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In the presented paper theoretical and numerical investigations of a coupled slender electro-mechanical
system are demonstrated. The object of study comprises a core beam with both ends preventing natural
longitudinal displacements and a “smart” piezoceramic material perfectly bonded to the beam’s top
and bottom surface. The problem is formulated upon Hamilton’s principle, and the slenderness of the
system classifies it into the Euler–Bernoulli beam theory. In order to study the system buckling behavior,
the in-plane prescribed displacement of one of the supports is specified. Moreover, transversal vibrations
related to the system’s rectilinear shape are investigated. Depending on the actuator’s poling direction,
once the electric field is applied, based on its vector direction, it is possible to induce axial piezo force or
force the system to bend. It is commonly used in precision engineering, especially in micropositioning,
but also in shape and vibrations control and stability enhancement. In this work, the influence of the
in-plane stress induction on system buckling behavior and transversal vibration control is studied in
detail. Obtained numerical results show that the induced in-plane stress allows to control the system’s
vibrations in a significant manner. Moreover, by forcing the smart materials to induce the axial tensile
force in the system, one may considerably increase buckling load.

topics: sandwich beam, buckling, dynamic response modification, piezoelectric actuation

1. Introduction

Since the fall of the 20th century, theoretical, nu-
merical, and experimental investigations concerning
the adjustment of static and dynamic response in
slender beam and column structures using smart
materials (mainly shape memory alloys and piezo-
electric actuators) have been the subject of interest
for many researchers. One of the fundamental works
presenting the influence of piezoelectric (PZT) ac-
tuation on static and dynamic response in a slen-
der pinned-pinned system are these presented by de
Faria [1] as well as Zehetner and Irschik [2]. The
presented results and discussion lead to a state-
ment that the PZT actuation may be efficiently
used in systems with both ends preventing longitu-
dinal displacements, in order to enhance their crit-
ical load, modify transversal vibrations frequency,
as well as revert the rectilinear shape under applied
external load. Srinivasan et al. [3] presented experi-
mental investigations concerning the application of
shape memory alloy (SMA) actuators on a can-
tilever beam in order to control its vibration fre-
quency. Stability and linear and nonlinear transver-
sal vibration control via piezoelectric actuation in
a two-member column with a spring subjected to
Euler’s load was presented in [4]. It was shown
that the location of the spring connection and its

stiffness have a crucial influence on the system sta-
bility and vibrations, however, induction of residual
force makes it possible to change the magnitude of
maximum load and control natural and nonlinear
vibration frequency.

The main purpose of this work is to show a the-
oretical and numerical approach concerning the ac-
tive/passive enhancement of critical load and mod-
ification of natural frequency in an inhomogeneous
clamped-pinned Euler–Bernoulli beam, where both
ends are restrained against longitudinal displace-
ment. The inhomogeneity of the studied system re-
sults from the PZT material perfectly bonded to the
top and bottom surface of an elastic, passive core
aluminum alloy layer. As soon as an electric field
is applied to the PZT material, depending on the
polarization of patches and the electric field vector,
the material is forced to expand or contract. Hence,
in-plane stress in the system is generated, which in
fact has a crucial influence on modifying the sys-
tem’s critical force and natural vibration frequency.

2. Physical model

The physical model of the studied system is pre-
sented in Fig. 1. Buckling load is achieved via one of
the supports prescribed displacement δ. The magni-
tude of force P may then be easily determined from
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Hooke’s law. Before the load P is applied, the beam
has an ideally rectilinear shape. Moreover, geomet-
rical and physical imperfections are neglected. The
slenderness of the system allows the application the
Euler–Bernoulli beam theory, which was applied in
many studies presented inter-alia in [5]. The PZT
layers are bonded symmetrically in reference to the
supporting bonds, and it is assumed that the elec-
tric field is evenly distributed along the piezoseg-
ment. The first and the third segment are identical
in terms of mechanical and physical properties. The
width B of piezo elements is exactly the same as the

width of the core passive layer. The effect of piezo
layers’ delamination and the thickness of the adhe-
sive layer between the core and actuators are not
taken into consideration.

3. Mathematical model

In order to describe the problem of transversal vi-
brations in the three-segmented system, the follow-
ing system of equations, which was formerly derived
on the basis of Hamilton’s principle for n-segmented
beam in [6], is used
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where Ei denotes the Young’s moduli of i-th seg-
ment [N/m2], Ji is the moment of inertia [m4], Ai —
cross-section area [m2], Pu — axial force from the
prescribed support displacement [N], Fr — axial
residual force induced by PZT actuation [N], and
ρi — mass density [N/m3].

The axial residual force for the three-segmented
system on the basis of [6] may be expressed as

Fr =
2b e31V

1 + η
(

L
L2
− 1
) , η =

EbAb + EpAp

EbAb
, (3)

where b stands as piezoceramic width [m], e31 is the
piezoelectric constant [C/m2], V — controlled volt-
age [V], L— total beam length [m], L2 — piezoseg-
ment length [m], “b” subscript denotes core beam
element, and “p” subscript corresponds to the PZT
element.

