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The optical tomogram of the number state filtered coherent states is studied comprehensively. The
superposition of coherent state and number state is reflected in the optical tomogram via quantum
interference. The qualitative signatures of the nonclassicality are captured as rapid oscillations in the
optical tomogram of number state filtered coherent states. Entropic squeezing is estimated directly from
the optical tomogram through the Shannon information entropy. The effects of the non-unit quantum
efficiency of the photodetectors on the optical tomogram and the entropic squeezing are observed.
Finally, two decoherence models, namely phase damping and amplitude damping models, are employed
to assess the degradation of the nonclassical features in the optical tomogram.
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1. Introduction

The key element needed to describe the physical
systems in the quantum realm is the wave func-
tion of the system. It contains all the information
about the system of interest. The state vector (|ψ〉)
denotes the pure states, whereas the density op-
erator (ρ̂) [1] denotes both the pure and mixed
states. In addition to these, quasi-probability dis-
tributions can be used to represent the system in
phase space [2]. Commonly used quasi-probability
distributions are the Glauber–Sudarshan P func-
tion [3], the Husimi Q function [4], and the Wigner
function [5]. Besides them, there is a real proba-
bility distribution called optical tomography rep-
resenting the state of the system [6]. The op-
tical tomogram has a one-to-one correspondence
with the quasi-probability distributions [7, 8]. Un-
like the quasi-probability distributions, the tomo-
gram is positive and fulfills all the characteris-
tics of the probability distribution function. In-
deed, optical tomograms of the continuous vari-
able radiation states can be measured in the lab-
oratory using homodyne detection [9]. This signi-
fies that all the physical characteristics can be ex-
tracted from the optical tomogram. Hence one can
use the optical tomogram as a primary notion of
the system and bypass the reconstruction proce-
dure [10]. Optical homodyne detection is also em-
ployed in the characterization of optical devices [11].
Aided by the direct density operator reconstruction
schemes without resorting to the Wigner function
approach, the experimental detection of nonclas-
sical radiation states from optical tomograms has
gained momentum [12]. Theoretical tomographic

descriptions of diverse nonclassical states have been
studied [13–15]. In contrast, estimation of density
operators of finite dimensional quantum systems is
also an intense research area [16–19].

Radiation states are generally adopted in quan-
tum state engineering as they can be easily ma-
nipulated from classical thermal and coherent
states [20]. Several techniques have been reported
to generate nonclassical states. Addition [21] and
subtraction [22] of photons from classical states
are known to exhibit nonclassicality. Experimen-
tal realization of the nonclassical states, such as
photon-added coherent states (PACS) [23], to the
sophisticated manipulation of multiphoton cataly-
sis involving the function of creation and annihila-
tion operators have been achieved. In addition to
these, truncation [24, 25] and hole burning [26–28]
methods are also employed in generation of nonclas-
sical states. The hole burning or filtration process
was recently performed on the coherent states and
named as the number state filtered coherent states
(NSFS) [29]. It is represented as∣∣ψ(α, n)〉 = Nn

(
|α〉 − Cn |n〉

)
, (1)

where |α〉 (α = |α|e iξ) is the coherent state, ξ de-
notes the phase of the coherent amplitude, |n〉 is
the number state, Cn = e−|α

2|/2 αn√
n!

and Nn =

1/
√

1− |Cn|2, which is the normalization after fil-
tration. Number state filtration from the coherent
state makes the state exhibit excellent nonclassi-
cal properties, such as the negativity of the Wigner
function. Moreover, filtration of the vacuum state
from the coherent state has shown to be more robust
than the addition of a photon to the coherence state
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in the presence of the noise. Phase sensitivity quan-
tifies the performance of the state in quantum in-
formation protocols and has been measured using
the quantum Fisher information. NSFS has been
observed to show a better phase sensitivity when
coherent state and NSFS were used as the inputs of
the interferometer [30]. Being a potential nonclas-
sical candidate for quantum metrological applica-
tions, NSFS deserves further studies. An interesting
aspect to explore is its optical tomogram, since op-
tical tomograms are the equivalent state represen-
tation in the experiments. In this work, the distinct
features in the optical tomogram of NSFS, the effect
of experimental imperfections, and the environmen-
tal couplings on the tomogram are investigated.

