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The influence of the PT -symmetry breaking on the chaotic properties of the coupled magnetic pendu-
lums is investigated. The PT -symmetric system is described by the classical approach using coupled
second-order nonlinear differential equations. Using the damping coefficient A as the control parameter
for the PT -symmetry and evaluating the two-dimensional basin plot of the pendulum’s motion, the
fractal of measure for unbroken PT -symmetry is calculated to be Df ' 2 and changes to Df ' 1.25
for broken symmetry.

topics: parity–time (PT ) symmetry

1. Introduction

Deterministic chaos is a simulation of randomness
and unpredictable behavior of a nonlinear dynamic
system. Turing [1], Poincare [2], and Birkhoff [3]
were the first to observe that some mathematical
models show a sensitive dependence on initial con-
ditions. But it was James Jorke [4] who defined
chaos and fully described its properties. Later, Ed-
ward Lorenz [5] made a major contribution, expand-
ing the understanding of deterministic chaos. This
theory has evolved and branched out into new re-
search fields such as weather analysis, ecology dy-
namics [6], self-assembly processes [7], edge of chaos
theory [6], and complex dynamical systems.

To simulate deterministic chaos, one could experi-
ment with, for example, a magnetic pendulum [8] or
derive its mathematical model [9–11] using classical
mechanics and run numerical simulations. Tran’s
work [8] confirmed the deterministic properties of
the system by matching the experimental mea-
surements with the theory using Poincare sections.
Christian [9] has demonstrated that chaos can be
visualized with pendulum’s attractors called basins.
Kwuimy’s analysis [10] has indicated the influence
of the damping control parameter on the chaotic
motion of the pendulum. Another way of investi-
gating chaos is by the mechanical coupling of two

pendulums with a spring. Dudkowski [12] calcu-
lated that the stability of the coupled pendulum
basin depends on the values of the system’s control
parameters.

Some dynamic systems can also exhibit a partic-
ular form of symmetry. Parity–time (PT ) symme-
try is a property of a system that has a Hamilto-
nian and is not necessarily energy conserved. Ben-
der [13–15] introduced this concept using classical
physics. Further studies of PT -symmetry and oscil-
lators have been done by Tsoy [16]. Tsoy determined
that for the oscillator to reach a stationary state, its
energy gain and energy loss must be well balanced.
Such property has many useful applications in other
fields of physics. Further studies have been done in
classical mechanics [16], energy harvesting [17, 18],
electronics [19], and optics [20].

The objective of this paper is to combine the
PT -symmetry property with complex pendulum
dynamics to determine the relationship between
PT -symmetry and chaos. To answer this question,
a simple classical physics model [16, 21], such as
a spring-coupled magnetic pendulum, was made to
numerically calculate the properties and conditions
for broken/unbroken PT -symmetry. This model is
new as it inherits and combines all the features of
previous studies [9, 16].
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2. Model

A spring-coupled magnetic pendulum is a device
that consists of two pendulums connected to each
other by a spring. Both pendulums are suspended
to move freely in the x–y plane. The bob’s motion
is also influenced by any number of magnets po-
sitioned on the x–y plane at some distance from
the stationary position of the bob. The formulae
used to describe the magnets distribution in the x–y
plane are xi = R cos(2πi/n) and yi = R sin(2πi/n),
where i is a magnet count, R is the radius of a circle,
and n is the maximum number of magnets. In the
model, the distribution of the position of the mag-
net is placed on the circumference of a circle. The
centroid of distribution coincides with the pendu-
lum suspension position in the x–y plane. For each

pendulum, the position and distribution of the mag-
nets in the x–y plane are made in such a way that
the magnets’ distances are equal.

Some assumptions are made to simplify this
model and to make it easier to derive the spring-
coupled second-order differential equations of the
magnetic pendulums. It is assumed that the pendu-
lum experiences mechanical friction, and the aero-
dynamic drag on the bob is considered negligible.
The spacing between the magnets in the x–y plane
is much smaller than the pendulum’s length. The
height of the bob from the x–y plane and their x–y
coordinates values are small compared to the length
of the pendulum.

The equations of motion for a spring coupled
magnetic pendulum have the form of

ẍa+Aẋa+Bxa+

n∑
i=1

 C(xa−xia)(
(xa,i−xa)2 + (ya,i−ya)2+h2

) 3
2

+D(xa−xb)

[
1−
√

(x0b − x0a)2+(y0b − y0a)2√
(xb − xa)2+(yb − ya)2

]
=0,

(1)

ÿa+Aẏa+Bya+

n∑
i=1

 C(ya−yia)(
(xa,i−xa)2 + (ya,i−ya)2 + h2

) 3
2

+D(ya−yb)

[
1−
√
(x0b−x0a)2 + (y0b−y0a)2√
(xb−xa)2 + (yb−ya)2

]
=0,

(2)

ẍb−Aẋb+Bxb+
n∑

i=1

 C(xb−xib)(
(xb,i−xb)2 + (yb,i−yb)2 + h2

) 3
2

+D(xb−xa)

[
1−
√

(x0b−x0a)2 + (y0b−y0a)2√
(xb−xa)2 + (yb−ya)2

]
=0,

(3)

ÿb−Aẏb+Byb+
n∑

i=1

 C(yb−yib)(
(xb,i−xb)2 + (yb,i−yb)2 + h2

) 3
2

+D(yb−ya)

[
1−
√

(x0b−x0a)2 + (y0b−y0a)2√
(xb−xa)2 + (yb−ya)2

]
=0.