In the considered system, the total axial force can
be expressed in the form of two components, there-
fore, the notation of (1) describing the transverse
vibrations of i-th segment can be simplified to the
following differential equation
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where P is the sum of prescribed support displace-
ment Pu [N] and induced residual force Fr [N].

The sign for the load P in (4) depends on the
direction of support displacement δ and the induced
residual force Fr, which depends on the electric
field vector direction. A system of geometrical and
natural boundary conditions, including continuity
conditions between segments, for i = 1, 2, is
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Due to the geometrical non-linearity occurring in
the system, approximate solutions concerning crit-
ical load enhancement and modification of natural
vibration frequency are obtained using the modified
Lindstedt–Poincaré method (see [7]), which belongs
to the perturbation techniques [8].

Fig. 1. Scheme of three-segmented beam with
piezo patches located symmetrically between
beam’s ends.

78



Transversal Vibrations Control and Load Bearing Capacity. . .

4. Numerical simulations

Results in this section are presented using non-
dimensional form, taking into account the following
substitutions
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L
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, (11)
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Geometry of a system is related to the total length
of the beam, namely b = B/L = 0.05, hb =
Hb/L = 0.0075, hp = Hp/L = 0.00125. For the
core beam, an aluminum alloy is adopted, for which
the Young’s modulus is equal Eb = 70.0 GPa
and ρb = 2720 kg/m3. Two different PZT actua-
tor materials are taken into account. According to
the manufacturer data, the P-41 material [9] is de-
scribed with following constants: Ep = 83.33 GPa,
ρp = 7450 kg/m3, piezoelectric constant necessary
to determine the piezoelectric force (F = 2be31V )
is equal d31 = 1.00× 10−10 C/N and maximum ad-
missible electric field before material depolarization
is Emax = 2.0 kV/mm. The second studied mate-
rial is NEC46 [10], for which Ep = 76.923 GPa,
ρp = 7700 kg/m3, d31 = 1.30 × 10−10 C/N, and
Emax = 5.5 kV/mm. The influence of piezoseg-
ment length on the non-dimensional first natural
frequency ω0 versus external load pu is presented
in Fig. 2. In Fig. 3 external load and first natural vi-
bration frequency control via maximum admissible
piezoelectric actuation is shown for two piezoseg-
ment lengths l2 = 0.25 and 0.75.

Piezoelectric force f for both actuators is re-
lated to the critical load of a pinned-pinned
beam (p = π). Hence, for the P-41 material,
it obtains fmax = ±1.310π, whereas for NEC-46,
fmax = ±2.379π. It should be noted that the

Fig. 2. The influence of piezosegment length on
the non-dimensional first natural frequency ω0 ver-
sus external load pu in the nonactuated system
f = 0.

Fig. 3. Modification of non-dimensional first nat-
ural vibration frequency ω0 versus external load pu
under piezoelectric actuation.

residual force induced in the system fr depends not
only on the piezoelectric force f but also on the re-
lation of axial and bending stiffness and the length
of the piezosegment (see (3)).

On the basis of the presented results, one can
state that for the P-41 actuators, one obtains higher
values in the pu–ω0 relationship in comparison to
the NEC-46. The first natural vibration frequency
ω0 depends on the relation of piezosegment bending
stiffness and the mass distribution per unit length
of the beam. Hence, an irregular course of curves is
obtained, when for the core beam l2 = 0 at pu = 0,
the natural frequency is higher than in the studied
systems (for P-41 — l2 < 0.75 and for NEC-46 —
l2 < 1.0). When the maximum admissible voltage is
applied to the actuators (see Fig. 3), it is clearly vis-
ible that the greater its length, the higher the range
of possible critical load and vibrations frequency ad-
justment. By inducing in the system tensile resid-
ual force for the P-41 material at l2 = 0.75, one
can increase the critical load by 13.06%, whereas for
NEC-46 by 39.93%, in regard to the non-actuated
system. In the case of induction of tensile resid-
ual force in the system for l2 = 0.75 with NEC-
46 actuators, the ω0 may be adjusted by 39.08%,
whereas for a compressive residual force, ω0 may be
altered by 79.35%, in regard to the non-actuated
system. For the identical length of P-41 actuators,
one gets a 12.83% change for tensile residual force
and 14.84% for the compressive one.

5. Conclusions

The numerical analysis performed in this paper
shows that the geometrical and physical parame-
ters of piezoceramic actuators have a crucial influ-
ence on the pu–ω0 course of curves and the resulting
residual force induced in the system. The higher the
piezosegment length, d31 constant, and admissible
electric field, the greater the range of pu–ω0 rela-
tion adjustment. Hence, it has been shown that the
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piezoelectric actuation may be used as an efficient
tool for the adjustment of critical load as well as
natural vibrations frequency in slender beam sys-
tems.
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