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As a kind of operating condition, partial shading fault is an unavoidable occurrence in photovoltaic
power generation, causing variations in the photovoltaic system’s output power, panel current–voltage
data, and power–voltage data, thus changing the maximum power point. The maximum power point
information and the operating condition have to be known in order to make an accurate analysis and
also increase the system safety, production, efficiency, and availability due to these variations during
the analysis. In this paper, a novel customized maximum power point estimation method is proposed
to detect the maximum voltage using a different operating condition classification system based on the
common vector approach. Operating conditions consist of a standard test and three different types of
partial shading, and 100% accuracy in classification is achieved. Then, the support vector regression
is employed for the maximum voltage estimation in the classified operation condition. The data set
used was obtained from the PSIM package simulation of a 250 W photovoltaic system under different
studying conditions. The experimental results show that the proposed estimation method significantly
reduces estimation errors and outperforms conventional voltage estimation at the maximum power
point.

topics: maximum power point estimation, operating condition classification, common vector approach,
support vector regression

1. Introduction

Solar energy (SE), one of the renewable energy
resources, has some important properties such as
environmental effects, sustainability, and low raw
material cost. Therefore, SE comes to the fore-
front among fossil fuels and other renewable en-
ergy sources [1]. Conversion of SE into electrical
energy is accomplished by serial and parallel con-
nection of environmentally friendly, highly secure,
clean, noiseless, and low maintenance requiring pho-
tovoltaic (PV) panels [2].

The power produced in PV panels is greatly af-
fected by environmental factors, which customize
the operating conditions (OC). These factors are
the amount of solar irradiation (G), wind speed,
ambient temperature, and panel temperature [3].
Due to these factors, the relationship between the
power and voltage obtained at the output of the
PV panel is nonlinear, and the position of the max-
imum power point (MPP) is variable [4]. How-
ever, different OC due to variable environmental
effects cause the power at the system output to

vary. In this case, MPP tracker (MPPT) meth-
ods are applied to integrate PV systems into the
power grid and increase the efficiency of the PV
system [5]. Thus, it is ensured that maximum
power is obtained from the PV system, independent
of the OC.

Although there are many MPPT applications in
the literature, existing MPPT methods need to be
developed to optimize the performance of PV sys-
tems [6–11]. This variation in MPP concludes that
the methods of MPPT are highly dependent on dif-
ferent OCs [12]. Therefore, the MPPT method has
to be customized based on the OC classification
(OCC) for any particular PV system. One way to
customize the MPPT method is the OCC based on
the historical data of the PV system [13, 14]. In the
literature, it is possible to come across studies in
which the OCC is performed automatically accord-
ing to historical data with various machine learn-
ing (ML) methods [15, 16]. In addition, it has been
shown in various studies that this automatic classifi-
cation with ML methods is faster and more effective
than conventional manual classification [17–19].
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In recent years, MPP estimation (MPPE) meth-
ods using ML algorithms have also become popular
in addition to the commonly used MPPT methods.
In MPPE methods, a function is determined using
the historical data and the mathematical connection
to calculate the maximum voltage and power data
in the MPP. In general, the mathematical connec-
tion is established based on OCC [20]. Most current
MPPE methods are based on current–voltage (I–V )
curves in uniform solar irradiation, so many of these
methods in the literature are applicable only in the
case of uniform irradiation [21]. Thus, it is neces-
sary to use regression or estimation models which
assume that all input properties are not the same
and are not independently distributed in the I–V
curves obtained at different OC.

In this study, a novel customized MPP estima-
tion method based on automatic OCC as different
partial shading conditions (PSC) is proposed. In
the case of PSC, the power–voltage (P–V ) curves
have multiple peaks, and only one of them is the
global MPP (GMPP), while the others are local
MPPs. The GMPP cannot be detected using con-
ventional MPPT methods. The proposed MPPE
method aims to detect GMPP by OCC with a min-
imum error rate and then apply the ML algorithm
to the available historical data. In order to do the
OCC automatically, the historical data measured
for the PV system is used. The classification is per-
formed by a supervised ML algorithm called the
common vector approach (CVA) used in sufficient
data cases [22]. After the OCC, the MPP voltage
estimation at MPP is performed using the support
vector regression (SVR) algorithm, which shows
that the P–V curves have multiple peaks [23, 24].
The proposed method’s performance is compared
with other similar studies in order to show how
small the modeling errors are. So, the OCC per-
formance of the proposed method is compared with
principal component analysis (PCA) used in a sim-
ilar study in the literature, and the voltage estima-
tion performance is compared with SVR without
an OCC step and artificial neural networks (ANN).
According to the experimental studies, the OCC be-
fore the voltage estimation at MPP significantly re-
duces the error rates in estimation. The contribu-
tions of the proposed method can be summarized
as follows:

