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By applying the Wiener–Hopf and mode matching technique, the diffraction of sound waves by a circular
cylindrical cavity with an inner lining is analyzed. In this study, it is assumed that the pipe walls are of
a certain thickness, which makes the problem more interesting. Problems in which it is usually assumed
that the walls are infinitely thin are not realistic for modeling, since in practice every wall has a certain
thickness. While solving our case, an infinite system of algebraic equations is obtained, and the system
is solved numerically by truncating to the certain numbers. Finally, graphs of some parameters, such
as cavity thickness and depth, are produced for the diffracted field phenomenon, and the consistency
of the results is compared with a study available in the literature.
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1. Introduction

In recent years, researchers working in the fields
of mathematics, physics, and engineering have been
very interested in the problem of reducing noise
resulting from various reasons. The pipe outlet is
an important area of noise reduction research. Sci-
entists have been investigating this problem for
years [1–5]. Sound absorbing linings are one of the
most effective methods of reducing the generated
noise.

The cavity problem is a field of study that
attracts attention in acoustics and electromag-
netism [6–9]. It is applicable in areas such as micro-
phones, radar cross-sections, and turbofan engine
intakes. Some cavity diffraction problems have been
investigated by researchers using various methods.

Different methods can be used to solve scatter-
ing problems. In geometries with many discontinu-
ity points, which may be an expansion-contraction
chamber or non-uniform lining, the scattering ma-
trix technique may be particularly preferred. It is
also a very effective method for an acoustic system
consisting of multi-mode multi-ports [10–12].

Levine and Schwinger [13] analyzed the radia-
tion of sound waves from a semi-infinite duct with
rigid walls using the Wiener–Hopf technique [14].
Ando [15] analyzed the radiation of sound waves by
a semi-infinite circular duct of a certain wall thick-
ness, using Laplace transforms and the Wiener–
Hopf technique. Rawlins [16] proved that acoustic
absorbing linings are an effective method of sup-
pressing unwanted noise. He analyzed the sound

radiation from the duct, whose inner surface is
lined with an absorbing lining and the outer sur-
face is rigid. The diffraction of acoustic waves from
a semi-infinite duct with a certain wall thickness
was studied in detail by Polat and Buyukaksoy [17].
In their study, a ring source was used to illu-
minate the duct, and they considered that both
the inside, the outside, and the end of the duct
were covered with acoustically absorbing lining. The
diffraction of sound waves from a cavity located in
a semi-infinite cylindrical pipe was analyzed rigor-
ously by Demir et al. [18]. In their study, in which
both the inside and the bottom of the cavity were
lined, it was assumed that the walls were infinitely
thin. Especially in acoustic problems, Wiener–
Hopf and mode matching techniques are widely
used [19–22].

Most of the studies are limited to infinitely thin
pipe walls. In practice, it is unrealistic to model
them as infinitely thin, because each cylindrical
pipe/duct has a wall thickness. For this reason,
the wall thickness will affect the diffraction phe-
nomenon [15, 17].

Considering the above-mentioned studies, the
present study aims to analyze the effects of cav-
ity wall thickness on the diffraction phenomenon.
The geometry, which consists of a semi-infinite cir-
cular cylindrical cavity with a wall thickness and
an incident field, of the problem currently un-
der consideration is displayed in Fig. 1. The wall
thickness makes the problem interesting when con-
sidering an infinitely thin wall. By applying the
Wiener–Hopf technique, which is one of the most
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Fig. 1. Geometry of the problem.

suitable methods for propagation problems, and us-
ing the Fourier transform, the relevant boundary
value problem is solved analytically. As a result
of solving the Wiener–Hopf equation, a system of
equations with an infinite number of unknown co-
efficients is obtained. This system is truncated to
a certain number, and the solution is found approx-
imately. Incorporating the wall thickness into the
problem causes changes in the points of continuity.
Therefore, rigorous analysis is required to obtain
the solution. One of our most important goals in
this study is to understand the effect of cavity wall
thickness on the diffraction phenomenon.

