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Vertex method to simulate grain growth usually starts with the use of a homogeneous theoretical
microstructure obtained by Voronoi tessellation. This microstructure does not represent real materials
where the grains are not homogeneously distributed in terms of size and orientation. In order to take
into account these inhomogeneities, and consequently correctly describe the grain growth process, in
this paper a vertex simulation begins with the use of the experimental microstructure as the initial
data. To facilitate the simulation procedure as well as the analysis of the result, instead of using only
the network of grain boundaries and vertices to represent the microstructure in the standard vertex
model, we use a hexagonal lattice to discretize the physical space. Each site of the hexagonal lattice is
assigned three Euler angles that represent the grain orientation at that lattice site.
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1. Introduction

The properties of polycrystalline materials are
directly related to their microstructures. The
anisotropic properties of materials are due to the
morphological and textural inhomogeneities of the
microstructure, which result from the grain growth
process at the mesoscopic level. The grains evolu-
tion is governed by the migration of grain bound-
aries (GBs) towards their center of curvature [1].
Consequently, the boundary in the two-dimensional
grain structure decreases its length during grain
growth, and the average grain size R̄ increases by
eliminating small grains.

Various computer models have been used to simu-
late grain growth in polycrystalline materials, which
include vertex [2–4], Monte Carlo (MC) Potts [5–7],
cellular automata [8, 9], and phase field [10, 11].
Grain growth at the mesoscopic scale is usually
studied using stochastic MC and deterministic ver-
tex models. On the one hand, owing to the simplic-
ity and flexibility of implementing the MC method,
it is widely used to simulate several aspects of the
grain growth process. The strength of this tech-
nique results from the easy way the microstructure
is represented. On the other hand, although the ver-
tex technique is based on the physical principles
and is an efficient way to study the grain growth
phenomena, there are some obstacles to this tech-
nique. Its limitations result from the cost of the

high computational complexity of representing of
the microstructure in the standard vertex simula-
tion. For example, topological events such as grain
shrinkage are difficult to manage during the grain
growth process. The grain boundary networks and
the vertices (triple points), at which these bound-
aries intersect, represent the microstructure. The
grains are defined by the collection of boundaries
and the triple junctions surrounding them. Their
area is not discretized.

The vertex model has been used in different sim-
ulation of microstructural evolution such as: recrys-
tallization [12, 13], normal grain growth [4, 14], ab-
normal grain growth [15], and also grain growth
in the presence of the Zener pinning effect [16].
The morphological and textural inhomogeneities of
the microstructure play an important role in the
grain growth process at mesoscopic level. Because
of the complexity of the task, the vertex model does
not make attention to the neighbourhood of indi-
vidual grains. With important progress of electron
backscatter diffraction (EBSD) technology [17], it
has become possible to directly use experimental
microstructures measured by orientation imaging
microscopy (OIMTM) [18] to start the simulation
especially for the Monte Carlo technique. There-
fore, a call was made to develop a standard vertex
technique that enables the full use of EBSD data.
Modifications in the framework of the vertex model
are suggested in the present work, where the grain’s
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area is discretized. The vertex model is laid on top
of a fixed hexagonal lattice that stores the grain ori-
entation data. Neighbouring points with the same
orientation define the grains. The interface lines be-
tween neighbouring points of different orientations
represent GBs. Triple points are automatically rep-
resented. In the simulation procedure, a new defini-
tion for the critical size is given to start the topo-
logical transformations T1 and T2. These modifica-
tions permit for an easy start of simulation using
experimental microstructure.

2. Vertex method of grain growth simulation

In basic vertex models, grains are always limited
by straight edges [2, 3]. During the simulation pro-
cedure, the motion of the triple junctions (real ver-
tices) exclusively controls the minimization of the
free energy of the system. As a result, no driving
forces are associated with the grain boundary cur-
vature. In these models, the driving forces for grain
growth are the grain boundary tensions acting upon
the triple junctions. However, these vertices move in
the direction of the resultant tensions with velocity
vector

vi = mi

3∑
j=1

σij
rij
|rij |

, (1)

where mi [m2/(J s)] is the mobility of the vertex i,
σij [J/m] is the energy per unit length of grain
boundary between the triple points i and j, and
rij is the vector connections point i to the point j.

