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We determined the physical properties of the muon cation (M+
2 ). The energy parameters of the Hamil-

tonian (the molecular orbital energy ε and the hopping integral t) were calculated by the variational
method taking into account the Wannier’s functions consisting of 1s Slater-type orbitals. We calculated
the equilibrium distance R0 between the cores, the ground state energy E0, and the dissociation en-
ergy ED. Then we estimated the harmonic oscillation energy ωH

0 and the anharmonic Morse energy ωM
0 .

We also determined the rotational constant B0 and the values of the muon–phonon coupling functions,
gε and gt. In the paper, we have demonstrated the influence of the environment on the properties of
the muon cation in a balanced gain and loss energy scheme, where γ as energy, associated with the
cation–environment interaction. We have shown that the cation may be in a metastable state. In the
system, there is no the PT -symmetry breaking of the Hamiltonian, because t > γ.

topics: muon cation, physical properties, stable and metastable state, PT -symmetry

1. Introduction

The physical properties of molecular systems can
be theoretically determined with amazing accuracy.
For this purpose, one can use the Schrödinger equa-
tion [1–4], its relativistic version — the Dirac equa-
tion [5, 6], and quantum electrodynamics [7, 8].
In most cases, the literature describes stable
molecules in which chemical bonds are formed by
electrons (also stable particles). In fact, such sys-
tems are stable and disintegrate under certain con-
ditions as a result of interaction with the environ-
ment.

In the case of exotic molecules where chemical
bonds are formed by negatively charged muons, the
situation is different because muon has the finite
lifetime τµ = 2.197034 × 10−6 s=1.00427 × 1011 τ0,
and τ0 ' 2.418 × 10−17 s is the unit of time in the
atomic system of units [9]. It should be noted that
muon differs from an electron by the finite lifetime
and the mass, as mµ is about 207 times greater
than the mass of the electron (me) [10]. So a muon
is often called a heavy electron.

Note that for several decades, research on exotic
systems containing negative muons has attracted
the attention of the physics community due to the
potential of muons to catalyze nuclear fusion pro-
cesses (the first experimental observation was done

in 1956 by Alvarez et al. [11]). Muon-catalyzed
fusion is a process, which enables the release of nu-
clear energy at low temperatures (e.g. room temper-
ature), and could in the future be practically used
as a direct energy source or as a source of neutrons
in the hybrid reactors. Muon entering a mixture of
light elements exposed to a negative muons beam
initiates a complicated chain of atomic and molecu-
lar processes. These processes occur in 0.45×10−6 s
(faster than the time of the muon decay) [12]. The
muon becomes free after a fusion event, so once the
muon is released, it can initiate the next fusion re-
action cycle (acts as a catalyst) [13]. Each muon
catalyzed fusion releases the energy of 17.6 MeV [9].
Various theoretical methods of atomic and molec-
ular physics are used in the Muon-Catalyzed Fu-
sion (MCF) studies, e.g. hyperspherical expansion
method [14] or variational methods [15, 16]. It is
worth noting that due to the existence of muon
molecules, it is possible to study nuclear reactions
occurring at extremely low energies [17], which can-
not be achieved in collision experiments [18].

In the presented paper, we calculated all impor-
tant physical quantities characterizing the state of
the muon cation M+

2 . We take into account the
Cu+2 cation [19], in which an electron from the va-
lence shell was replaced by a muon. We treat atomic
nuclei together with all the remaining electrons as
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the cores of the muon cation. In this case, the muon
mass is significantly smaller than the core mass,
which allows the Born–Oppenheimer approxima-
tion to be used [20]. We characterized the inter-
action of the muon cation with the environment
in the framework of non-Hermitian quantum me-
chanics [21–25]. To describe the physical system,
we used the Hamiltonian which is invariant with
respect to the PT -symmetry. It is the new formal-
ism that allows to study of the interaction of the
physical system with the environment in a balanced
gain and loss energy scheme. Numerical calculations
were carried out at the level required in quantum
chemistry. This means that it will be possible to
experimentally verify the obtained results.