• Common vector approach is used for the OCC
in the PV system for the first time in the lit-
erature.

• Detection of the PSC is performed without
using irradiation sensors.

• Common vector approach and SVR are used
together to solve the MPPE problem for the
first time in the literature.

• For the estimation process where the I–V
curve of the PV system is used, no additional
equipment is required, so the method is cost-
effective and also time-effective.

TABLE IFL60-250MBP PV panel parameters.

PV panel parameter Value
maximum power, Pmmp 250 W
current in MPP, IMPP 8.21 A
voltage in MPP, VMPP 30.52 V
short-circuit current, Isc 8.64 A
open-circuit voltage, Voc 37.67 V

The article is organized as follows: the PV system
simulation model and the data obtained from these
simulations are given in Sect. 2; the OCC, voltage
estimation, and the experimental results of these
processes are given in Sect. 3; conclusions are given
in Sect. 4.

2. Description of the data set

In the study, two machine learning algorithms,
the CVA classification algorithm and the SVR re-
gression algorithm, were used for the proposed cus-
tomized MPPE method. CVA method is an effec-
tive algorithm that reveals the common and unique
properties that best describe an object class. SVR
is a regression algorithm that is successfully used
in nonlinear regression problems. The CVA for the
OCC and SVR for MPPE were used together in this
study.

2.1. Data acquisition

In this study, the PSIM package program, which
provides fast and accurate results in the design,
simulation, control, and analog and digital mo-
tor control of power electronics circuits, was used.
In the case studies, the monocrystalline silicon
FL60-250MBP photovoltaic panel was used. The
main parameters of the PV panel used in the
standard test conditions (STC) corresponding to
1000 W/m2 solar irradiation and 25◦C panel tem-
perature and defined as healthy conditions are given
in Table I [16].

To use the physical model of the PV panel, many
parameter inputs are required. Some parameters
can be obtained from manufacturers’ datasheets,
while other parameters need to be calculated. This
model also takes into account the variation in
light irradiance level and ambient temperature. The
tested PV panel consists of 60 PV cells connected in
series. Simulation tests were performed under STC
and three different PSCs. PV panels are connected
in series to increase the voltage. In simulations,
each I–V feature is acquired over a one-minute pe-
riod. Therefore, during 18 minutes, 18 different I–V
curves are obtained for different temperatures (T )
and solar irradiations (G) for 18 samples (S) in each
condition. For STC and each PSC, there are gen-
erated 18 different I–V curves, each consisting of
2000 points, resulting in a total of 72 different I–V
curves. A dataset containing 72 MPPs representing
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Fig. 1. (a) Different temperature (T ) values and
(b) different solar irradiation (G) values for 18 sam-
ples (S) in the STC.

the four OCs of the PV panel is created. In Fig. 1, 18
different T values and 18 different G values applied
to the PV panel in the STC are given.

When the values given in Fig. 1 are applied to the
PV panel in the STC, the I–V and P–V curves ob-
tained from the PV panel are shown in Fig. 2. Here,
the Ih_T1_G1 curve is the current–voltage curve
obtained by applying the T1 temperature G1 irra-
diation values to the PV panel in the case of STC.
In addition, the Ph_T1_G1 curve is the power–
voltage curve obtained by applying the T1 temper-
ature G1 irradiation values to the PV panel in the
case of STC. Maximum power fluctuates between
131.98 and 176.21 W due to maxG fluctuation of
40.5% and maxT fluctuation of 9.09%.