The accuracy of the results of the this study is ob-
tained by comparing them with another study in the
literature [18]. In the graphics obtained by taking
the wall thickness to zero, a very good agreement is
seen.

2. Problem statement

Consider the diffraction of sound waves in a cav-
ity located at r = a and z ∈ (−l, 0), formed by
a semi-infinite cylindrical waveguide that occupies
the region {r = b, z ∈ (−∞, 0)}. The outer sur-
face of the cylinder is assumed to be rigid, while
the inner surface and the base of the cavity are as-
sumed to be lined with acoustically absorbing ma-
terials. The liner impedance is characterized by Z1

and Z2, respectively. Since the incident field and the
geometry of the problem are symmetrical, the total
field is independent of φ in the circular cylindrical
coordinate system (r, φ, z). Therefore, the acoustic
pressure p = iωρ0ψ and the velocity v = ∇ψ are
defined with the help of a scalar ψ(r, z) function. In
this study, in which the time dependence is con-
sidered as e− iωt, ρ0 indicates the density of the
undisturbed medium, and ω indicates the angular
frequency.

The incident sound wave, which is assumed to
propagate in the negative z-direction, is taken as

ψi (z) = e− ikz, (1)
where k = ω/c indicates the wave number and c is
the speed of sound. The expression of the total field
will be formed as follows

ψT (r, z) =


ψ1 (r, z) + ψi (z) ; r > b, z ∈ R,
ψ2 (r, z) + ψi (z) ; r < b, z > 0,

ψ3 (r, z) ; r < a,−l < z < 0,

(2)

where each ψj (j = 1, 2, 3)[
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
+ k2

]
ψj(r, z) = 0. (3)

Using the expression ψ1(r, z), the boundary condi-
tion over the rigid surface is obtained as

∂

∂r
ψ1 (b, z) = 0, z < 0. (4)

The interior surface and the base of the cavity are
assumed to be lined with an absorbing lining Z1 and
Z2, respectively. It is given by(

ik

Z1
− ∂

∂r

)
ψ3 (a, z) = 0, −l < z < 0, (5)(

ik

Z2
+

∂

∂z

)
ψ3 (r,−l) = 0, 0 < r < a. (6)

The thickness of the cavity edge is assumed to be
rigid, thus

∂

∂z
ψ2 (r, 0) = 0, a < r < b. (7)

Let us now consider the continuity conditions for
the total area. At r = b, z > l, one gets

∂

∂r
ψ1 (b, z)−

∂

∂r
ψ2 (b, z) = 0, z > 0, (8)

ψ1 (b, z)− ψ2 (b, z) = 0, z > 0. (9)
From the continuity conditions at the point z = 0,
one gets for r < a the following equations

∂

∂z
ψ3 (r, 0) =

∂

∂z
ψ2 (r, 0) +

∂

∂z
ψi (0) , (10)

ψ3 (r, 0) = ψ2 (r, 0) + ψi (0) . (11)

3. Derivation and solution of the
Wiener–Hopf equation

The unknown field ψ1 (r, z), where r > b for
z ∈ (−∞,∞), satisfies the Helmholtz equation (3).
By using Fourier transform, we get[

1

r

∂

∂r

(
r
∂

∂r

)
+K2 (α)

]
F (r, α) = 0, (12)

where K(α) =
√
k2 − α2 is defined in the com-

plex α-plane. Here, F (r, α) is obtained by taking
the Fourier transform of ψ1 (r, z) and is defined as
follows [23]

F (r, α) =

∞∫
−∞

dz ψ1 (r, z) e iαz =

F− (r, α) + F+ (r, α) . (13)
Due to the analytical properties of Fourier inte-
grals, F+(r, α) is the analytic function of α in the
upper half-plane (Im(α) > Im (−k)), and F− (r, α)
is an analytic function in the lower half-plane
(Im(α) < Im(k)). The solution of (12) is

F− (r, α) + F+ (r, α) = − Ḟ
+ (a, α) H

(1)
0 (Kr)

KH
(1)
1 (Kb)

,

(14)
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where H(1)
m is the Hankel function of the first type.