To consider the driving forces resulting from the
curvature of the grain boundaries, the lines between
the two triple junctions are discretized by the so-
called virtual vertices (double junctions) [19, 20].
At the grain boundary, the virtual vertex is con-
nected to the two nearest neighbouring vertices.
Such vertices permit the calculation of the local cur-
vatures of the grain boundaries. In each time incre-
ment ∆t, the boundary segments or virtual vertices
move perpendicularly to the boundary line with ve-
locity

vi = mgb σgb ρi, (2)
where mgb [m2/(J s)] and σgb [J] are the grain
boundary mobility and energy of the grain, respec-
tively, and ρi [m−1] is the local grain boundary cur-
vature at virtual vertex i.

The new positions of the vertices are calculated
from the following relation

ri (t+ ∆t) = ri (t) + vi (t) ∆t. (3)
The velocities of the vertices vi(t) are obtained from
(1) and (2).

The kinetics of normal grain growth is governed
by increasing the average grain size R̄ according
to [21]

R̄2 − R̄2
0 = k t, (4)

where k [m2/s] is a constant and R̄0 [m] is the initial
average grain size at t = 0.

Fig. 1. Real microstructure (a) and the corre-
sponding network of lines (b). Red points represent
triple points.

In two dimensions, von Neumann and
Mullins [22, 23] showed that the rate of the
growth of n-sided grain is

dA

dt
=
π

3
mgb σgb (n− 6) , (5)

where A [m2] is the area of the grain. A grain with
n > 6 will grow, whereas a grain with n < 6 will
shrink.

3. Development of a standard
vertex method

In the vertex model, the initial microstructure is
constructed using Voronoi tessellation. The real and
virtual vertices (triple and double junctions respec-
tively) represent the grain structure. Because of the
complexity of this representation, few works have
used this method in comparison on other meth-
ods, e.g. MC technique. In the vertex model only
the grain boundary is discretized, but the grain
interior is not; however no assumptions are made
about the shape, size or neighborhood of individ-
ual grains in the vertex model. On the other hand,
the use of a homogeneous theoretical microstruc-
ture obtained by Voronoi tessellation is not repre-
sentative of real materials in which the grains are
not homogeneously distributed in terms of sizes and
orientations. In the present work, first, in order to
take into account morphological and textural in-
homogeneities and, consequently, to correctly de-
scribe the grain growth process, the simulation is
started by using the experimental microstructure as
initial data. In this case, it is not required to intro-
duce virtual vertices to account for the grain bound-
aries curvature. Second, to simplify this technique,
the microstructure is mapped on hexagonal lattice
sites, where each lattice site is assigned three Euler
angles that represent the grain orientation at that
lattice site. Triple points are easily represented be-
tween three neighbouring points with different ori-
entations as shown in Fig. 1.

During grain growth, the grain structure under-
goes topological transformations. In the case of the
2D growth process, two operations express elemen-
tary topological changes of the microstructure, i.e.,
(i) neighbour switching (Fig. 2a) and (ii) annihi-
lation of a three-sided grain (Fig. 2b), which are

468



Vertex Simulation of Grain Growth from Electron Backscatter. . .

Fig. 2. Topological transformations: the neighbor
switching (T1) (a) and annihilation of three-sided
grain T2 (b).

Fig. 3. Topological transformations using a hexag-
onal grid: T1 (in the blue squares), and T2 (in the
red circle).

denoted T1 and T2, respectively. These two trans-
formations are triggered when the distance between
triple junctions is below a certain size. The chal-
lenge in the present study is how to make these
transformations, and especially the T2 event.

In a T1 operation, neighbor switching occurs
when the shrinking edge between two neighbour-
ing vertices reaches a critical small length dth. In
Weygand’s model [20], the length d is given by

dth =
α

nvirt + 1
R̄, (6)

where nvirt is the number of virtual vertices and
α is a simulation parameter chosen small enough
(0.025) to have a negligible influence on the grains
size distribution.

In the present work, according to the hexagonal
lattice sites, the smallest distance d corresponds to
one in the blue squares (Fig. 3a) and is expressed
by

dex =
3

2
∆, (7)

where ∆ is the spacing between lattice sites, i.e., the
distance between two neighbouring lattice points.

In a T2 event, a triangular grain of a small area
is eliminated, when one of its edges is shorter than
some chosen critical value d. The vertex replaces
the removed grain. The critical triangular grain is
nearly equilateral and the value of d is equal to 5%

Fig. 4. Experimental microstructure character-
ized by EBSD (a), the corresponding network of
lines (b), and the corresponding (001) pole fig-
ure (c).

of the initial average diameter [3]. In the present
paper, the use of a hexagonal grid permits us to
define the critical triangular grain that is equilateral
containing 3 neighbouring lattice sites, as shown in
the red circle (Fig. 3a). In this case, (7) gives d.

