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Optimal geometries of vector phase matching are determined for the second harmonic generation in
biaxial non-linear optical crystals of orthorhombic symmetry — CBO, LRB4, LBO, KB5, KNbO3, KTA,
KTP. The directions of wave vectors ensuring the highest possible efficiency of the second harmonic
generation are defined by the extreme surface method. It is shown, that the increase of the second
harmonic generation efficiency (tens to hundreds per cent) provided by the realization of vector phase-
matching conditions compared to the case of the scalar ones takes place for CBO, LRB4, KB5, KNbO3,
KTA and KTP crystals.
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1. Introduction

Second harmonic generation (SHG) in non-linear
optical media attracts attention of researches for
recent decades. This effect is widely used to obtain
coherent light with wavelength shorter than the pri-
mary source [1–3]. The efficiency of SHG in crystals
strongly depends on the directions of pump (initial)
and second harmonic (output) beams. Thus, to en-
sure the highest possible efficiency, determination
of their optimal directions should be carried out.
This problem poses no difficulties for uniaxial non-
linear optical crystals and scalar phase matching
(SPM) [4]. However, the problem is complicated for
biaxial crystals, and especially vector phase match-
ing (VPM), when the directions of the wave vec-
tors of the pump and SH beams do not coincide.
Although the efficiency in the case of the VPM is
limited by relatively low length of the interaction re-
gion due to the non-collinearity of the pump beams,
the wide variety of possible directions may lead to
a significant increase of the conversion efficiency. To
determine the directions of the pump and SH beams

corresponding to the highest SH efficiency in biax-
ial non-linear optical crystals, here we use a previ-
ously developed technique based on the construc-
tion and analysis of extreme surfaces to optimize
the geometry for optical effects (i.e., determining
the optimal directions of light beams, acoustic wave,
electrical field etc.) [5–7] and expanded further on
the case of non-linear optical effects in uniaxial me-
dia [8]. Optimization is performed for a number of
frequently-used non-linear biaxial optical crystals of
orthorhombic syngony.

2. Basic relations

The main relations used for the analysis were
given in [8]. To take into account only the depen-
dence of the SHG efficiency on the directions of the
light beams, we consider the geometrical factor of
the efficiency

η =

(
e3 d̂ e1e2

)2

n1 (λp)n2 (λp)n3 (λSH)
. (1)
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Here d̂ is the non-linear susceptibility tensor, e1,
e2, e3 are the unit vectors parallel to the electric
vectors of the corresponding waves determined for
each direction of the wave vector k in a known
manner (see, e.g. [4]), while n(λ1), n(λ2), n(λ3)
are their refraction indices. Next λp is the pump
beams wavelength, λSH is SH beam wavelength
(λSH = 0.5λp), n1,2(λp), n3(λSH), are refraction in-
dices at the corresponding wavelength. In the case
of SPM, n1(λp) = n2(λp). For ease of description,
we will refer to η as “efficiency”. Now, (1) is used for
the construction of the extreme surfaces represent-
ing the highest achievable values of η for all possi-
ble directions of the output wave vector k3, deter-
mined by the angles θ, φ of the spherical coordinate
system.

As it is known, the highest SH efficiency is
achieved when the phase-matching (PM) condition
is realized. Its general form is

k3 = k1 + k2, (2)
where k1, k2 are the wave vectors of the pump
beams with the frequency ω, and k3 is the wave
vector of the SH beam with the frequency 2ω. For
scalar PM (SPM), (2) comes to the relationship be-
tween the absolute values of the wave vectors.

Generally, two orthogonal polarization light
waves can propagate in an anisotropic crystalline
material for each direction. In the case of biaxial
crystal, the lengths of the wave vectors of these
waves k = |k| are determined using [4]
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where K1, K2, K3 are the lengths of the wave
vectors along crystallographic axes, Ki = 2πNi/λ
(i = 1, 2, 3), Ni are the main refraction indices, and
m1, m2, m3 are the components of the wave nor-
mal. Here (3) describes the wave vector surface with
a double cavity (Fig. 1). The external part of this
surface corresponds to a “slow” (s) wave character-
ized by a higher value of the refraction index n and,
consequently, a higher absolute value of the wave
vector k = 2πn/λ, and the internal part of the sur-
face — to the “fast” (f) wave. For biaxial crystals,
the PM condition (2) can be satisfied in two possible
cases: (i) both pump waves are slow (ssf or type I
phase matching) or (ii) one pump wave is slow and
the other is fast (sff or type II phase matching) [3].
In both cases, the SH wave is the fast one.

