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In this paper, we study the dynamics of a single vortex and a corotating vortex pair in dipolar Bose–
Einstein condensates under rotation. The results are obtained by numerically solving the nonlinear
Gross–Pitaevskii equation. It is displayed that the dynamics behaviour is strongly dependent on the
polarization angle and the rotation frequency. For a single vortex, the clockwise rotation occurs with
an increasing rotation frequency, and the rotation direction is constant. The x coordinate and y co-
ordinate as a function of time show that the single vortex is accelerated. The oscillation frequency is
larger in the case of the totally repulsive dipolar interaction than for the anisotropic dipolar interaction.
For a corotating vortex pair, the dynamic is different than in the case of a single vortex. When the
rotation frequency is gradually increased, the corotating vortex pair spins from anti-clockwise to clock-
wise direction and the anisotropic dipolar interaction is fully embodied. In this process, the system has
a critical rotation frequency to accomplish such transition. In addition, the vortex motion is confined to
a small extent at this critical rotation frequency. These results reflect a competition between rotation
and dipolar interaction.
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1. Introduction

Quantized vortices, known as topological vor-
tices, are a type of topological defect that can be
stable in two dimensions (2D) as well as three
dimensions (3D). Vortices in scalar [1, 2] and
spinor [3–5], Bose–Einstein condensates (BECs)
have been realized experimentally, providing a good
platform to study the properties of the ground state
and its dynamics. A lot of interesting physics is ob-
served in the context of quantized vortices, for in-
stance the rotating of superfluid He [6], interface
physics of defect [7, 8], quantum turbulence [9–11]
and vortex in droplet [12, 13] etc. For a review of the
properties of vortices in BECs, please see [14, 15].

Among the many types of quantized vortices
physics, low-number vortices such as a single vor-
tex (SV) and two vortex with winding number of
one and two, respectively, are an interesting and
significant subject. The topic of small number vor-
tices has been extensively investigated in the past
few years. Gertjerenken et al. [16] studied the gener-
ation and manipulation on-demand of single vortex
and two vortex, as well as the case of several vortices
in a highly oblate atomic BECs in order to initialize

complex vortex distributions for the study of vor-
tex dynamics [16]. The role of the breathing width
degree of freedom in the effective theory for the in-
teracting two vortex systems in a trapped BEC un-
der strong repulsive cubic nonlinearity was inves-
tigated [17]. It was found the rapid radial breath-
ing oscillations superposed on the slower rotational
motion of the vortex cores, which is justified by
numerical solutions of the Gross–Pitaevskii (GP)
equation. In [18], the authors expounded the dy-
namics of massive point vortices in a binary mix-
ture of BECs. They showed that a massless single
vortex with a rigid circular boundary can only pre-
cess uniformly. In addition, the two vortex preces-
sion and nutation dynamics of nonlinearly coupled,
non-coaxial three-dimensional matter wave vortices
were elaborated [19].

Dipole–dipole interaction (DDI) has been ac-
tively studied regardless of these topics, for
example, low-lying collective excitation [20, 21],
spin domain [22, 23], and tilted dipoles [24, 25]. In
experiments, the orienting field [26] and the Fesh-
bach resonance technique [27] enable us to tune the
dipole strength and dipole scattering length, respec-
tively. Moreover, because of the rich phenomena
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generated by DDI, it is relatively effective to per-
form a theoretical analysis by using the GP model.
In the work [28], it is demonstrated that the mag-
netic DDI can lead to observable effects in alkali-
metal atom 87Rb, the magnetic dipole moment of
which is an order of magnitude lower than the 52Cr
atom.

In this work, we study the vortex dynamics of SV
and a corotating vortex pair (CVP) in BEC when
rotation is considered by performing extensive nu-
merical calculations for a SV and CVP with long-
range interactions. The CVP is a typical example of
a two vortex model. In this case, it is natural to ask
how the adding of a rotation modifies the dynamics
of the vortex. Our results show that the dynam-
ics behaviour presents different characteristics for
SV and CVP. First of all for a SV, with increas-
ing rotation frequency, clockwise rotation appears,
and the rotation direction remains constant. In ad-
dition, x(t) and y(t) display that the single vortex
is accelerated. The oscillation frequency for com-
pletely repulsive DDI is larger than for anisotropic
DDI. Second, for a CVP, there is the critical ro-
tation frequency Ωc. In the case of rotation fre-
quency when Ω < Ωc and Ω > Ωc, the CVP rotates
in an anti-clockwise and clockwise direction. More-
over, the anisotropic DDI is sufficiently reflected
with increasing rotation frequency. At this critical
point Ωc, the vortex motion is confined to a small
range. These results reflect the competition rela-
tionship between rotation and DDI.