2. Formalism

The total energy of the muon cation is given by
the formula ET = Ep + Eµ, where Ep = 2

R , rep-
resents energy of core–core repulsion (R is the dis-
tance between the cores R = |R|). The energy of the
muon ground state is denoted by Eµ and it should
be calculated by using Hamiltonian [26–32]

Ĥµ = (ε+iγ) n̂1 + (ε− iγ) n̂2 + t
∑
σ

(n̂12σ+n̂21σ) ,

(1)
where n̂j =

∑
σ n̂jσ, n̂jσ=ĉ

†
jσ ĉjσ, and n̂ijσ=ĉ

†
iσ ĉjσ.

The symbol ĉ†jσ (ĉjσ) represents the creation (an-
nihilation) operator of the muon state on j-th core
and the spin σ ∈ {↑, ↓}. The Hamiltonian parame-
ters are

ε=

∫
d3rΦi (r)

(
−∇

2

mµ
− 2

|r−R|

)
Φi (r) , (2)

t=

∫
d3rΦi (r)

(
−∇

2

mµ
− 2

|r−R|

)
Φj (r) , (3)

where mµ = 206.768268me [10]. The symbol Φj (r)
stands for the Wannier function. It can be con-
structed using the Slater orbitals as [29, 33, 34]

Φsj (r) = A
(
φsj (r)−Bφsl (r)

)
, (4)

where the parameters A and B ensuring function
normalization are expressed by the following for-
mulas

A = 1√
2

√
1+
√

1−S2
s

1−S2
s

, B = Ss

1+
√

1−S2
s

. (5)

Additionally Ss =
∫
d3r φs1(r)φ

s
2(r), where the

1s Slater-type orbital has the form φsj(r) =√
α3
s/π exp(−αs|r−Rj |), and αs is the variational

parameter (the inverse size of orbital). The symbol
γ in (1) represents the cation–environment interac-
tion energy.

It is worth noting that the integrals defined in (2)
can be calculated analytically. In particular, we
have

ε = A2
(
1 +B2

)
ε′ − 2A2B t′, (6)

t = A2
(
1 +B2

)
t′ − 2A2B ε′, (7)

where

ε′ =
1

mµ
α2
s − 2αs −

2

R
+ 2

(
αs +

1

R

)
e−2αsR,

(8)

t′ =
1

mµ
α2
s e
−αsR

(
1 + αsR−

1

3
(αsR)

2

)
−4αs e−αsR

(
1 + αsR

)
. (9)

The atomic overlap is given by

Ss = e−αsR

(
1 + αsR+

1

3
(αsR)

2

)
. (10)

The eigenvalues of the Hamiltonian Ĥµ have the
form

E1 = E2 = ε−
√
t2 − γ2, (11)

E3 = E4 = ε+
√
t2 − γ2. (12)

The lowest energy value is E1. It can be easily seen,
that the ground state is degenerated, this being re-
lated to the existence of the muon spin. The degen-
eration can be removed by the constant external
magnetic field applied to the cation.

3. Results

3.1. Physical state of the isolated muon cation

In Fig. 1a, we have plotted the total energy of the
muon cation ET = E1+

2
R as a function of the dis-

tance R between the cores. The ground state energy
E0 = E1 +

2
R0

is equal to −242.541867 Ry, where
the value of the equilibrium distance is 0.009689 a0
(a0 ' 0.529×10−10 m). The results have been ob-
tained for αs0 = 255.981718 a−10 . Figure 1b presents
the full form of the dependency of the varia-
tional parameter on the distance between the cores.
In Fig. 1c, we presented the charge density distri-
bution of muon cation in the equilibrium state cal-
culated from the formula ρ(r) =

∑
j Φ

s?
j (r)Φsj (r).

In comparison with the results obtained for the
hydrogen molecule H+

2 , the muon cation is char-
acterized by three orders lower value of the equi-
librium distance and two orders lower value of the
ground state energy. In particular, for H+

2 , we have
R0 = 2.003296 a0, E0 = −1.173013 Ry, where
αs0 = 1.238029 a−10 . It is worth noting that these
results are consistent with the results obtained for
H+

2 by Schaad and Hicks, i.e., R0 = 1.9972 a0 and
E0 = −1.20527 Ry [35]. Differences in the values
of the calculated physical quantities for the muon
cation and the H+

2 cation cause the difference in
dissociation energy ED = limR→+∞ (ET (R)−E0).
In the case of the muon cation, ED is equal to
35.682690 Ry, and for H+

2 we have 0.172417 Ry.
In Fig. 2, we have plotted the values of the

molecular orbital energy and the hopping integral
as a function of the core distance R. The equilib-
rium values of the molecular orbital energy and the
hopping integral for the muon cation are equal to
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Fig. 1. (a) The total energy ET as a function of
the distance R for the ion M+

2 , (b) the inverse size
of the Slater orbital αs as a function of R, and (c)
the distribution of muon charge for the equilibrium
distance.