In the next section, rotated quadrature opera-
tor and entropic inequality are expressed. The op-
tical tomogram pattern of NSFS and discussion
on the extent of entropic squeezing are presented
in Sect. 3. In Sect. 4, the effect of non-ideal pho-
todetectors in the tomogram and entropic squeezing
are investigated. The influence of phase damping
and amplitude damping models on NSFS is ex-
plained in Sect. 5. Finally, the results are concluded
in Sect. 6.

2. Rotated quadrature operator
and entropic inequality

2.1. Optical tomography

The optical homodyne measurement is performed
by measuring the rotated quadrature operator in
all possible directions by changing the phase of the
local oscillator. The rotated quadrature operator is
defined [6, 7] as

X̂φ =
1√
2

(
â e− iφ + â† e iφ

)
. (2)

Here, φ denotes the phase of the local oscilla-
tor, â† and â stand for photonic creation and
annihilation operators, respectively. The proba-
bility distribution of the quadrature operator is
given [6, 9] by

ω(Xφ, φ) =
〈
Xφ, φ

∣∣∣ρ̂∣∣∣Xφ, φ
〉
, (3)

where the eigenstates of the quadrature operator
are as follows

|Xφ, φ〉=
exp

[
− 1

2X
2
φ− 1

2 e
2 iφ â†2+

√
2e iφXφ â

†
]

π1/4

∣∣0〉.
(4)

The total probability distribution must be normal-
ized to one. Hence,∫ ∞

−∞
dXφ ω (Xφ, φ) = 1. (5)

2.2. Tomographic entropy

Uncertainties present in the measurements of
the physical observables are generally determined
by the variances. The alternative approach has

been developed using entropic uncertainty rela-
tions [31, 32]. The squeezing phenomenon exhibited
by the quantum states can be realized by the un-
certainty relations and inequalities of entropy [33].
It has been reported that variance-based squeezing
is a subset of entropic squeezing [34]. Moreover, the
quantum correlations can also be analyzed in terms
of entropic relations. For a single mode systems,
there exists a significant entropic inequality in terms
of position and momentum quadrature of the Shan-
non information entropy. This inequality gains spe-
cial attention in the tomographic probability rep-
resentation. The entropic squeezing of various non-
classical states has been discussed using the Shan-
non information entropy in the tomographic pic-
ture [35–37]. Shannon information entropy in terms
of the optical tomogram is represented as

S(φ) = −
∫

dXφ ω (Xφ, φ) ln
(
ω (Xφ, φ)

)
, (6)

S(0) = Sx, (7)

S(π/2) = Sy, (8)
where Sx and Sy denote the entropy in position
and momentum quadrature. The inequality involv-
ing the sum of the entropies is defined as

Sx + Sy ≥ ln (π e) . (9)
The state is said to exhibit entropic squeezing if Sx
or Sy goes below the value of 1

2 ln(πe).

3. NSFS with unit quantum efficiency

The optical tomogram of NSFS while using ideal
photodetectors in homodyne detection is theoret-
ically evaluated. Then the entropy of the state is
numerically computed. Substituting the density op-
erator of the NSFS in (2) results in the expression
for the quadrature distribution of NSFS, i.e.,

ω(Xφ, φ) =
Nn

2

π1/2

[
|Cn|2 e−X

2
φ
H2
n(Xφ)

2n n!

−Cn e−
1
2 |α|

2

e
−
[

1√
2
|α| e− i (ξ−φ)−Xφ

]2Hn(Xφ)e
− inφ

√
2n n!

−C∗n e−
1
2 |α|

2

e
−
[

1√
2
|α| e i (ξ−φ)−Xφ

]2Hn(Xφ)e
inφ

√
2n n!