The layout of this paper is as follows. In Sect. 2,
we construct the theoretical model for 3D BECs, be-
ginning from a mean-field theory, and giving a brief
introduction to the numerical method. We present
the main results of the paper in Sect. 3. We show the
effect of the polarization angle and the rotation fre-
quency on the dynamics behaviour of SV and CVP,
and explain the physical cause found above. Finally,
Sect. 4 is devoted to concluding remarks.

2. Theoretical model

We consider the dipolar BEC of N particles
with mass m. At sufficiently low temperatures, the
ground state of the condensate is well described by
the time-dependent GP equation with the nonlocal
DDI term [29, 30]

i~
∂φ(r, t)

∂t
=
[
− ~2

2m
∇2 + V (r)

−ΩLz +
4π~2asN

m
|φ(r, t)|2

+N

∫
dr′ Udd(r − r′) |φ(r′, t)|2

]
φ(r, t), (1)

where V (r) = m
2

[
ω2
⊥(x2+y2)+ω2

zz
2
]
is the trap

potential, ω⊥ and ωz are the trap frequen-
cies in the x–y plane and the z axis, respec-
tively, and as is the atomic s-wave scatter-
ing length. The dipolar interaction is denoted

by Udd(R) =
µ0g

2
Fµ

2
B

4π (1− 3 cos2(θ))/|R|3 with the
vacuum magnetic permeability µ0, the Bohr magne-
ton µB, and the Landé g-factor denoted by gF . Here,
R = r−r′ is the relative position of dipoles and θ
is the angle between the polarization axis n and R
(i.e., cos(θ) = n·R/|R|). In (1), Lz = i~(y∂x−x∂y)
is the z component of the orbital angular mo-
mentum operator and Ω is the rotation frequency.
The macroscopic wave function is normalize to one,∫

dr |φ(r, t)|2 = 1.

It is convenient to use the GP equation in a di-
mensionless form. For simplicity, we make the trans-
formation of variables as r̄ = r/a⊥, R̄ = R/a⊥,
t̄ = tω⊥, φ̄ = a

3/2
⊥ φ, Ω̄ = Ωω−1⊥ , a⊥ =

√
~/(mω⊥).

Thus, (1) can be expressed as
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where V (r) = 1
2 (x2 + y2 + λ2z2), λ = ωz/ω⊥, and

add = µ0g
2
Fµ

2
Bm/(12π~2) is the dipole length scale.

Next, scaled variables are shown without overhead
bar, except if mentioned otherwise.

For an axially-symmetric pancake-shaped dipolar
BEC with a strong axial trap (λ > 1), we assume
that the dynamics in the axial direction is frozen.
The wave function is written as

φ(r, t) = f(z)ψ(ρ, t) =
exp

(
− z2

2d2z

)
(πd2z)

1/4
ψ(ρ, t) (3)

with f(z) being the harmonic oscillator ground
state along the axial direction, and dz = 1/

√
λ. Af-

ter integrating along the axial coordinate, a 2D di-
mensionless GP equation is obtained

i
∂ψ(ρ, t)
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=
[
− 1

2
∇2
ρ + V (ρ)− ΩLz

+g|ψ(ρ, t)|2 + gdΦ2D

]
ψ(ρ, t), (4)

Φ2D = −
(
∂n⊥n⊥ − n23∇2

)
×
∫

dρ′ U2D(ρ− ρ′) |ψ(ρ′, t)|2. (5)

where
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4πN√
2πa⊥

[
as
dz
− add
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(1− 3n23)

]
, (6)

gd =
mµ0g

2
Fµ

2
BN

2a⊥~2
. (7)

The term Φ2D is a dipole integral with ∂n⊥ =
n1∂x + n2∂y and ∂n⊥n⊥ = ∂n⊥(∂n⊥). The kernel
U2D is radially symmetric and is given by U2D(r) =

1
(2π)3/2

√
λ

exp( r
2

4λ )K0( r
2

4λ ), where Kν denotes a mod-
ified Bessel function of the second kind (ν real) and
r2 = (x−x′)2+(y−y′)2. In (4)–(5), the dimension-
less units ~ω⊥ is adopted for energy.
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Fig. 1. Trajectory traversed by a SV for four different polarization angles and rotational frequencies. (a)
α = 0, Ω = 0.5ω⊥ (b) α = π/2, Ω = 0.5ω⊥ (c) α = 0, Ω = 0.7ω⊥ (d) α = π/2, Ω = 0.7ω⊥. Simulation
parameters: add/as = 0.1.