Here, the dot notation over a function denotes the
derivative with respect to r. In the region {r <
b, z > 0}, the following equation[
1

r

∂

∂r

(
r
∂

∂r

)
+K2 (α)

]
G+ (r, α)=f (r)− iαg (r)

(15)
is obtained by taking the half-range Fourier trans-
form of the Helmholtz equation satisfied by ψ2 (r, z).
In (15), G+ (r, α) is an analytic function in the up-
per α-plane, and its definition is

G+ (r, α) =

∞∫
0

dz ψ2 (r, z) e
iαz, (16)

while f(r) and g(r) are

f (r) = ∂
∂zψ2 (r, 0) ,

g (r) = ψ2 (r, 0) .
(17)

By using the properties of Green’s function, the so-
lution of (15) can be written as [23]

G+ (r, α) =
1

K J1(Kb)

[
−B (α) J0 (Kr)

+

a∫
0

dr′ r′
(
f (r′)− iαg (r′)

)
Q (r′, r, α)

]
,

(18)
where B(α) is a coefficient to be found by applying
continuity conditions. Now differentiating (18) with
respect to r and using (9), we get

G+ (r, α) =
1

K J1(Kb)

[
−Ḟ+ (b, α) J0 (Kr)

+

a∫
0

dr′ r′
(
f (r′)− iαg (r′)

)
Q (r′, r, α)

]
.

(19)
The G+(r, α) function is analytic in the upper half-
plane. Taking into account that K J1(Kb) has zeros
in this upper plane and taking into account the po-
lar contributions coming from α = αm, the follow-
ing equation is obtained

Ḟ+ (b, αm) =
b

2
J0 (jm)

(
fm − iαmgm

)
(20)

with

fm = 2
b2J2

0 (jm)

a∫
0

dr r f(r)J0 (jmr/b) ,

gm = 2
b2J2

0 (jm)

a∫
0

dr r g(r)J0 (jmr/b) ,

(21)

where jm’s are the roots of the following equation
J1 (jm) = 0, m = 0, 1, 2, . . . (22)

and

αm =

√
k2 − (jm/b)

2
, α0 = k,

Im(αm) ≥ Im(k).

(23)

Note that when m = 0, J0(j0) = 1. By using (9)
and taking into account (14)–(19), we obtain

Ḟ+ (b, α)

K2 (α)M (α)
− b

2
F− (b, α) = (24)

1

2KJ1 (Kb)

a∫
0

dr r
(
f (r)− iαg (r)

)
J0 (Kr) ,

where
M (α) = π iJ1 (Kb) H

(1)
1 (Kb) . (25)

Through (21), f(r) and g(r) can be expanded to the
Dini series as given below

f (r) =

∞∑
m=0

fmJ0 (jmr/b) ,

g (r) =

∞∑
m=0

gmJ0 (jmr/b) .

(26)

By substituting (26) in (24) and computing the re-
sulting integrals, the Wiener–Hopf equation is ob-
tained as

Ḟ+ (b, α)

K2 (α)M (α)
− b

2
F− (a, α) =

b

2

∞∑
m=0

J0 (jm)

α2
m − α2

(
fm − iαgm

)
, (27)

where M (α) can be written as [18]

M (α) =M+ (α)M− (α) ,

M− (α) =M+ (−α) .
(28)

Here M+ (α) is analytic in the upper half-plane
and M− (α) is analytic in the lower half-plane.
The explicit expression of M+(α) is given in [18].
By multiplying (27) by (k − α)M− (α) and using
the Wiener–Hopf method, the solution is easy to
find [14], namely

Ḟ+ (b, α)

(k + α)M+ (α)
= (29)

b

2

∞∑
m=0

(k+αm) J0 (jm)M+ (αm) (fm + iαmgm)

2αm (α+ αm)
.