(4)

The definitions of the coefficients are A = f/m,
B = g/L, C = k/m and D = ks. The symbols f
andm are defined as the drag constant and the mass
of the bob, respectively. The g-factor is the gravity
acceleration and L — the pendulum’s length. The
constant k is the magnetic coefficient and ks is the
spring coefficient. The position of i-th magnet for
the pendulum a and b is (xa,i, ya,i) and (xb,i, yb,i),
respectively; h is defined as the height between the
bob’s z position and the x–y plane at rest.

The initial conditions for pendulums are
xa(0) = x0a ya(0) = y0a,

ẋa(0) = 0, ẏa(0) = 0,

xb(0) = x0b, yb(0) = y0b,

ẋb(0) = 0, ẏb(0) = 0. (5)

3. Results

A direct analytical approach for this model is very
challenging, if not impossible. The first and obvious
approach is to linearize the nonlinear components

(magnetic and spring force) in (1)–(4). This can
be done with the Taylor series expansion method,
keeping only the constant and the first term. One
can then use the modified linearized system to find
the PT -symmetric conditions that are only depen-
dent on the values of A, B, C, and D. Another
common method is to use the Jacobian matrix
method, which linearizes the nonlinear system at
critical points. However, quick calculations showed
that both methods are incorrect because they yield

Fig. 1. A 3D plot of values for input parameters
A, C, and D.
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Fig. 2. Basins of pendulum a and b for A values of 0.0, 0.6, 0.7, and 0.8. Note: B = 0.98, C = 1.6, and
D = 1.0.

inconsistent results. Therefore, the Monte Carlo ap-
proach is being considered. The new numerical algo-
rithm relies on the Fourier transform and convolu-
tion calculations. The following, accordingly listed
conditions apply in the numeric

1. the real and imaginary part of the convolution
taken over the product composed of the x-axis
(y-axis) amplitudes of the pendulums a and b
should be less than one,

2. the product of the Fourier transform for
each pendulum’s amplitude in the x-axis (y-
axis) and the periodogram spectrum ampli-
tude must be all negative,

3. the variance of the Fourier transform in the
x-axis (y-axis) amplitude should be less than
one.

To evaluate the performance of this algorithm,
a Bender analytical result [15] is used for com-
parison. The numerical results are in close agree-
ment with the analytical calculation for the Ben-
der’s system.

When searching for PT -symmetric unbroken con-
ditions using the Monte Carlo method, a range of
values for A, C, and D are collected. Figure 1 sum-
marizes the calculated values for B = 0.98 that sat-
isfy the numerically defined symmetry conditions.

Using the obtained data (A = 0.2, C = 1.6, and
D = 1), a plot of the position of the a and b pendu-
lums (both x and y) is made to verify the numerical
method. A constant amplitude for both pendulums
in the x-axis for the entire time spectrum suggests
that, according to Bender’s theory, the input and
output of energies are in the equilibrium phase and
there is no net gain or loss in energy. Therefore, the

Fig. 3. Fractal measure Df for range of A.

coupled system is PT -symmetric on the x-axis. On
other hand, the y-axis shows a small gain in am-
plitude for both pendulums, even when their ini-
tial y-axis values were set to zero. It could be due
to numerical noise or the transfer of energy from
one axis to another. The results demonstrate the
effectiveness of PT -algorithm search in screening
out the values that create an unbroken symmetry
system.

Figure 2 shows the basins of attractors for pen-
dulums a and b. The expectation for unbroken sym-
metry is that the basin for each pendulum should
be almost identical due to the near-exact amplitude
oscillations, and the numerical plots confirm that.
Figure 2e–h (A = 0.7 and A = 0.8) shows the signif-
icant difference in the basin plot of both pendulums.
This is due to the broken PT -symmetry, therefore
there is an energy gain of the system that can be
observed in the amplitude plots.
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Figure 3 illustrates the relationship between the
fractal dimension (Df ) of basins and the PT sym-
metry, where Df is the Minkowski–Bouligand di-
mension. It is commonly referred to as the box-
counting dimension and is defined as

Df = lim
ε→0

ln
(
N(ε)

)
ln
(
1
ε

) . (6)

The symbol N(ε) is the number of boxes and ε is
the side length required to cover the pixels of an
image. The obtained Df values are nearly identical
in the spectrum range of A. During the unbroken
PT -symmetry condition phase, the fractal dimen-
sion remains near the value of 2. Then Df becomes
' 1.25 for the broken PT -symmetry condition.

4. Conclusion

The numerical analysis of the spring coupled
magnetic pendulum system shows that it is possi-
ble to determine the PT -symmetry of a strongly
nonlinear coupled differential system without re-
lying on analytical methods. Using Bender’s sim-
ple coupled model [15] as a reference, a numeri-
cal approach can be deduced to verify a system
of greater complexity. The conditions outlined in
the paper are sufficient to numerically determine
whether the system is PT -symmetric or not. Using
this method, the values of input parameters A, C,
and D can be determined to make the coupled sys-
tem PT -symmetric. The numerical analysis demon-
strated that the Minkowski–Bouligand dimension
Df for unbroken PT -symmetry is approximately 2
and changes to ∼ 1.25 for broken symmetry.
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