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The effects of bimodal random crystal field and trimodal magnetic field distributions on the order
parameters, i.e., magnetization and quadrupole moments, susceptibility and hysteresis properties of
the spin-1 Blume–Capel model are investigated. The lowest approximation of the cluster variation
method was used. For the distributions of crystal field and magnetic field, two nodes and three nodes
distributions were chosen, respectively, with the probabilities q and p. Exploiting the variation of the
order parameters and susceptibility as functions of temperature and crystal field, it was found that they
exhibit either continuous or discontinuous phase transitions, i.e., first- or second-order, respectively.
The model also presents the re-entrant behaviour for some values of our system parameters. Under the
constraint of magnetic field and specific values of the system parameters, two, four and six hysteresis
loops have been observed.
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1. Introduction

To overcome the difficulties presented by mag-
netic many-body systems with many interactions,
approximate methods are required which at least
make it possible to reveal the rich magnetic prop-
erties of the system, since exact solution methods
either do not exist or are not useful. Weiss [1]
therefore proposed a mean-field approach where the
many-body problem is reduced to the one-body
problem and interactions affecting the body are re-
placed by the effective field. In this approach, the
spin correlations are neglected and the transition
temperature is overestimated. In order to improve
these ideas, Hans Bethe [2] proposed an approach
which takes into account the central-spin form-
ing the cluster with its near-neighbor spins — via
this way the spin correlations are included. Later,
Kikuchi [3] developed the cluster variation method
(CVM) which allows one to construct approximate
solutions for free energy in the thermodynamic limit
from solutions for finite clusters, and which provides
better results compared to the ordinary mean-field
theory [4]. Among the physical models that can
describe these systems is the Blume–Capel (BC)
model [5, 6], which was initially used to study the

critical behaviour of He3–He4 mixture in random
media [7]. Recent advances in phase transitions and
critical phenomena are reviewed in [8], in addi-
tion to the importance of the BC model. Taking
into account random crystal field or magnetic field
in this model made it possible to describe disor-
dered systems, such as single-spin and mixed-spin
systems [9–11], the spin-glass models [12, 13], the
ternary alloys [14–17] etc., all of which exhibit rich
properties.

The random transverse crystal field effects on the
spin-1 BC model were considered in the mean-field
(MF) approximation [18]. This approach was also
used to study the effects of transverse and longi-
tudinal external magnetic fields added to the ran-
dom longitudinal crystal field for the spin-1 BC
model [19]. Based on the exact recursion relations,
the ±J spin-1 BC model was investigated on the
Bethe lattice, and the glass phase and two special
points were observed [20, 21]. Using high-precision
Monte Carlo simulations and finite-size scaling, the
effect of quenched disorder in exchange couplings on
the BC model [22] was examined on a square lattice
with the addition of a parallel version of the Wang–
Landau algorithm [23]. Using the framework of the
effective field theory (EFT) based on the probability
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distribution technique, the hysteresis behaviour of
the spin-1 BC ferromagnetic (FM) and ferrimag-
netic (FI) nano islands were investigated and mul-
tiple hysteresis loops were found [24]. The spin-1 BC
model was also studied by using EFT [25] or EFT
with correlation [26], a new approach of MFT [27],
MFT based on Bogoliubov inequality [28], pair ap-
proximation (PA) [29, 30], Monte Carlo (MC) sim-
ulations [31] and CVM [32, 33].

It should also be noted that the effects of a ran-
dom magnetic field were also studied in some
other works. Numerical simulations and finite-size
scaling techniques were applied to investigate the
properties of the dynamic phase transition in the
BC model subjected to a periodically oscillating
field [34]. The bimodal random field with equal
probability was implemented on the spin-1 BC
model and was examined in the MFT and exact
recursion relations. As a result, isolated ordered
critical end-points, critical lines with two tricriti-
cal points and other types of critical points [35–37]
were observed. Recently, investigation of the same
model using the CVM has shown that, in addition
to tricritical behaviours, single and double hystere-
sis loops were observed [38]. The trimodal field dis-
tribution was first used in the case of the random-
field Ising model and several important results have
been obtained for the critical properties of the d = 3
random-field Ising model with an equal weight tri-
modal distribution at zero temperature [39]. In ad-
dition, the effects of the trimodal random field were
also studied that induce not only the critical points,
reentrant and double reentrant behaviours, but also
the multiple hysteresis loops [40, 41].