+e−
[
Xφ−

√
2|α| cos(ξ−φ)

]2]
. (10)

Here, Hn(Xφ) is the Hermite polynomial.
The tomogram pattern of a typical coherent state

is identified by the sinusoidal strand (Fig. 1a), while
the number state |n〉 has n + 1 vertical stripes
(Fig. 1b). Figure 1c shows n number of distinct
peaks as a result of quantum interference between
coherent state and number state, thus manifest-
ing the effects of the state filtration from coher-
ent states. The extent of nonclassicality is observed
to be pronounced in the case of filtering number
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Fig. 1. Panels (a), (b), (c) denote the optical tomogram of coherent state (|α|2 = 5), number state (n = 5)
and NSFS (|α|2 = n = 5), respectively. Panels (d), (e), (f) show the optical tomogram of NSFS for various
coherent amplitudes (|α|2 = 1, 4, 8) and removal of |4〉 number state.

states from coherent states with appreciable super-
position coefficient (|α|2 = n). The optical tomo-
gram of NSFS for various |α|2 and filtration of |4〉
is plotted in Fig. 1d–f. Either greater or lower case
of coherent strength (|α|2) does not capture the dis-
tinct view. Peaks are clearly visualized only when
the square of the coherent amplitude |α| reaches
the value of n — the number state filtered. Since
the state is said to exhibit maximum nonclassicality
when |α|2 = n, the distinct peaks in the tomogram
pattern may be a qualitative indicator of nonclassi-
cality.

From the quadrature probability distribution the
Shannon entropy is calculated. The entropic squeez-
ing of the NSFS is illustrated in Fig. 2. Removal of
single photon number state |1〉 makes the entropy
of the momentum quadrature Sy to be squeezed
in the lower coherent amplitude region. Further re-
moval of successive number state shows the quadra-
ture swap (Sx) and decrease in squeezing. As the
choice of the number state |n〉 to be filtered reaches
a higher value, the depth of the squeezing decreases,
and squeezing is exhibited for a wider range of the
coherent amplitude.

4. Non-unit quantum efficiency
of photodetectors

The non-unit efficiency in photodetection exper-
iments is inevitable. In such experiments, the re-
construction process is not absolute, and hence er-
rors during the experiments have been known to
propagate at the time of the reconstruction pro-
cesses as well. Theoretically, the loss of information
in a tomogram pattern can be investigated when ef-
ficiency degrades from the maximal level. The effect

Fig. 2. Existance of entropic squeezing is illus-
trated for the filtration of |1〉 to |5〉 number states
for various coherent amplitudes. Dashed line, dot-
ted lines and solid line represent the squeezing in Sy

quadrature, squeezing in Sx quadrature and bound-
ary value for the entropic squeezing, respectively.

of detection inefficiency on the tomographic pat-
tern can be examined, and the permissible range
of error may be devised with experimental in-
puts. Using the ideal rotated quadrature proba-
bility distribution, the measured quadrature dis-
tribution with detection inefficiency is calculated
through convolution [38]

Pr(q, φ; η) =
1√

π (1− η)

∞∫
−∞

dXφ ω(Xφ, φ)

× exp

[
− η

1− η

(
Xφ −

q
√
η

)2
]
. (11)
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Fig. 3. Degradation of optical tomogram pattern from unit quantum efficiency (η = 1 (a)) to non-unit
quantum efficiency (η = 0.8 (b), η = 0.6 (c), η = 0.4 (d)) for |α|2 = n = 5.

The effect of quantum efficiency on the quadra-
ture distribution of NSFS has been evaluated the-
oretically and the tomogram pattern is shown
in Fig. 3. The computation of the integral (11) is
numerically employed and for the unit quantum
efficiency (η = 1), Pr(q, φ; η) retrieves the ideal
quadrature distribution ω(Xφ, φ). The number of
filtered state is chosen to be equal to the |α|2 value.
Figure 3 provides information about the endurance
of the nonclassicality and the amplitude of the co-
herent wave. Initially, with a decrease in η, the
recombination of the peaks in the tomogram sug-
gests that the nonclassical properties are getting di-
minished. It can be observed that there is a decrease
in the amplitude of the coherent wave with a reduc-
tion in η. However, the sinusoidal strand structure
denoting the coherent state remains preserved for
η = 0.4. These observations suggest the effective-
ness of filtration in the coherent state.