Fig. 2. (a) The molecular orbital energy ε and (b)
the hopping integral t depending on the distance
between the cores.

ε0 = −351.142324 Ry and t0 = −97.819195 Ry, re-
spectively. In the case of the H+

2 cation, we have
ε0 = −1.698245 Ry and t0 = −0.473122 Ry, respec-
tively.

In the next step, we characterized the phonon
properties of the muon cation. As part of the har-
monic approximation, the potential should be de-
termined using the formula

VH(R) = E0+
1

2
kH (R−R0)

2
, (13)

where kH = (d2ET (R)/dR
2)|R=R0

. The en-
ergy distribution of phonon states has the form
EH
n = ωH

0 (n+ 1/2), where ωH
0 =
√
kH/m′, and n=0,

1, 2, . . . . The reduced mass of the core system is
m′=mc, and mc is the mass of the lightest core.

In Fig. 3, we presented the energy-harmonic po-
tential curve. It can be seen that the values of
the total energy ET are correctly reproduced only
in close vicinity of the equilibrium distance R0.
In a wider range of distances, the potential VH (R)
is non-physical. For this reason the dissociation en-
ergy cannot be determined from VH (R). It is worth

Fig. 3. The total energy ET and the potentials VH

and VM as a function of the inter-core distance R.

Fig. 4. (a) The muon–phonon coupling functions
gε and (b) gt versus the inter-core distance R.

noting that the above inconvenience can eliminated
considering the Morse potential

VM(R)=E0 + ED

(
1− e−αM(R−R0)

)2
. (14)

The parameter αM determines the curvature
of the potential near its minimum. The con-
stant kM should be estimated from the formula
kM = (d2VM (R) /dR2)R=R0

, and the Morse en-
ergy is given by ωM

0 =
√
kM/m′. The full expres-

sion for the energy levels is EM
n = ωM

0 (n+ 1
2 )+

(ωM
0 )2/(4ED)(n+ 1

2 )
2.

In Fig. 3, we have drawn the course of the curve
VM (R). It reproduces numerical results much better
than VH (R). The calculation results suggest that
the vibrational energy of the muon cation is three
orders of magnitude greater than the vibrational en-
ergy of the hydrogen cation. In particular, we have[
ωH
0

]
M+

2
=42.475033 Ry,

[
ωM
0

]
M+

2
=59.302329 Ry,

and
[
ωH
0

]
H+

2
=0.014286 Ry,

[
ωM
0

]
H+

2
=0.021713 Ry.

Then we determine the rotational energy
Er = B0 l(l + 1), where B0 = 1/(m′R2

0), and l = 0,
1, 2, . . . . For M+

2 , the value of B0 is 11.602813 Ry,
while for H+

2 , we have B0 = 0.000271 Ry.
The muon–phonon coupling functions are defined

by gx = dx/dR, where x ∈ {ε, t}. They can be
explicitly written as
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gε = 6

{
27e4Rαsmµ − 3e2Rαs

[
R3α4

s

(
− 6 +Rαs

(
− 3 + 2Rαs(1 +Rαs)

))

+mµ

(
18 +Rαs

(
36 +Rαs

(
27 +Rαs

(
12 +Rαs(11− 2Rαs(−1 +Rαs))

))))]

+
(
3 +Rαs(3 +Rαs)

)[
−R3α4

s(2 +Rαs)
(
3 +Rαs(3 +Rαs)

)
+mµ

(
9 +Rαs

(
27 +Rαs

(
33 + 2Rαs

(
12 +Rαs(9 +Rαs(5 +Rαs))

))))]}

×
(
mµR

2
(
− 9e2Rαs +

(
3 +Rαs(3 +Rαs)