In all these works [18–41], however, no inves-
tigation was done on the spin-1 BC model both
for a random crystal and magnetic fields. Thus,
the aim of this study is to investigate the vari-
ations of the order parameters, susceptibility and
hysteresis properties in this spin system under
the simultaneous effects of a trimodal random
magnetic and a bimodal random crystal fields.
For this, we use the lowest approximation of the
CVM (LACVM). In fact, we were motivated by
the fact that the consideration of the effects of
bimodal random crystal field and trimodal ran-
dom magnetic field on the spin- 32 BC model re-
sulted in very interesting and attractive critical
behaviours for some critical random parameters
values [42].

This paper is structured as follows: in Sect. 2,
we briefly describe the model and formulate it using
the LACVM. In Sect. 3, we discuss the obtained nu-
merical results. The last section takes into account
the conclusions.

2. The model and formalism

The Hamiltonian of the BC model with only the
nearest-neighbor (NN) bilinear interaction parame-
ter J > 0 for a random crystal and the magnetic
fields Di and hi, can be expressed as

H = −J
∑
<i,j>

SiSj −
∑
i

Di(Si)
2 −

∑
i

hiSi,

(1)
where Si is the spin-1 operator, which assumes the
value ±1, 0 at the site i. The random distribu-
tions of the magnetic hi and crystal field Di are
given as

P (hi) = p δ(hi) +
(1− p)

2

[
δ(hi−h) + δ(hi+h)

]
(2)

and
P (Di) = q δ

(
Di

)
+ (1− q) δ

(
Di −D

)
(3)

with three and two nodes. Importantly, P (hi) is dis-
tributed in such a way that a portion p of the spins
is not subjected to any magnetic field, while the
other two portions are under the influence of the
magnetic field h and −h along the same axis with
the same probability (1 − p)/2. Regarding P (Di),
some spins are free from crystal field effects with
probability q and the rest are under the action of
crystal field D with probability (1− q).

Before giving the formulation of the model pre-
sented here, let us give a bit of information about
the CVM. It was first introduced by Kikuchi [3]
in 1951 as an approximation of the equilibrium
statistical mechanics of lattice (Ising-like) models,
generalizing the Bethe–Peierls [43] and Kramers–
Wannier [44, 45] approximations which can be
found in several textbooks [46, 47]. In addition to
reviving these methods, Kikuchi proposed a combi-
natorial derivation of what today we can call the
cube (respectively triangle, tetrahedron) approxi-
mation of the CVM for the Ising model on a sim-
ple cubic (respectively triangular, face-centered cu-
bic) lattice. After the first proposal, many refor-
mulations and applications appeared, mainly to the
computation of phase diagram of lattice models in
statistical physics and material science, and these
were reviewed in [48]. In most applications, the
CVM does not yield exact results, and hence it is
worth investigating its properties, as an approxi-
mation. The CVM is known to be exact in several
cases due to the topology of the underlying graph
or to the special form of the Hamiltonian. More
details on the CVM can be found in the review
given by [49].

In the CVM, each spin state is characterized by
the average values denoted by X1, X2 and X3,
which represent a fraction of the spins with the
value +1, 0 and −1, respectively. The normaliza-
tion relation they obey is written as∑

i

Xi = 1. (4)

To study this model, one needs to define two long-
range order parameters, i.e, the magnetizationM =
〈Si〉 and the quadrupole moment Q = 〈S2

i 〉. Consid-
ering the internal variables previously defined, the
expressions of order parameters are given by

M = X1 −X3, Q = X1 +X3. (5)
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The expressions for the internal variables as func-
tions of the order parameters are obtained from (5)
and written as

X1 =
(M +Q)

2
, X2 = (1−Q), X3 = − (M−Q)

2
.