4. Determination of the coefficients

The field in the region {r < a, −l < z < 0} can
be written as follows [18]

ψ3 (r, z)=

∞∑
n=1

An
(
e− iτnz+Rn e

iτnz
)
J0 (ξnr/a) ,

(30)
where

ika

Z1
J0 (ξn) + ξnJ1 (ξn) = 0, (31)

Rn = −1/Z2 − τn/k
1/Z2 + τn/k

e2 iτnl (32)

and τn =
√
k2 − (ξn/a)2. Complex zeros of (31) can

be found by different methods. The Newton method
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is used in this study. The most important point in
this method is the correct selection of the initial ap-
proach. Otherwise, some complex zeros may not be
found and erroneous results may be obtained. The

choice of the initial approach is made by utilizing
the asymptotic behavior of ξn.

Consider now the continuity relation in (10), (11)
using (17), (26) to obtain

∞∑
m=0

fmJ0 (jmr/b) =

 i
∞∑
n=1

τnAn (Rn − 1) J0 (ξnr/a) + ik, r < a,

0, a < r < b,

(33)

∞∑
m=0

gmJ0 (jmr/b) =

∞∑
n=1

An (Rn + 1) J0 (ξnr/a)− 1, r < a. (34)

Multiplying both sides of (33) by rJ0 (jsr/b) and
integrating from r = 0 to r = b, we get

• for n = 0

f0 −
2ia2

b2

∞∑
m=1

Amτm (Rm − 1) J1 (ξm)

ξm
=

ika2

b2
,

(35)
• for n = 1, 2, . . .

fn −
2iSn

b2J2
0 (jn)

∞∑
m=1

Amτm (Rm−1) ξm J1 (ξm)

(ξm/a)
2− (jn/b)

2 =

2ikaJ1 (ajn/b)

bjnJ2
0 (jn)

, (36)

where

Sn = J0

(a
b
jn

)
+
jnZ1

ikb
J1

(a
b
jn

)
. (37)

With a similar computation, i.e., multiplying (34)
by rJ0 (ξsr/a), the following equation is obtained
∞∑
m=0

gmSm

(ξn/a)
2 − (jm/b)

2 −
An (Rn + 1)Pn

ξnJ1 (ξn)
= −a

2

ξ2n
,

(38)
where

Pn =
a2

2

[
J2
0 (ξn) + J2

1 (ξn)
]
. (39)

Finally, by substituting α = α1, α2, α3, . . . in (29)
and taking into account (20), one obtains

J0 (jn)

(k + αn)M+ (αn)

[
fn − iαngn

]
=

∞∑
m=0

(k + αm) J0 (jm)M+ (αm)

2αm (αn + αm)

[
fm + iαmgm

]
,

(40)
for n = 1, 2, . . . . The infinite series obtained in (35),
(36), (38), and (40) are truncated to a certain num-
ber (N), allowing us to find the fn, gn, and An
coefficients that are required for the diffracted field
phenomenon.

5. Far field

By taking the inverse Fourier transform of
F (r, α), we find the diffracted field in the region
r > b with the help of (14),

ψ1 (r, z) = −
1

2π

∫
L

dα
Ḟ+ (b, α)H

(1)
0 (Kr)

KH
(1)
1 (Kb)

e− iαz,

(41)
where L is a straight line Im(−k) < Im(α) < Im(k)
parallel to the α-axis. Let us consider the asymp-
totic expansion of H(1)

0 (Kr) as kr →∞, i.e.,

H
(1)
0 (Kr) =

√
2

πKr
e iKr− iπ/4 (42)

with the substitutions given below as
r = R sin(θ), z = R cos(θ). (43)

The solution can be obtained using the saddle point
formula

ψ1 (R, θ) ∼ D (θ)
e ikR

kR
, (44)

where

D (θ) =
i

π sin(θ)

Ḟ+ (b,−k cos(θ))
H

(1)
1 (kb sin(θ))

. (45)

Here R and θ denote spherical coordinates.