The analysis of the scalar phase-matching con-
ditions for biaxial crystals has been carried out in
a number of papers (see, e.g [9–11]), but the general
case of the vector PM has not yet been analyzed.
Considering the VPM is significantly complicated
by the fact that for each direction of k3, the PM
condition (2) can be satisfied for different directions
of k1, k2 (Fig. 2). Generally, different values of the
efficiency η correspond to different k1, k2 (for the

Fig. 1. One-eighth part of the wave vector surface
for the case of biaxial crystal.

Fig. 2. The mutual position of the wave vectors of
pump and SH beams.

same k3). To determine the maximum value, ηmax,
the values of η should be calculated for all k1, k2

(certainly, with a small enough step) forming the
cone in Fig. 2. Notably, all possible vectors k1 are
finished and all possible vectors k2 start with the
line C which points can be determined in the fol-
lowing way. Let the wave vector k3 is known and, for
certainty, the type I (ssf) PM is considered. In this
case both wave vectors k1 and k2 are finished on the
external part of the wave vector surface. Let’s shift
the surface corresponding to the wave vector k2 to
the end of the wave vector k3. Now the surfaces
for the wave vectors k1 and k2 intersect along the
closed line C, each point of which corresponds to the
ends of vectors k1 and k3+k2 (if this intersection is
absent, the PM can not be achieved for considered
wavelengths and type of phase matching). Because
the inversion of the wave vector k2 does not change
the polarizations of the light beams, this line cor-
responds to the condition (2). In our analysis, the
Dragilev’ method (see Appendix in [12]) was used
to determine this line. The determination of the line
C is described in more detail in [8] for the case of
uniaxial non-linear optical crystals.

If the maximal efficiency ηmax was determined for
all possible SH wave vector directions (determined
by the angles of spherical coordinate system θ, φ;
as usual θ = 0 . . . π, φ = 0 . . . 2π), the global maxi-
mal value of the efficiency ηextrmax can be obtained as
the highest value from the set of the ηmax values
determined for all k3. The dependence ηmax (θ, ϕ)
is conveniently presented as a 3D surface (extreme
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TABLE IParameters of considered crystals.

Crystal
Wavelengths and main refraction indices Non-linear

susceptibilities
dij [pm/V]

λp [µm]
Pump beams SH beam

N1 N2 N3 N1 N2 N3

Point group 222
CsB3O5 (CBO) 1.0642 1.5196 1.5494 1.5770 1.5336 1.5682 1.5958 d14 = d36 = d25 = 1.49

LiRbB4O7 (LRB4) 1.0642 1.5018 1.5225 1.5342 1.5157 1.5414 1.5473 d14 = d36 = d25 = 0.45

Point group mm2
LiB3O6 (LBO) 1.0642 1.5648 1.5904 1.6053 1.5785 1.6065 1.6216 d15 = −0.67; d24 = 0.85;

d31 = −0.67; d32 = 0.85;
d33 = 0.04

KB5O8·4H2O (KB5) 0.5321 1.4889 1.4359 1.4233 1.5317 1.4759 1.4637 d15 = 0.04; d24 = 0.003;
d31 = 0.04; d32 = 0.003;
d33 = 0.05

KNbO3 1.0642 2.2575 2.2194 2.1195 2.3816 2.3225 2.2031 d15 = −12.4; d24 = −12.8;
d31 = −11.9; d32 = −13.7;
d33 = −20.6

KTiOAsO4 (KTA) 1.0642 1.7891 1.7928 1.8679 1.8294 1.8357 1.9311 d15 = 2.5; d24 = 4.4;
d31 = 2.9; d32 = 5.1;
d33 = 16.2

