)
AΦj e−kηjx2 ,

J2 = k q
3∑
j=1

(
n0µ11 + d11β2j

)
ηjAΦj e−kηjx2 .

(26)
According to (25) and substituting (24) into
(10), the electric displacement in vacuum can be
obtained

D0
2 = −ε0 k φ

0 (x2) e ik(x1−ct). (27)
From the traction-free condition of surface
stress (13) and the condition of the density of
carrier (14), we have the following equations

3∑
j=1

(c44β1j + e15) ηjAΦj = 0,

3∑
j=1

β2jAΦj = 0. (28)

From the free surface electrical short-circuit bound-
ary condition (15), we have

3∑
j=1

AΦj = 0. (29)

For non-trivial solutions of AΦj , the determinant
of the coefficient matrix from (28) and (29) must
vanish. Thus, we get the phase velocity equation of
wave propagation under the boundary of electrical
short-circuit condition.

Like the electrical short-circuit condition, accord-
ing to the free surface electrical open-circuit condi-
tion (16)–(17), we have

3∑
j=1

(
ik c e15ηjβ1j − ik c ε11ηj + q n0µ11ηj

+q d11ηjβ2j

)
AΦj = 0. (30)
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Fig. 2. (a) Phase velocity under short- and open-
circuit conditions with or without initial stress. (b)
Attenuation under short- and open-circuit condi-
tions with or without initial stress.

Now, (30) is the phase velocity equation of wave
propagation under the boundary of electrical open-
circuit condition.

3. Numerical examples

For the numerical analysis, we consider ZnO with
the material property given in Table I [19].

The phase velocity is dimensionless through in-
troducing the velocity of the Bleustein–Gulyaev
wave as the normalized velocity

c2BG = c̄44
ρ

[
1−

(
k̄215

1+ε11/ε0

)2
]
,

c̄44 = c44 +
e215
ε11
, k̄2

15 =
e215

ε11c̄44
. (31)

From (31) cBG ≈ 2841.63 m/s can be obtained.
As the wave velocity is a complex number, its real
part denotes the phase velocity and the imaginary
part determines the amplification or attenuation of
surface waves along the vibration direction. If the
imaginary part is positive then amplification occurs,
while the negative imaginary implies that the wave
attenuation occurs.

In order to investigate the effect of the bound-
ary conditions with or without initial stresses, the
electrically short- and open-circuit on the real and
imaginary parts of the phase velocity are respec-
tively studied.

Fig. 3. (a) Effect of n0 on phase velocity with ini-
tial stress (|T 0

1 | = 1 GPa). (b) Effect of n0 on at-
tenuation with initial stress (|T 0

1 | = 1 GPa).

Fig. 4. (a) Effect of initial stress on phase velocity.
(b) Effect of initial stress on attenuation.
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Fig. 5. (a) Variation of phase velocity with T 0
1 at

different wave numbers. (b) Variation of attenuation
with T 0

1 at different wave numbers.

Considering the initial stress values |T 0
1 | = 0 GPa

and |T 0
1 | = 1 GPa when n0 = 1 × 1015 m−3, it

can be concluded that the density of initial carrier
will cause dispersion and attenuation for both short-
and open-circuit boundaries in Fig. 2. Figure 2a il-
lustrates that the phase velocity first increases with
increasing wave number and then remains stable.
Meantime, at the compressive initial stress |T 0

1 | =
1 GPa the phase velocity is lower than when there
is no initial stress. The imaginary parts obtained
in Fig. 2b are all less than zero, which indicates
that the carrier density causes the wave attenuation.
Furthermore, there exists a maximum attenuation
at an especial wave number as showed in Fig. 2b. In
addition, the absolute values of both real and imag-
inary parts in short-circuit are smaller than that of
open-circuit.

By changing the density of initial carrier, the SH
wave propagation characteristics under open-circuit
condition will be further analyzed.

Figure 3 shows the effect of the density of ini-
tial carrier on dispersion and attenuation when the
initial stress |T 0

1 | = 1 GPa. It is clearly seen in
Fig. 3a that the wave velocity decreases with the
increase of n0. Figure 3b shows that the attenua-
tion will increase first and then slowly decrease as
the wave number continuously increases. With the
increase of the density of initial carrier, the largest
point of attenuation will move to the right. If we

set the initial stress equal to zero, the obtained re-
sults are completely consistent with the SH waves in
the half-space of piezoelectric semiconductor with-
out the initial stress [17].

Furthermore, by fixing the initial carrier density
n0 = 1×1015 m−3, we can get the dispersion and at-
tenuation of SH waves with different initial stresses
as follows.

Figure 4 shows that the real part changed sig-
nificantly and the imaginary part changed slightly
with the variation of the initial stress. More im-
portantly, we can find that the decreases in phase
velocity, and the increases in attenuation evenly as
the initial stress increases.

Figure 5a shows that the higher initial stress,
the smaller phase velocity will be at different wave
numbers. Moreover, in the same case of the wave
number, the phase velocity decreases slightly with
the increase of initial stress, so the curves look al-
most flat when |T 0

1 | is less than 100 MPa. Fig-
ure 5b illustrates that the initial stress has lit-
tle effect on the attenuation. Only when the ini-
tial stress larger than 1 GPa, the attenuation will
strengthen.

4. Conclusions

In this work, the propagation characteristics of
SH waves in a semi-infinite n-type piezoelectric
semiconductor structure under initial stresses are
studied. The dispersion relations are obtained us-
ing the three-dimensional linear theory of piezoelec-
tric semiconductor. The numerical example shows
that the real and imaginary parts of the wave ve-
locity under short-circuit boundary are smaller than
open-circuit boundary. The semiconductor proper-
ties cause dispersion and attenuation. As the initial
stress increases, the phase velocity will decrease and
the attenuation will increase separately. The effect
of initial stresses on phase velocity and attenuation
can be ignored when |T 0

1 | is less than 100 MPa.
Hence, the initial stress has a significant effect on
the SH wave propagation in the piezoelectric semi-
conductor structures through the modified phase
velocity. This makes it an essential parameter that
should be considered when designing semiconduc-
tor devices. The results obtained are fundamentally
useful in piezotronics when the initial stress is in-
volved.
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