(6)
The LACVM [1, 50] is employed to determine the
equilibrium properties, which gives similar results
as the MF approximation. This method consists of
three steps: (i) take a collection of weakly interact-
ing systems, (ii) define the state variables and ob-
taine the weight factors in terms of the state vari-
ables and finally (iii) find the free energy expression
and minimize it.

The weight factors are defined as a function of
the internal variables as follows

W =
N !∏3

i=1(XiN)!
, (7)

where N is the number of lattice points. The inter-
nal energy of the model can be calculated as a func-
tion of the order parameters using

E

N
= −J M2 −DiQ− hiM. (8)

By inserting the internal variables (6) into (8), one
obtains the internal energy per unit atom as
E

N
= −J (X1−X3)

2 −Di (X1+X3)− hi (X1−X3).

(9)
Using the definition of entropy S = kB log (W )
and the Stirling approximation, the free energy
F = E − TS per lattice site can be expressed by

Φ = −βF
N

= βJ(X1−X3)
2 + βDi(X1+X3)

+βhi(X1−X3)−
3∑

i=1

Xi ln(Xi)

+λ
(
1−

3∑
i=1

Xi

)
, (10)

where λ is introduced to satisfy the normalization
condition and kB is the Boltzmann constant. By
minimizing (10) with respect to Xi, i.e.,

∂Φ

∂Xi
= 0, with i = 1, 2, 3, (11)

one can obtain the self-consistent equations for the
magnetization and the quadrupolar moment, which
are explicitly expressed as
M(Di, hi) =

2 sinh
(
2βJ M(Di, hi) + βhi

)
exp(−βDi) + 2 cosh

(
2βJ M(Di, hi) + βhi

)
(12)

and
Q(Di, hi) =

2 cosh
(
2βJ M(Di, hi) + βhi

)
exp(−βDi)+2 cosh+2 cosh

(
2βJM(Di, hi)+βhi

) .
(13)

By integrating (11) and (12) over these distribu-
tions functions, one gets the integral form of the
order parameters which are written as follows

M =

∫∫
dDidhiM(Di, hi)P (Di)P (hi) (14)

and

Q =

∫∫
dDidhiQ(Di, hi)P (Di)P (hi). (15)

The final forms of the order parameters are given
as

M = pqM(0, 0) + p(1− q)M(D, 0)

+
(1− p)q

[
M(0,−h)+M(0,+h)

]
2

+
(1− p)(1− q)

[
M(D,−h)+M(D,+h)

]
2

(16)

and
Q = pq Q(0, 0) + p(1− q)Q(D, 0)

+
(1− p) q

2

[
Q(0,−h)+Q(0,+h)

]
×
(1− p)(1− q)

[
Q(D,−h)+Q(D,+h)

]
2

. (17)

The magnetic susceptibility of the system can be
obtained with

χ = lim
h→0

∂M

∂h
. (18)

By solving numerically (16) and (17) and using
an iterative procedure, we then present the be-
haviour of the order parameters, susceptibility and
hysteresis properties of our model. It should be men-
tioned that the iteration is stopped at each temper-
ature step when the change of the order parameters
become negligibly small, i.e., when they stabilize
converging to their desired values.

3. Results and discussions

In this section, we first illustrate and discuss the
variations of the order parameters and susceptibil-
ity by singling out the nature of the phase transi-
tion of the model, and then presenting its hysteresis
properties.

3.1. Order-parameters and susceptibility variations

It should be noted that the model is the well-
known BC model for p = 1 and q = 0. It reduces
to the bimodal random magnetic BC model with
equal probability for p = 0 and q = 0 and when the
crystal field is turned off for (p = 0, q = 1). Further,
the model reduces to the spin-1 model with only
NN interactions for (p = 1, q = 1), and for all other
values (p, q) our present model is recovered.