Using hexagonal lattice sites can solve several
problems that are bound to the use of the stan-
dard vertex models. For example, one can mention
three obstacles. First, the difficulty to detect topo-
logical changes while using a vertex model limits the
massively parallel computations. The use of a reg-
ular grid is convenient mainly for large-scale simu-
lations with low computational costs. Second, when
the Zener drag effect on the grain boundaries is in-
corporated in the model, more complex topology
changes are required [24]. To surmount this obsta-
cle, particles can be introduced into the simulation
as sites that have a special orientation. An individ-
ual particle may consist of a cluster of neighbour-
ing sites. Third, the problem of nucleation should
be dealt with which is necessary for the study of
dynamic recrystallization [12]. Nucleation can be
accomplished by introducing the nucleus into the
matrix lattice sites with orientation numbers cho-
sen from an appropriate set.

4. Results and discussion

The starting microstructure used in the simula-
tion was the real microstructure Fe–3%Si (400 ×
400 µm2) characterized by electron backscattering
diffraction (EBSD) (Fig. 4a). This microstructure
contains N0 = 816 grains with an average grain size
of R̄0 = 7.53 µm. The scan was carried out over
a hexagonal grid of 200 × 231 points with a step
size ∆ = 2 µm. From the EBSD measurements,
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Fig. 5. Temporal evolution of the experimental
microstructure at t∗ = 0 (a), t∗ = 6 (b), and t∗ = 15
(c). Color code defined in the standard triangle (d).

Fig. 6. Variation of grain size with time for the
two grains 1 and 2.

every lattice point orientation is characterized by
three Euler angles (ϕ1, ϕ, ϕ2). The microstructure
is reconstructed from these orientations. A grain
is defined by neighbouring lattice points with the
same orientation, i.e., when a disorientation angle
between them less or equal to 2◦. A grain bound-
ary lies between two adjacent lattice points on the
opposite side. Summing, both the network of lines
or the network of grain boundaries and vertices at
which these boundaries intersect can represent the
microstructure. In Fig. 4b, grains are defined by
the collection of boundaries and the triple junctions
surrounding them. Analysis of the EBSD data is
made by orientation imaging microscopy (OIMTM)
to characterize the microstructure (grain size dis-
tribution, individual grain orientation, texture, in-
verse pole figure, and pole figure). Figure 4c shows
the corresponding matrix (001) pole figure.

Fig. 7. Distribution in size and number of neigh-
bouring grains for the two grains at t∗ = 3.

According to (6) and using the present experi-
mental data, the critical length given in the Wey-
gand’s model is d = 0.19 µm in the case with no the
virtual vertices (nvirt = 0) [20]. In the presence of
the virtual vertices (nvirt > 0), the parameter d will
be even smaller. On the other hand, d = 0.38 µm
from [3]. These values are very small at the meso-
scopic scale, where the distance between two neigh-
bouring sites is ∆ = 2 µm. Thus, it is reasonable
to use in the simulation procedure the proposed ex-
perimental critical distance defined by (7), where
dex = 3 µm.

In this paper, by using MATLAB software, the
simulation is done for the isotropic case where all
energies (σ) and mobilities (m) were assumed to be
uniform. Normalized time is used

t =
t∗

mσ
. (8)

The step time ∆t is chosen to accurately describe
the grain structure evolution. In the present work,
∆t is defined as

∆t =
3

mσ
. (9)

The microstructure’s temporal evolution is dis-
played in Fig. 5. To pursue the local evolution of
grains, orientation maps are used according to the
color code defined in the unit triangle (Fig. 5d).
At different stages of the simulation, normal grain
growth occurs.
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Fig. 8. Comparison between growth of the grains
1 and 2 and that of their first neighbors.

Fig. 9. Square mean-radius variation versus time.

Locally, the evolution of grain growth versus time
is carried out for two grains noted “grain 1” and
“grain 2”, respectively, with the red and blue arrows
in Fig. 5a. In Fig. 6 one observes shrinking and van-
ishing of grain 1, and growing of grain 2.

Morphological and topological aspects of grain
growth can be related to neighborhood behav-
iors [25], which is very difficult to explore using the
standard vertex model. For example, Fig. 7 shows
the neighborhood distribution in size and number
for the two grains. Grain 1 with n = 5 will shrink
(Fig. 7a), in turn, grain 2 with n = 10 will grow
(Fig. 7b). This behavior is in good agreement with
the von Neumann–Mullins law in (5).

