ERRATUM

Structural and Electrical Properties of 0.6 Pb(Mg_{1/3}Nb_{2/3})O₃-0.4 PbTiO₃ Ceramics Acta Physica Polonica A 140, 415 (2021), ERRATUM

J.K. MISHRA^a, K. Agrawal^b, S.K. Mohanty^c and B. Behera^{a,*}

 ^a School of Physics, Sambalpur University, Jyoti Vihar, Burla-768019, Odisha, India
^b Department of Physics, Veer Surendra Sai University of Technology, Burla-768018, Sambalpur, Odisha, India
^c Department of Physics, Kendrapara Autonomous College, Kendrapara-754 211, Odisha, India

orginal Doi: 10.12693/APhysPolA.140.415 actual Doi: 10.12693/APhysPolA.141.554 *e-mail: banarjibehera@gmail.com

This article was originally published in October 2021 with several errors. They are listed as follows:

1. Figure 2a has been revised. The correct version of Fig. 2 is given bellow.

Fig. 2. (a, b) Structure scheme of 0.6PMN–0.4PT on different axis using VESTA crystallography software.

2. There was a typo in the penultimate sentence in Sect. 3.1 — it should be Nb⁵⁺ instead of Nd⁵⁺. The entire text of this section is given below.

The X-ray diffraction (XRD) profile of 0.6PMN–0.4PT is taken after Rietveld refinement (see Fig. 1). Coexistence of both C as well as T phases with space groups of Pm-3m and P4mm, respectively, are observed. The fitting is judged on the basis of peak-to-peak matching of the observed and fitted data. However, the *R*-factors, i.e., $R_{\rm wp}$ (weighted profile), $R_{\rm exp}$ (statistically expected) and $\chi^2 = R_{\rm wp}/R_{\rm exp}$, are generally used to certify the quality of a fit [16]. The quality fit is found by using the C+T phase model, where the smallest $\chi^2 = 5.43$, $R_{\rm wp} = 14.1$ and $R_{\rm exp} = 6.04$ values are obtained. The lattice parameters and unit cell volume obtained for the C phase are found to be a = b = c = 4.020 Å and V = 64.99 Å³, while those of the T phase — a = b = 3.977 Å, c = 4.061 Å and V = 64.22 Å³. Further, it is observed that the percentage of the tetragonal phase in 0.6PMN–0.4PT is 88.35%, while that of the cubic phase is 11.65%.

The schematic model (represented in Fig. 2a and b) is drawn using the VESTA software by compiling the CIF file of the refined data. It is observed that Pb^{3+} occupies the corner, while Mg^{2+} , Nb^{5+} and Ti^{4+} occupy the body centre position of the unit cell. The obtained structure clearly matches the previously reported results [3, 17, 18].

3. There were errors in the first column in Table I. The correct version of Table I is given below.

TABLE I

Parameters obtained from the fitting of the Jonscher's power law (shown in Fig. 4.)

	$\sigma_{\rm ac} \ [\Omega^{-1} \ {\rm m}^{-1}]$	A	n	χ^2
$425^{\circ}\mathrm{C}$	9.69×10^{-5}	4.38×10^{-6}	0.99066	0.99986
$450^{\circ}\mathrm{C}$	2.18×10^{-4}	3.81×10^{-6}	0.99072	0.99989
$475^{\circ}\mathrm{C}$	4.7×10^{-4}	3.38×10^{-6}	0.99772	0.99978
$500^{\circ}\mathrm{C}$	4.35×10^{-4}	2.55×10^{-6}	0.99787	0.99977

The authors apologize for these errors.