)2)2)−1
, (15)

and

gt =

{
e−Rαs

{
− 6M

(
3 +Rαs(3 +Rαs)

)2(
3 +Rαs

(
3 +Rαs

)(
3 +Rαs(3 +Rαs)

))
−54e4Rαs

(
R3α4

s(2−Rαs) +mµ

(
3 +Rαs(−3 +Rαs)

(
− 1 +Rαs(−1 +Rαs)

)))

+6e2Rαs

[
R3α4

s

(
3 +Rαs(3 +Rαs)

)(
6 +Rαs

(
3 +Rαs(1 +Rαs)

))
+mµ

[
54 +Rαs

×

(
162−Rαs

(
− 225 +Rαs

(
− 117 +Rαs

(
− 3 +Rαs

(
15 +Rαs(3 +Rαs(2 +Rαs))

)))))]]}}

×
(
mµR

2
(
− 9e2Rαs +

(
3 +Rαs(3 +Rαs)

)2)2)−1
. (16)

Fig. 5. (a) The ground state energy E0 and (b)
the equilibrium distance R0 depending on the value
of γ parameter.

Their equilibrium values compared to the
values of electron–phonon coupling functions
for the hydrogen cation are enormous, namely
[gε0]M+

2
=4990.03/a0 Ry, [gt0]M+

2
= 16315.15/a0 Ry,

and [gε0]H+
2

= 0.116710/a0 Ry, [gt0]H+
2

=

0.381646/a0 Ry. The full form of functions gε(R)
and gt(R) for the cation M+

2 has been presented
in Fig. 4.

3.2. Influence of the environment on the physical
state of the muon cation

The physical properties of the muon cation, which
interact witch the environment have been deter-
mined in the balanced gain and loss energy scheme
(γ 6= 0).

In Fig. 5a and b, we presented the values of the
ground state energy E0 and the equilibrium dis-
tance R0 as a function of the γ parameter. It can be
noticed that as the interaction between the cation
and the environment increases, the energy of ground
state also increases, while the distance between the
cores decreases. For γ = γMS = 87.527434 Ry, the
difference limR→+∞(ET (R) − E0) is equal to zero.
This means that for γ > γMS , the cation M+

2 is in
the metastable state.

On the basis of (11), we find that the
PT -symmetry of the operator Ĥµ is not broken,
since t > γ. Note that in the case of the hydrogen
molecule, for the value of γ = 0.520873 Ry, there
occurs the PT -symmetry breaking of the electron
Hamiltonian [36]. This result is related to two-body
interactions between electrons. In the muon cation
M+

2 such interactions are absent. However, as shown
in the paper [36], the PT -symmetry breaking of
the electron Hamiltonian does not affect the ground
state properties of the hydrogen molecule.
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4. Conclusions

In conclusion, we calculated all the relevant
physical parameters of muon cation M+

2 . In par-
ticular, the ground state energy E0 is equal to
−242.541867 Ry, the equilibrium distance R0 is
equal to 0.009689 a0, and the dissociation energy
ED is equal to 35.682690 Ry. Moreover, for the har-
monic oscillation energy ωH

0 and the anharmonic
Morse energy ωM

0 , we obtained 42.475033 Ry and
59.302329 Ry, respectively. The rotational constant
B0 equals to 11.602813 Ry. We also showed that
the equilibrium values of the muon–phonon inter-
action functions gε0 and gt0 are 4990.03 Ry and
16315.15 Ry, respectively.

We performed numerical calculations at the level
of the Schrödinger equation by using the variational
method and the second quantization formalism. As
shown before [33], these methods perfectly repro-
duce the results for the hydrogen molecule and its
ions obtained by other researchers. This means that
the results obtained by us for M+

2 are very accurate
and can be directly compared with the experimental
data.

In the paper, we characterized the influence of
the cation’s interaction with the environment on the
physical properties of the cation state. We shown
that the increase of γ interaction energy above the
value of 87.527434 Ry causes the cation to be in
a metastable state.

In the system under consideration, the
PT -symmetry of Ĥµ is not broken due to the
fact that the value of the hopping integral t is
greater than the corresponding value of cation–
environment interaction energy γ.
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