PSC is very common in PV systems installed in
urban areas. PSC can be caused by passing clouds,
nearby trees, and other buildings. In PSC, when
the entire PV array receives non-uniform irradia-
tion, the shaded PV cells absorb the electrical power
produced by the unshaded cells, leading to hot spots
that can irreversibly damage the panel. Module ir-
regularities, such as the presence of cracks in one
or more panels of the PV system, also lead to mul-
tiple peak P–V characteristic curves. To prevent
this, bypass diodes are placed parallel to the pan-
els. Bypass diodes used in PSC cause the maximum
power to drop. Thanks to the global MPPE meth-
ods in the literature (e.g., [20]), maximum efficiency

Fig. 2. Obtained (a) the current–voltage (I–V )
and (b) the power–voltage (P–V ) curves for a STC.

TABLE II

Maximum variation values of irradiance and
temperature.

Partial shading
condition

Max. temperature
fluctuation [%]

Max. irradiation
fluctuation [%]

PSC1 19.29% 48.01%
PSC2 12.20% 67.92%
PSC3 4.08% 40.00%

is obtained in PV panel systems. When the PV
panel operates in STC, only one maximum peak
occurs. However, one global peak occurs within the
multiple local peaks in the case of PSC. PSC does
not create a significant temperature difference be-
tween shaded and insulated panels, and all panels
are considered to operate at the same temperature.

In the study, three different PSCs were applied,
and in each of them, 18 temperature and 18 irradia-
tion values were applied in turn, giving a total of 54
temperature and irradiation values applied for three
PSCs. A value of 54 MPP was obtained. Of the first
sub-string of the PV panel, 12 cells were partially
shaded in PSC1. In PSC2, 12 cells of the first sub-
string and 6 cells of the second sub-string, 18 cells in
total, were partially shaded. One cell of the first sub-
string and one cell of the third sub-string, 2 cells in
total, were partially shaded in PSC3. Table II gives
the maximum variation of irradiation and temper-
ature values for PSC1, PSC2, and PSC3.

In Fig. 3, 18 different T and 18 different G
values applied to the PV panel in the PSC1 are
given. The values given in Fig. 3 have been ap-
plied to the PV panel in the PSC1 — the I–V and
P–V curves obtained from the PV panel are shown
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Fig. 3. (a) PV panel temperature and (b) solar ir-
radiation values for the PSC1.

Fig. 4. Obtained (a) the current–voltage and (b)
the power–voltage curves for the PSC1.

in Fig. 4. Here, the Ipsc1_T1_G1 curve is the
current–voltage curve obtained by applying the T1
temperature G1 irradiation values to the PV panel
in the case of PSC1. In addition, the Ppsc1_T1_G1
curve is the power–voltage curve obtained by apply-
ing the T1 temperature G1 irradiation values to the
PV panel in the case of PSC1.

Fig. 5. (a) PV panel temperature and (b) solar ir-
radiation values for the PSC2.

Fig. 6. Obtained (a) the current–voltage and (b)
the power–voltage curves for the PSC2.

In Fig. 5, 18 different T and 18 different G val-
ues applied to the PV panel in the PSC2 are given.
The values given in Fig. 5 have been applied to
the PV panel in the PSC2 — the I–V and P–
V curves obtained from the PV panel are shown
in Fig. 6. Here, the Ipsc2_T1_G1 curve is the
current–voltage curve obtained by applying the T1
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Fig. 7. (a) PV panel temperature and (b) solar ir-
radiation values for the PSC3.

temperature G1 irradiation values to the PV panel
in the case of PSC2. Also, the Ppsc2_T1_G1 curve
is the power–voltage curve obtained by applying the
T1 temperature G1 irradiation values to the PV
panel in the case of PSC2.

In Fig. 7, 18 different T and 18 different G
values applied to the PV panel in the PSC3 are
given. The values given in Fig. 7 have been ap-
plied to the PV panel in the PSC3 — the I–V
and P–V curves obtained from the PV panel are
shown in Fig. 8. Here, the Ipsc3_T1_G1 curve
is the current–voltage curve obtained by apply-
ing the T1 temperature G1 irradiation values to
the PV panel in the case of PSC3. Also, the
Ppsc3_T1_G1 curve is the power–voltage curve
obtained by applying the T1 temperature G1 ir-
radiation values to the PV panel in the case
of PSC3.