The stability of the entropic squeezing in the non-
unit quantum efficiency is depicted in Fig. 4. The
evolution of squeezing for varying coherent ampli-
tude and quantum efficiency is projected in the con-
tour view. The faded area denotes the unsqueezed
region, whereas the squeezed area gets dark as the
coherent amplitude decreases and the quantum ef-
ficiency increases. The entropic squeezing is more
robust even in the lower quantum efficiency for the
removal of the single photon number state than the
five photon number state.

5. Impact of decoherence

The nonclassical properties of the quantum states
deteriorate on interaction with the environment.
The decoherence models [39] have been commonly

Fig. 4. The contour view of the degradation of en-
tropic squeezing for non-unit quantum efficiency (η)
for the removal of |1〉 (a) and |5〉 (b) number states.
Quadrature Sy (a) and Sx (b) squeezed for the fil-
tration of |1〉 and |5〉, respectively.

employed in monitoring the extent of nonclassical-
ity in the state. In the following section, the sustain-
ment of the nonclassical nature of NSFS has been
analyzed using the phase decoherence model and
amplitude decoherence model [40, 41].
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Fig. 5. Evolution of optical tomogram under phase damping (a)–(d) and amplitude damping (e)–(h) models
at the given time of κτ = γτ = 0.01, κτ = γτ = 0.1, κτ = γτ = 1, and κτ = γτ = 10 (right to left) for the
state parameter |α|2 = n = 4.

5.1. Phase damping model
The system evolving under this model has been

observed to retain the energy of the system, whereas
the phase information has been observed to be lost.
This can be presented as

Ĥph =

∞∑
j=0

~κ
(
Â ê†j + Â† êj

)
. (12)

Here, êj , ê
†
j denotes the environment modes and Â,

Â† indicate the single mode system that has been
taken into consideration. The system is coupled to
the environment by the coupling constant κ, and
the master equation denoting the described system
is stated as

dρ̂

dτ
= κ

(
2Â ρ̂ Â† − Â† Â ρ̂− ρ̂ Â† Â

)
. (13)

The time evolved density operator can be written
as

ρ̂(τ) =

∞∑
u,v=0

ρu,v(τ)
∣∣u〉〈v∣∣. (14)

The solution of the master equation is
ρu,v(τ) = exp

[
−κ(u− v)2τ

]
ρu,v(τ = 0). (15)

Density operator of NSFS when τ = 0 is represented
as

ρu,v(τ = 0) = N2
n e
−|α|2

[
αuα∗v√
u!v!

− αuα∗n√
n!u!

δn,v

−α
nα∗v√
n!v!

δn,u +
|α|2n

n!
δn,uδn,v

]
. (16)

Time dependent quadrature distribution under
phase damping model is given as
ω(Xφ, φ, τ) = 〈Xφ, φ

∣∣ρ̂(τ)∣∣Xφ, φ〉 =

e−X
2
φ

√
π

∞∑
u,v=0

ρu,v(τ)
Hu(Xφ)Hv(Xφ)√

2(u+v)u!v!
e− i (u−v)φ.

(17)

The considered quantum state is pure at τ = 0.
The qualitative signatures in the optical tomogram
can be monitored by connecting the system to the
environment. Figure 5a–d shows the evolution of
the tomogram pattern and the distinct rapid os-
cillations under the phase damping model. The
evolution of states at different times (κτ = 0.01,
κτ = 0.1, κτ = 1.0, and κτ → ∞) are cap-
tured. It is observed that the state is very robust
for |α|2 = n with the patterns vanishing gradually
as shown in Fig. 5b. The distinguished peaks are
obtained at the given time of κτ = 0.1, whereas
the features weakly decay, retaining the peaks at
the curvatures of the sinusoidal strand. As the time
approaches infinity, the phase illumination of the
state dissipates completely, whereas the particular-
ized form of the decisive mixed state depends on the
initial state as shown in Fig. 5d.