For the numerical calculations, the ground state
wavefuction is prepared by imaginary time propaga-
tion Backward–Euler pseudospectral method [31],
and dynamics is obtained by a second-order Strang
time-splitting approach [32]. In addition, the dipo-
lar integral is computed using convolution theorem
with fast Fourier transform [33]. The space and
time step is ∆x = ∆y = 0.08 and ∆t = 0.001,
respectively.

3. Results and discussion

In this manuscript, we consider N ≈ 6600
atoms 52Cr in a harmonic trap potential with
ω⊥ = 2π×10 Hz and ωz = 2π×100 Hz. The Landé
g-factor of 52Cr is gF = 6 [64]. Natural dimension-
less parameter add/as = 0.1 is used to characterize
the relative strength of DDI and the s-wave contact
interaction. In experiments, add and as can be tuned
by the magnetic Feshbach resonance technique. In
what follows, we will discuss the dynamics of SV
first, and then the CVP dynamics. According to the
experimental study, the dipolar BEC is prepared in
an oblate trap with magnetic dipoles oriented along
the short direction of the trap. Therefore, in order
to generate a SV in the system located at (x1, y1),
where x1 = 0.8a⊥, y1 = 0, we solve (4)–(5) in imag-
inary time with the DDI term Φ2D and in the ab-
sence of the rotation term ΩLz. After each step in
the imaginary time evolution, we imprint the phase
singularities corresponding to the presence of the
vortex, i.e., the transformation

Φ(t+ ∆t) = |Φ| exp

(
i

[
tan−1

(
y − y1
x− x1

)])
.

(8)
is performed. This solution is then substituted into
in real time using (4)–(5) again, with the inclusion
of the rotation term. Throughout this article, the
tunable parameters are the rotation frequency Ω
and the polarization angle α.

Figure 1 tracks the trajectory of SV at differ-
ent polarization angles and rotation frequencies up
to 100 s. In addition, we also plot the x coordi-
nate and y coordinate of the vortex as a function of
time, as shown in Fig. 2. The black solid line and the
red dotted line represent the numerical results for
α = 0 and α = π/2, respectively. One can see that
the vortex with our initial position travels clockwise
around the condensate in a direction. We analyze
the effect of the slow rotation of Ω = 0.5ω⊥ and the
isotropic repulsive interaction α = 0. In Fig. 1a, we
observe that the trajectory twines with the develop-
ment of time and a nonperiodic pattern is formed.
Such behaviour is similar to the case of vortex dy-
namics without rotation and weak DDI [35]. Note
that the vortex monotonously spirals out of the
condensate as seen in [36, 37]. Increasing the po-
larization angle to α = π/2 in Fig. 1b, the vor-
tex behaviour is qualitatively in agreement with
Fig. 1a, where the anisotropic DDI becomes domi-
nant. For the dynamic evolution of the x coordinate
(Fig. 2a) and the y coordinate (Fig. 2b), the oscil-
lation frequency is larger for the repulsive interac-
tion α = 0 than for the anisotropic DDI α = π/2.
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Fig. 2. The x and y coordinate of a SV as a function of time t for different rotational frequencies: (a, b)
Ω = 0.5ω⊥, (c, d) Ω = 0.7ω⊥. The black solid line and red dotted line represent the numerical results for
α = 0 and α = π/2, respectively. Simulation parameters: add/as = 0.1.

The reason for this difference is that the repulsive
interaction between dipolar atoms accelerates the
vortex motion, and the anisotropic DDI makes the
movement of the vortex slower.

When the rotation frequency is increased to
Ω = 0.7ω⊥, the tangle behaviour of trajectory is
still kept (Fig. 1c and d). The vortex coordinates
x and y with respect to time are approaching the
shape of the cosine wave, and their respective am-
plitudes in Fig. 1c and d are basically the same as
in Fig. 1a and b. Moreover, it is evident that the vor-
tex moves more and more fast. This is due to the
fact that the direction of motion of a single vortex
and a rotating trap is consistent. As a result, the in-
creasing rotation frequency leads to an increase in
the speed of vortex motion. Therefore, the period
of x(t) and y(t) in Fig. 2c and d is smaller than
in Fig. 2a and b. We confirmed that the direction of
rotation of a SV keeps clockwise when the rotation
frequency Ω is increased to the limit of the radial
trap oscillator frequency ω⊥.