Thermal variations of magnetization and sus-
ceptibility are calculated when the magnetic field
is turned off and on. In normal situations, the
BC model does not give any phase transitions
when h 6= 0.0. As seen from (2) for P (hi), one node
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Fig. 1. Thermal behaviours of the order parameters and magnetic susceptibility for h = 0.25 and the values
of (D, p, q) given as (a) (−1.3, 0, 0), (b) (−1.18, 0, 0.2) and (c) (−1.5, 0.5, 0.4), and for h = 0.0 with (d)
(−1.20, 1, 0.1) and (e) (−1, 1, 1). Temperatures Tt and Tc indicate the first- and second-order phase transition,
respectively.

already gives h = 0 and the other two nodes turn
on h with equal probability along the same axis
in opposite directions. This equal probability is
the reason for the appearance of the phase tran-
sitions. Figure 1a–c illustrate this when h = 0.25
with the existence of first- and second-order phase
transition temperatures, denoted as Tt and Tc,
respectively.

Figure 1a shows that the magnetization M and
quadrupolar moment Q presenting discontinuous
jumps at Tt indicate a first-order phase transi-
tion between ordered and disordered phases when
D = −1.3 and p = q = 0. Afterwards, M always
remains zero and Q increases from Tt to its limit-
ing value of 2

3 at higher temperatures. The thermal
variation of χ shown in the inset exhibits that it
first increases rapidly reaching a peak at Tt, then
jumps to zero and then increases again.

In Fig. 1b, the model presents the temperature
Tt first, and then the two temperatures Tc’s, cal-
culated for D = −1.18, p = 0 and q = 0.2. Indeed,
M jumps from the FM to paramagnetic (PM) phase
at Tt where it becomes zero and is still zero for some
temperature range. It then reappears at Tc1 enclos-
ing the FM phase which then disappears at Tc2 go-
ing into the PM phase. The quadrupolar moment Q
also presents a jump at Tt and then starts increas-
ing with increasing temperature, and on its way, it
presents little kinks at Tc1 and Tc2. The increase
continues again towards the limit value of 2

3 . The
insets of Fig. 1b show that the magnetic suscepti-
bility χ increases rapidly until reaching a peak at

Tt, then jumps and decreases to reach the critical
point at Tc1 and then decreases to the second crit-
ical point at Tc2 , where little cusps are presented,
and χ finally disappears. These observed behaviours
indicate that the model changes from the FM to PM
phase at Tt, then it passes from the PM phase to
the FM phase again at Tc1 before re-entering again
the PM phase one last time, at Tc2 . Thus, the exis-
tence of two temperatures Tc leads to the reentrant
behaviour which is due to the competition between
the entropy and the free energy of the system.

Figure 1c plotted for D = −1.5, p = 0.5 and
q = 0.4 exhibits the temperature Tt first and Tc af-
terwards. In the case of M and Q, they start from
their ground state value and do not change much
as the temperature increases. Their jumps are pre-
sented at Tt and then at Tc, which is just before
going into the PM phase. At low temperatures, χ is
very close to zero becasue M changes very slowly.
Then χ jumps to higher values, and as the temper-
ature increases, it tends to zero, preceded by a little
kink.

Figure 1d and e realized for D = −1.2, p = 1,
q = 0.1 and D = −1.0 and p = q = 1.0 shows the
well-known behaviours at Tt and Tc, respectively,
when h = 0.0. Note that the increase in χ when the
order parameters present only a transition at Tt, as
in Fig. 1a and d, is interesting as the χ behaviour
should rather gradually go to zero with increasing
temperatures. The reason for the increase may be
caused by the existence of the bimodal magnetic
field with p = 0.
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Fig. 2. Order-parameters and susceptibility versus the random crystal field D for the case with p = 0.2,
h = 0.25 and the two different values of q = 0.2 and 0.5.

Fig. 3. Hysteresis behaviour of the system as a function of the applied field h at T = 0.1 or T = 0.2, p = 1/3,
q = 0.2 when (a, b) D = −1.5, (c, d) D = −1 and, (e, f) D = −0.5.

In Fig. 2, we have presented the D variation of
the order parameters and susceptibility at low tem-
peratures for the values T = 0.1, h = 0.25, p = 0.2
when q = 0.2 and q = 0.5. The two plateaus shown
correspond to the lower and higher D-values, and
the jumps between them correspond to the first-
order phase transitions. The jumps are seen first be-
tween the disordered and ordered phases for q = 0.2
and between the two ordered phases for q = 0.5.
The magnetization value which characterizes each
of these regions are M = 0, M = 1

2 and M = 1.
The value of M = 1

2 corresponds to the case where
the lattice is half–half covered by a couple of ground
state values (0, 1). It is also clear that at low neg-
ative values of D the order parameters are small,
and for higher values they are higher. The reason
for this is that the low negative values of D drive
the system to the lowest value of spin-1 which is
zero, otherwise ±1 at higher D.