5.2. Amplitude decay model

The Hamiltonian corresponding to the reservoir
connected to the single mode can be represented us-
ing rotating wave approximation as

Ĥamp =

∞∑
j=0

~γ
(
â ê†j + â† êj

)
. (18)

The photon numbers have been observed to de-
crease due to the decay of photons from the system
into the reservoir. This effect can be captured using
the master equation as

dρ̂

dτ
= γ

(
2â ρ̂ â† − â† â ρ̂− ρ̂ â† â

)
. (19)

The solution for (19) is given as

ρl,m(τ) = e−γτ(l+m)
∞∑
k=0

√
(l+kCk) (m+kCk)

×
(
1− e−2γτ

)k
ρl+k,m+k(τ = 0). (20)

520



Optical Tomogram of Number State Filtered Coherent States

Fig. 6. Purity of the NSFS while evolving in time
in (a) the phase damping model and (b) amplitude
damping model.

In this section, the duration of the distinct fea-
tures maintained for the NSFS tomogram is inves-
tigated. Figure 5e–h shows the time evolved optical
tomogram of NSFS under the amplitude damping
model for the coherent amplitude (|α|2) of 4. The
coherent amplitude determines the stretch of the
sinusoidal strand amplitude in the XY projection
of the tomogram. It is observed that the amplitude
of the wave decreases with the reduction in photon
number as it has been absorbed by the reservoir. As
shown in Fig. 5e for (γτ = 0.01), maximum non-
classicality of the state has been emphasized by the
recognization of the individual peaks (ω(Xφ, φ, τ)-
direction) on the sinusoidal strand rather than the
crusts and trough of the strand. The state is ca-
pable of maintaining its features for a longer time
(γτ = 0.1). It has been observed that with the
increase in time (γτ = 0.1), the peaks get fused,
denoting the decrease in the nonclassicality and
the diminishing nature of the amplitude evidence
the reduction in the photon number. In Fig. 5g,
the sinusoidal structure has been maintained for
(γτ=1.0), owing to its greater coherent strength
(α=
√
4). When the state evolves under the ampli-

tude decoherence model for a sufficiently large time
(γτ → ∞), the number of the photons present in
the state are completely evacuated and the state
becomes the vacuum state. Wherein, information

regarding the initial state has been exhausted, at-
tributing to the fact that tomogram of the initial
state does not depend on the final state

ω(Xφ, φ, τ →∞) =
e−X

2
φ

√
π
. (21)

To describe the evolution of the state under am-
plitude and phase damping models quantitatively,
the purity of the state is calculated, and the results
are presented in Fig.6a (phase damping) and Fig. 6b
(amplitude damping). A common feature of both
evolution models is that the state becomes mixed
from the instance when it is connected with the en-
vironmental modes. While the evolution under the
damping model leads to a completely mixed state
at greater periods of time, the purity of the state re-
turns to one in the amplitude damping model since
the residual state is the vacuum state. The decay
of purity in both models follows a similar pattern.
It shows the fragile nature of nonclassicality in the
presence of noise.

6. Conclusions

In this work, we have attempted to reveal the
imprints of number state filtration from a coherent
state in the optical tomogram. Distinct oscillations
on the coherent sinusoidal strand are observed as
the effect of number state filtration from the coher-
ent state. These oscillations are more pronounced
when the number state filtered is matched with the
coherent strength (|α|2). These qualitative features
exhibited in the optical tomogram are substanti-
ated by calculating the entropic squeezing of the
state. The significant squeezing of the Shannon in-
formation entropy is achieved for |α|2 = n = 1.
To study the effect of experiential imperfections on
the evolution of optical tomograms and the subse-
quent quantities derived from them, the non-unit
quantum efficiency of photodetectors is taken into
account. The distinct features, such as rapid oscil-
lations on the sinusoidal coherent strand, are shown
to be resilient to moderate photodetector quantum
efficiencies. Similarly, entropic squeezing is also re-
tained for moderate quantum efficiencies. Further,
the robustness of the state is studied by combining
the system and environment through phase damp-
ing and amplitude damping models, and the subse-
quent time evolution is captured. It has been shown
that the NSFS sustains the oscillations for the spe-
cial case of mean photon number (|α|2) set equal
to the state being filtered (n) for a longer time. Es-
tablished as a mechanism for inducing nonclassical-
ity in classical states, state filtration is expected to
widen the horizon of nonclassical states and their
utilization.
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