2.2. Simulation model for customized
MPPE method based on OCC

The simulation model consists of a PV panel,
smart MPP estimator, direct current-to-direct cur-
rent (DC-DC) boost converter, and a resistive load,
as shown in Fig. 9. The PV panel consists of 3
sub-arrays of 20 cells connected in series and 3
parallel bypass diodes protecting each sub-array.
The sampling period considered is equal to 5 µs.
The proposed customized MPP estimator based on
OCC provides a reference voltage, VMPP. The er-
ror signal is obtained by comparing the maximum

Fig. 8. Obtained (a) the current–voltage and (b)
the power–voltage curves for the PSC3.

Fig. 9. The block diagram of OCC based voltage
estimation at MPP in PV system with the DC–DC
boost converter.

voltage with the voltage of the PV panel, VPV.
The obtained error signal is sent to the PI con-
troller to generate control signals. The pulse width
modulation signals of active switches are obtained
by comparing the obtained control signal with
the triangle signal. The OC of the PV panel is
adjusted by controlling the output signal of the
DC-DC) converter using pulse width modulation
signals.

3. Customized MPPE based
on OCC System

The overall flowchart of the proposed method
including OCC and MPPE system is shown
in Fig. 10.
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3.1. Operating condition classification

In this paper, in order to perform automatic OCC
by a supervised learning algorithm, CVA in suffi-
cient data case is used. The feature space is decom-
posed into two subspaces, the range space, which
is called the difference subspace (B) , and the null
space, called the indifference subspace, which is the
orthogonal complement of B (B⊥) in CVA. This
method is used in problems such as multi-frame
super-resolution of images [25], agricultural yield
detection [26], power system fault detection [27],
and photovoltaic fault detection [22]. The main goal
in CVA is to find a unique common vector that pre-
serves the inherent properties of a class. The al-
gorithm is applied separately for each class, and
a common vector is obtained for each class, where
only the data of that class is used. This vector best
expresses the common aspects of the data of that
class.

The algorithm can be implemented as follows:

1. In the training phase for each class c
(c = 1, . . . , C where C is the total class
number), the within-class covariance matrices
(Sc

W ) are obtained as

Sc
W =

1

m

m∑
j=1

(xc
j − xc)(xc

j − xc)T, (1)

where xc = 1
m

∑m
j=1 x

c
j is the mean vector of

class c and m is the number of sample in a
class.

2 Eigen decomposition is applied to the covari-
ance matrices given in (1). Then, the feature
space composed of the two subspaces is ob-
tained for each class. In this feature space,
the eigenvectors to which the eigenvalues are
corresponding, the smallest ones nearly close
to zero, span the indifference subspace. These
eigenvectors are used for feature extraction.

3 A common vector for each class is obtained by
projecting the mean vector onto the indiffer-
ence subspace as

xc
com = xcEc, Ec =


↑

... ↑

ec1
... eck

↓
... ↓

 , (2)

where k denotes the indices of the eigenvectors
which span the indifference feature subspace
of the c-th class covariance matrix.

4 In the test phase, the data (xtest) which will
be classified is projected onto the indifference
subspaces of all of the classes one by one, and
a remaining vector (xc

test, rem) for the test data
is obtained in each class, i.e.,

xc
test, rem = xtestE

c. (3)

Then, the distances between the class com-
mon vectors and the remaining vector of the
test data in each class are computed as

class = argmin1≤c≤C
∣∣∣∣xc

test, rem − xc
com

∣∣∣∣2.
(4)

And the data is assigned to the class which
the distance is min.

The proposed novel supervised OCC method that
uses CVA is given in Fig. 11. The original dataset
contains I, V , and P values measured at MPP of
four different OCS, designated as one STC and
three different PSCs. Data are measured for each
OC for 18 min for different PV temperatures and
different solar irradiation. Thus, 72 I–V and 72 P–
V curves are obtained for four OCs in total. The
MPP coordinates of each of these 72 curves are ex-
tracted using the PSIM SIMVIEW model. The I,
V , and P (power) values at the global MPP for
each of the I–V and P–V curves are used for the
classification of the PV faults corresponding to the
OC. An object from this dataset has a 1 × 3 di-
mensional vector form. The original dataset is par-
titioned into two sets, the training set, and the test
set, using k-fold cross validation at the beginning of
the classification system. In the proposed method,
the k value is taken as 10. While the training set
contains I, V , P data samples at MPP for speci-
fied OC, the test dataset contains data samples of
which the OCs are not exact. By applying CVA to
the training dataset, a common vector best describ-
ing OC is obtained and used for the OCC in the
testing process.