3.2. The hysteresis properties

We now explore the magnetic response of our
system when the external magnetic field varies be-
tween two opposite values. Various forms of hys-
teresis loops have been obtained and constructed in
Figs. 3–5 for low temperatures.

Figure 3 are plotted for various fixed values of D
and T when p = 1/3 and q = 0.2. As can be ob-
served, multiple hysteresis behaviours of 6 (a, c), 4
(b, d) and 2 (e, f) loops are obtained. It is noticed
that for large negative values of D, the number of
hysteresis loops increases and it decreases with in-
creasing temperatures. Thus, the hysteresis loops
disappear at T = 0.21, 0.22 and 0.6, respectively,
when D= −1.5, −1 and −0.5.

Figure 4 obtained for q = 0.5 and maintaining
other parameters as in Fig. 3, only show the exis-
tence of double hysteresis loops for D = −1.5, −1
and −0.5. Note that the rising temperature T or
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Fig. 4. Hysteresis behaviour of the system as a function of the applied field h at T = 0.1 or T = 0.2, p = 1/3,
q = 0.5 when D = −1.5 (a, b), D = −1 (c, d), and D = −0.5 (e, f).

Fig. 5. Hysteresis behaviour of the system as
a function of the applied field h at T = 0.1 or
T = 0.2, p = 1/3, D > 0 when (a) q = 0.2, and
(b) q = 0.5.

crystal field D shrink the width of loops. It should
be specified that for negative values of D and fixed
q, the temperature at which the hysteresis loops dis-
appear increases with D.

In Fig. 5 mapped for p = 1/3, T = 0.1 and 0.2,
with q = 0.2 (Fig. 5a) and q = 0.5 (Fig. 5b) when
D > 0, only double hysteresis loops were obtained.
At a fixed temperature T for any positive values of
D, the hysteresis loops are confused, which implies
that the coercive field is constant regardless of the
value of D. Note that the coercive field decreases
with increasing T or q. At T = 0.1 and for all posi-
tive values of D as q and p increase, we only observe
double hysteresis loops that become narrower and
disappear not only when T increases, but also when
p reaches the critical value p∗ = 0.84.

Figure 6 clearly reflects the following observations
from the literature, i.e., the appearance of triple
or double hysteresis loops for large negative values
of D in the spin-1 BC model results from the ef-
fects of the diluted crystal field [51] or the longi-
tudinal/transverse crystal field [52, 53] which pro-
motes competition with other interactions existing
in the system. In our case, multiple hysteresis are
due to the combined action of the bimodal random
crystal field and the trimodal magnetic field. These
interactions force spins to flip, promoting first-order
phase transitions between the two FM phases in the
h range where the hysteresis loops exist.

4. Conclusions

In terms of LACVM, we studied variations of the
order parameters, susceptibility and magnetic hys-
teresis loops under the implementations of the bi-
modal random crystal and trimodal random mag-
netic fields for the spin-1 BC model. Thermal vari-
ations of magnetic susceptibility are presented in
order to confirm the existence of transition tempera-
tures in the form of phase transitions, both first- and
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Fig. 6. Hysteresis behaviour of the system as a function of the applied field h at T = 0.1, q = 0.9, p = 0.75
and p = 0.84 when (a, b) D = −1.5, (c, d) D = −0.5, and (e, f) D > 0.

second-order. Reentrant behaviour observed partic-
ularly for q = 0.2 made it possible to account for
the richness of the critical phenomena induced by
the effect of these two random fields. At low tem-
peratures, the system exhibits four and six hystere-
sis loops for large negative D values, and for other
values only double hysteresis loops are observed.
The multiple hysteresis obtained were attributed to
the combined effects of two random fields. The hys-
teresis behaviour disappears in the system when p
reaches the critical value of p∗ = 0.84.
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