Fig. 10. Variation of reciprocal grains number
with time.

Fig. 11. Grain shrinkage velocity variation versus
time.

The grain boundary ij between two neighbouring
grains i and j with radii Ri and Rj , respectively,
moves with the rate(

dRi

dt

)
j

= cmgb σgb

(
1

Rj
− 1

Ri

)
, (10)

where c is a dimensionless constant. For n neigh-
bouring grains, the average growth rate of the i-th
grain can be expressed by

dRi

dt
= cmgb σgb

(
1

R̄mi
− 1

Ri

)
, (11)

where R̄mi is the neighbourhood average radius
1

R̄mi
=

1

n

n∑
j=1

1

Rj
. (12)

A grain with Ri > R̄mi will grow, whereas a grain
with Ri < R̄mi will shrink. Figure 8 shows the evo-
lution of Ri and R̄mi as a function of time for the
two grains (i = 1–2).

Figure 9 illustrates the average matrix grain ra-
dius change over time. This result demonstrates
that the square average grain size increases linearly
with time in accordance with the parabolic kinetics
in (4).
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Fig. 12. Sections of ODF at ϕ2 constant for t∗ = 0 (a) and t∗ = 24 (b).

Together with the circular grains hypothesis, the
matrix average areas S̄0 and S̄ are respectively given
by

S̄ = πR̄2 and S̄0 = πR̄2
0. (13)

On the other hand, using the total matrix area ST ,
the two matrix average areas are as follows

S̄ =
ST

N
and S̄0 =

ST

N0
. (14)

Substituting (13) and (14) into (4), the variation of
grains number during grain growth process will be

1

N
− 1

N0
=
π k t

ST
. (15)

Topological events such as grain shrinkage can be
expressed by changing the number of grains at each
time step. Figure 10 depicts the time dependence
of the reciprocal number of grains N . It was found
that the number of grains decrease with simulation
time. By linear fitting, one obtains a line

1

N
= 4.68× 10−5 t∗ + 1.24× 10−3. (16)

Note that (16) demonstrates that N decreases
with time, which is consistent with (15). The grain
shrinkage velocity can be expressed as

dN

dt∗
= −4.68× 10−5N2. (17)

The sign (−) indicates that N is decreasing. The
number of grains decreases fast in the early stage
of the simulation (Fig. 11) due to the presence of
a large number of small grains that vanish during
the grain growth process.

In pure single-phase polycrystalline material
without particles, normal grain growth is a continu-
ous process during which the grains grow uniformly.
The grain growth and the evolution of the crystal-
lographic texture during the annealing of materials
are closely related. The texture development during

grain growth can be studied in terms of the orien-
tation distribution function (ODF) intensities [26].
To see the evolution of the textural state at each
step of the simulation process, the ODF’s ϕ2 sec-
tions have been calculated using the OIMTM maps.
The texture change was analyzed for the two mi-
crostructures obtained at t∗ = 0 and t∗ = 24, re-
spectively. Figure 12 shows the increase of the max-
imum ODF value from 7.4 at t∗ = 0 (a) to 8.5 at
t∗ = 24 (b) due to normal grain growth. For exam-
ple, from the sections ϕ2 = 50◦, the maximum in-
creases from 7.2 (t∗ = 0) to 8.3 (t∗ = 24) for the
point A (24.8◦, 50.9◦, 50◦), and from 7.1 (t∗ = 0) to
8.0 (t∗ = 24) for the point B (84.8◦, 60.0◦, 50.0◦),
respectively.

5. Conclusions

The observed difficulty, when one uses the stan-
dard vertex model, comes from the complexity of
the representation of the microstructure and con-
sequently the results analysis. In the present work,
to take into account the microstructure morphologi-
cal and textural inhomogeneities, the vertex method
for the grain growth simulation was started with
an experimental microstructure measured by elec-
tron backscattering diffraction (EBSD). To agree
with the experiment data, a new representation of
the microstructure has been proposed. Instead of
using only the network of grain boundaries and
vertices to represent the microstructure, the phys-
ical space is discretized on a regular grid of points
where each point of the lattice is assigned three Eu-
ler angles that represent the grain orientation at
that point. This modification improves the vertex
simulation efficiency and reproduces the global fea-
tures of the grain growth process.
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