In this OCC model, the data is very sensitive to
changes in temperature and irradiation. Thus, it is
hard to distinguish and classify different OCs, such
as STC and different PSC. In this study, for the first
time in the literature, an OCC model that applies
CVA for extracting features and performs classifica-
tion on the data obtained from MPPs is proposed.
In the OCC model using CVA, 100% classification
accuracy is achieved both in the training process
and in the testing process in the OCC. The confu-
sion matrices for both the training dataset and the
test dataset are also given in Fig. 12.

Fig. 10. Overall flowchart of the proposed cus-
tomized MPP estimation method based on OCC
system.
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Fig. 11. The OCC process of a PV panel by ap-
plying CVA.

Fig. 12. Confusion matrices for (a) the test
dataset, (b) the training dataset.

Data projections on the CVA feature subspace of
the test dataset and of the training dataset can be
seen in Figs. 13 and 14, respectively. As can be seen
in Fig. 13, the proposed MPPE method can entirely
distinguish the OC accurately.

In the case of partial shading diagnosis, the
OCC results obtained with CVA and PCA through
the analysis of the maximum power point (MPP)
coordinates are both 100%. However, Table III

Fig. 13. Projection of the testing MPP coordi-
nates dataset onto the CVA subspace.

Fig. 14. Projection of the training MPP coordi-
nates dataset onto the CVA subspace.

summarizes the main advantages and limitations of
the diagnosis method proposed in this paper and
the method developed in [28] using PCA.

3.2. Voltage estimation at MPP

In this paper, the voltage estimation at MPP was
performed for PV panels operating on one STC and
three different PSCs. When the system operates in
PSC, it has a P–V curve with multiple peaks. SVR
was used to determine the global MPP point and
estimate the voltage at that point.

Although the support vector method was origi-
nally introduced as an algorithm for classification
and support vector machines (SVM), it is also used
in SVR regression problems. The difference between
these two support vector methods is that while
SVM labels the data, SVR continuously estimates
the data value for the input data. In other words,
while SVM operates on discrete data values, SVR
operates on continuous data values. Support vec-
tor methods have high generalization performance
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TABLE IIIOverview of the proposed methods for detecting OC (partial shading) in PV systems.

Method I–V Curve analysis (PCA) [28] MPP analysis (CVA)
advantages • sensitive to fault severity • sensitive to fault severity

• suitable for small PV plants • in terms of amount of observations used
• adapted with online I–V tracer – cost effective

– less memory storage
• earlier fault detection allowing
an optimized maintenance

limitations (for large • less plants convenient • depending on the training dataset size and variety,
scale PV plants) • additional cost with I–V tracer it achieves efficient and accurate fault detection

• sensitivity to I–V curve quality
used variables • current, voltage, and power (I, V, P ) • current, voltage and power at MPP (IMPP, VMPP, PMPP)

• more observations for each variable • observations only at MPP

Fig. 15. Data transformation from (a) a nonlin-
ear input space into (b) a linear higher dimensional
space.

and are efficient in solving classification problems.
The most prominent and important advantage of
SVR methods is that they transform the classifica-
tion/regression problem into a quadratic optimiza-
tion problem and solve it. Thus, the number of oper-
ations for solving the problem in the learning phase
is reduced, and a faster solution is achieved com-
pared to other methods [29]. Due to this feature,
these methods provide a great advantage, especially
in large datasets. In addition, since support vec-
tor methods are optimization-based, they are more
successful than other methods in terms of classifi-
cation/regression performance, computational com-
plexity, and usability [30].