As discussed in previous part, we investigate the
dynamics behaviour of CVP. First, we obtain the
ground state by imaginary time, without rotation.
Then we transform the wavefunction after each time
step as follows

Φ(t+ ∆t) = |Φ| exp

{
i

[
tan−1

(
y − y1
x− x1

)

+ tan−1
(
y − y2
x− x2

)]}
. (9)

Here x1 = 0.8a⊥, y1 = 0 and x2 = −0.8a⊥, y2 = 0
are the initial positions. This is to ensure that both
vortices have the same radius and that they are op-
posite to each other in respect to the centre of the
condensate. For convenience and illustrative pur-
poses, a vortex with an initial location (x1, y1) and
(x2, y2) is called as vortex 1 and vortex 2, respec-
tively. It is evident that the two vortices rotate in
a common direction due to the same spin. This
point is an embodied form of (9). The solution cre-
ated by this approach is shown in Figs. 3–5. It can
be shown that, unlike in the above case, the vortex
dynamics behaviour is more complicated.

Using the same method of tracking as we did be-
fore, when the condensate is rotated, for instance,
Ω = 0.5ω⊥, we observe that the two vortices spin
about the centre in an anti-clockwise direction,
which is different from the case of a SV. Figure 3a, b
and Fig. 3c, d display the x coordinate and the
y coordinate as a function of time for α = 0 and
α = π/2. The black solid line and red dotted line
correspond to vortex 1 and vortex 2, respectively.
The x(t) and y(t) behaviour present rapidly oscil-
lation, and it is seen that the oscillation frequency
in α = π/2 is almost same as for α = 0. Neverthe-
less, the rapid oscillation significantly decreases as
the rotation frequency increases to the critical value
Ωc = 0.65ω⊥, as shown in Fig. 4. It is seen that the
periodic motion of x(t) and y(t) is broken.

The facts imply that the vortex motion becomes
slow, and thus vortex 1 and vortex 2 are con-
fined in a small space extent. More importantly,
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Fig. 3. The x and y coordinates of the vortices as a function of time t for different polarization angles and
rotational frequencies: (a, b) α = 0, Ω = 0.5ω⊥, (c, d) α = π/2, Ω = 0.5ω⊥. The black solid line and red
dotted line correspond to a CVP, respectively. Simulation parameters: add/as = 0.1.

Fig. 4. Description as in Fig. 3 but for (a, b) α = 0, Ωc = 0.65ω⊥, (c, d) α = π/2, Ωc = 0.65ω⊥.

the anti-clockwise rotation is effectively weakened.
As the rotation frequency is further increased to
a larger value Ω = 0.8ω⊥ (see Fig. 5), the CVP ro-
tate clockwise about the centre, and the periodicity
of x(t) and y(t) recovers. The oscillation frequency

in α = π/2 is smaller than the case of α = 0.
This phenomenon is consistent with the observa-
tion in Fig. 2 and shows that the effects of DDI on
the vortex motion are fully embodied. As a con-
sequence, we can see that the CVP turns back
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Fig. 5. Description as in Fig. 3 but for (a, b) α = 0, Ω = 0.8ω⊥, (c, d) α = π/2, Ω = 0.8ω⊥.

with the increase of rotation frequency. This be-
haviour of the vortex motion is not observed in the
previous study and it is completely different than
in the case of a single vortex, where the direction of
the motion of a single vortex keeps clockwise about
the centre, regardless of the value of the rotation
frequency.

4. Conclusions

In conclusion, we investigate the vortex dynamics
for a single and a corotating vortex pair in rotating
dipolar BECs. We show how dynamic behaviour de-
pends on the polarization angle and the rotation fre-
quency. For a SV, it rotates in a clockwise direction
as the rotation frequency increases, while the ro-
tation direction keeps unchange. The x coordinate
and y coordinate as a function of time show that
a SV speeds up and thus the oscillation frequency
becomes large. In addition, the oscillation frequen-
cies of x(t) and y(t) for α = 0 are greater than for
α = π/2. This is due to the DDI being purely re-
pulsive in the former and anisotropic in the latter.
From the physical point of view, the repulsive and
anisotropic DDI respectively accelerate and deceler-
ate the vortex motion. On the other hand, the CVP
shows distinct dynamics behaviour as the rotation
frequency increases. When the rotation frequency is
small, the CVP spins in an anti-clockwise direction
and the oscillation frequency of x(t) and y(t) for
α = π/2 is almost the same as for α = 0. On the
contrary, a clockwise rotation is observed when the
rotation frequency exceeds a critical value and the
oscillation frequency of x(t) and y(t) is smaller than

for α = 0. In this process, the anisotropic dipolar
interaction is thoroughly expressed. Moreover, the
vortex motion of the CVP is limited to a small ex-
tent at the critical rotation frequency. These facts
reflect the competition relationship between rota-
tion and DDI.
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