6. Numerical results

To show the effects of parameters such as wall
thickness and cavity depth on the diffraction field
phenomenon, we present some computational re-
sults. The quantities ka, kb, and kl used in this
paper are made dimensionless. Since the unit of the
wave number k is 1/meter, the unit of the radius a,
b and the length of the cavity is meter, then ka, kb,
and kl are non-dimensional.

The expression given below is used to produce
graphical plots for the diffracted field, i.e.,

diffracted field = 20 log |D (θ)| . (46)
The problem parameters are chosen from the stud-
ies of [17, 18, 24] that exist in the literature.

Figure 2 displays the variation of the diffracted
field against the truncation number for different val-
ues of the observation angle. Since there is no con-
tribution from some N values, N = 10 is taken for
the numerical computations.

Figures 3 and 4 show the variation of the am-
plitude of the diffracted field against the obser-
vation angle for different wall thickness values.
As expected, the amplitude of the diffracted field
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Fig. 2. Diffracted field against truncation number
N for different values of the observation angle θ
for Z1 = 1 + 1i , Z2 = 1 + 2i , ka = 1, kb = 1.5,
kl = 10.

Fig. 3. Amplitude of the diffracted field for rigid
cavity with different values of the wall thickness for
Z1, Z2 → ∞, ka = 1, kl = 10.

Fig. 4. Amplitude of the diffracted field for lined
cavity with different values of the wall thickness for
Z1 = 1 + 1i , Z2 = 1 + 2i , ka = 1, kl = 10.

Fig. 5. Amplitude of the diffracted field for dif-
ferent values of the cavity depth for Z1 = 1 + 1i ,
Z2 = 1 + 2i , ka = 1, kb = 1.5.

Fig. 6. Amplitude of the diffracted field against
the cavity depth for Z1 = 1 + 1i , Z2 = 1 + 2i ,
ka = 1, θ = 2.2◦.

increases with increasing value of the wall thick-
ness. These results clearly display the importance
of the contribution of the wall thickness of the pipe
to the diffraction phenomenon in realistic modeling.
In Fig. 3, the walls of the cavity are taken as com-
pletely rigid. The amplitude of the diffracted field
is shown for Z1, Z2 → ∞. In Fig. 4, the different
absorbing lining is considered, and Z1 = 1 + 1i ,
Z2 = 1 + 2i are used.

Figure 5 displays the amplitude of the diffracted
field variation against the observation angle for dif-
ferent values of the cavity depth. The amplitude of
the diffracted field decreases with increasing values
of kl. In Fig. 5, the parameters are taken as ka = 1,
kb = 1.5, Z1 = 1 + 1i and Z2 = 1 + 2i .

Figure 6 displays the effect of the cavity depth
on the diffraction phenomenon for different values
of the wall thickness. As in Figs. 3 and 4, the
amplitude of the diffracted field increases as the
wall thickness increases. It is also observed that the
diffracted field obtained in Fig. 6 is almost constant
(no resonance effect) for kl > 6.
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Fig. 7. Comparison of the cavity depth with the
study of [18] for Z−1

1 = Z−1
2 = 0.5i , ka = kb = 1,

θ = 2.2◦.

The current problem was compared with a similar
geometry (infinitely thin wall) [18] that exists in the
literature. Figure 7 shows that the computational
results obtained for close values of the parameters
are consistent, which indicates the accuracy of the
results obtained in this study. It can be seen that
when the wall thickness goes to zero, the curve cor-
responding to kb = ka gives the same result as the
curve obtained in [18] (Fig. 7c).

7. Conclusions

The diffraction of sound waves from a cavity lo-
cated in a semi-infinite pipe with a wall thickness is
presented. It is assumed that the inner and base
surfaces of the cavity are lined with an acousti-
cally absorbent lining. The Wiener–Hopf technique
is used to obtain the diffraction field. In this study,
it is also assumed that the pipe wall is not infinitely
thin, which makes the problem more realistic and
complicated. The resulting complex expressions are
meticulously examined, and the problem is solved
analytically. The results obtained for some parame-
ters of the problem are analyzed with graphs. It has
also been observed that the effect of wall thickness
on the diffraction phenomenon is remarkable.
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