The purpose of SVR analysis is to determine
a mathematical function to accurately predict de-
sired outputs (ysinR) of a given dataset D =
{(xs, ys)| ∈ {1, 2, . . . , N}, where xs are the in-
puts. Regression problems can be classified as linear
and nonlinear regression problems. SVR was mainly
developed for the solution of nonlinear regression
problems. The SVR method transforms the training
data from the input space to a higher dimensional
space with the help of a nonlinear function in or-
der to solve a nonlinear regression problem. Thus,
a nonlinear problem in a lower dimension trans-
forms into a linear problem in a higher dimension
(Fig. 15).

Then, it applies linear regression in this high di-
mensional space. The mathematical representation
of the obtained linear function to find the best re-
gression is as follows

f (x,w) = b+

N∑
s=1

wsφ (xs) + b = b+wT φ (x) ,

(5)
where w ∈ Rm is the model parameter vector and
b ∈ R is the vertical axis deviation term. Perform-
ing linear regression in high dimensional space, the
objective function of SVR generally consists of min-
imizing ε-insensitive loss function Lε and parame-
ters representing the model. This is expressed by

min J (w, b) = 1
2

N∑
s=1

|w|2 + C

N∑
s=1

Lε

(
ys, f (xs)

)
,

(6)
where C ∈ R+ is a constant.

In this paper, the instantly measured historical
data of PV systems are used in order to perform
the voltage estimation at MPP in case of a speci-
fied OC of the PV systems that operate on differ-
ent OC, such as one STC and three different PSCs.
The original data is partitioned into two as a train-
ing set and a test set since SVR is a supervised re-
gression algorithm. The training dataset consists of
data samples that have a 1 × 3 dimensional vector
form containing I, V , and P values of a PV sys-
tem. The voltage values at MPP are known for the
data samples in the training set. The voltage esti-
mation model is constructed using the training set.
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TABLE IVComparative VMPP estimation results of performance metrics.

Performance
criteria

Proposed OCC based
MPP estimation

SVR ANN

MSE RMSE MSE RMSE MSE RMSE
OC1 6.7470× 10−5 0.00824 0.1765 0.4200 0.00391 0.05886

OC2 2.3580× 10−6 0.00154 0.2155 0.4635 0.00504 0.05921

OC3 2.0747× 10−5 0.00458 0.3174 0.5624 0.00537 0.06383

OC4 1.6110× 10−5 0.00400 1.7694 1.3301 0.00286 0.05022

Fig. 16. The regression model construction step of
the proposed MPP estimation method.

The test set consists of data samples that have the
same form as the data samples in the training set,
with only the MPP values not being exact. The volt-
age estimation at MPPs is performed by applying
the test data sample to the constructed regression
model. The flow chart of the proposed regression
model is given in Fig. 16.

The error results of this voltage estimation at
MPPs are obtained in terms of root mean squares
(RMSE) and mean square error (MSE) and are
given in Table IV.

The voltage estimation performance of the pro-
posed method is compared with the voltage es-
timation performance of SVR and ANN. As the
performance measure, indicators MSE and RMSE
are used. The experimental results given in Table
IV show that the proposed model yields MSE and
RMSE that are better than those of the SVR and
ANN models.

4. Conclusions

In this study, a novel customized MPPE method
based on OCC that estimates the voltage at MPP
for a PV system is proposed. In order to provide
optimal performance for a PV system, the system
must operate at MPP. Many method proposals can
be found in the literature to find the MPP of a PV
system. Since varying environmental factors cause
changes in the OC of the PV panel, the power pro-
duced by the system also varies. There is only one
peak in the P–V curve to the STC of the PV sys-
tem, and that is the global MPP. However, multi-
ple peaks occur in the P–V curve for a different
OC, only one of which is the global MPP, while
the others are the local MPPs. In this case, the
OC has to be detected, and the method to find the
MPP has to be customized in accordance with the
varying OC. In this paper, a novel MPP estimation
method based on OCC is proposed. The OCC is
performed with CVA using historical data obtained
over 18 min for each of the PV systems operating
under different OC for different panel temperatures
and different solar irradiation. Then, the voltage es-
timation at MPP is performed using the instantly
measured historical data of the panel in the OCC.
The OCC is performed with 100% accuracy in the
proposed customization MPPE method that uses
CVA, and the MPP estimation error rates are signif-
icantly reduced compared to the conventional meth-
ods used to find the MPP of the PV system.
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