KTiOPO4 (KTP) 1.0642 1.7379 1.7455 1.8297 1.7779 1.7887 1.8886 d15 = 1.9; d24 = 3.7;
d31 = 2.2; d32 = 3.7;
d33 = 14.6

in accordance to its calculation method). Here we
construct such surfaces and determine the optimal
PM conditions for a number of orthorhombic non-
linear optical crystals which parameters are given
in Table I. The values of the parameters are taken
from [3, 13], in particular, the refraction indices
were calculated in accordance with Sellmeier equa-
tions given in these papers. The pump beams wave-
lengths are equal to 1.0642 µm for all crystals, ex-
cept for KB5 where the pump beams with shorter
wavelengths are used for SHG [13]. The transfor-
mation of the axes from the crystallographic co-
ordinate system (abc) to the crystal-optics system
(XY Z) were carried out in accordance with the
rules given in [3, 11]:

• XY Z ↔ cab (CBO crystal),
• XY Z ↔ bca (LRB4),
• XY Z ↔ acb (LBO),
• XY Z ↔ abc (KB5, KTA, KTP),
• XY Z ↔ bac (KNbO3).

Note that all extreme surfaces were constructed in
crystal-optics coordinate system.

3. Results and discussion

The general and the top views of the extreme sur-
faces of the SHG efficiency ηmax for the investigated
crystals are shown in Figs. 3 and 4. The black lines
correspond to the scalar PM conditions. Because

the type II PM can not be achieved in KB5, KNbO3,
KTA crystals for the considered wavelengths, only
one extreme surface is shown for each of them. The
results of optimization are given in Tables II and III
where, for brevity, the position of only one of the
equivalent maxima for each crystal is indicated. In
the last columns in Tables II and III, the relative
increase of the efficiency

κ =
ηextrv − ηextrsc

ηextrsc

× 100% (4)

caused by the use of the vector PM in comparison
with scalar one is given (in brackets). Here, ηextrv

and ηextrsc are the highest achievable values of the
efficiency in the VPM and SPM cases, respectively.

As it is seen in Figs. 3 and 4, the forms of the ex-
treme surfaces for crystals of the same point group
are usually not similar (such similarity is observed
only for the case of ssf PM in KTA and KTP,
and, to some extent, for CBO and LRB4). This
is obviously due to different rules of coordinates
transformation and different relationships between
the values of non-linear susceptibilities dij . Note
that the extreme surfaces for ssf PM in KTA and
KTP do not have the symmetry axes of 4th order
as it can be mistakenly concluded from Fig. 4. In
particular, for the KTA crystal, the angle in the
XY plane between the directions corresponding to
the maxima of ηmax is equal to 93.5◦ between the
“petals” placed in the first and second, as well as in
the third and forth octants. Correspondingly, the
angles between the “petals” placed in the second
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Fig. 3. The extreme surfaces ηmax(θ, φ) [pm2/V2] for VPM in crystals of 222 symmetry: (a) ssf CBO, (b) sff
CBO, (c) ssf LRB4, (d) sff LRB4.

Fig. 4. The extreme surfaces ηmax(θ, φ) [pm2/V2] for VPM in crystals of mm2 symmetry: (a) ssf LBO, (b)
sff LBO, (c) ssf KB5, (d) ssf KNbO3, (e) ssf KTP, (f) sff KTP, (g) ssf KTA.
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TABLE IIResults of optimization (type I PM, ssf).

Crystal

Phase matching
Scalar Vector

Angles [deg] ηextrsc

[pm2/V2]

Angles [deg]
(pump beams)

Angles [deg]
(SH beam)

ηextrv [pm2/V2]
(κ)

θ φ θp φp θ φ

CBO 112.5 0 0.32 56.9 90 45.7 90 0.59 (84%)
34.5 90

LRB4 44.9 213.7 0.037 37.9 90 45.2 90 0.057 (54%)
52.6 90

LBO 89.9 168.4 0.17 coincides with SPM
KB5 121.4 133.4 2.0× 10−4 100.6 90 90 90 4.9× 10−4 (145%)

79.4 90
KNbO3 71.4 0 12.0 102.6 90 90 90 16.7 (39.2%)

77.4 90
KTA 131.6 42.1 0.081 118.7 141.2 123.5 136.8 0.095 (17.3%)

128.2 131.7
KTP 134.7 218.4 0.055 116.0 36.3 122.7 41.7 0.082 (49%)

129.3 48.1

TABLE IIIResults of optimization (type II PM, sff).

Crystal

Phase matching
Scalar Vector

Angles [deg] ηextrsc

[pm2/V2]

Angles [deg]
(pump beams)

Angles [deg]
(SH beam)

ηextrv

[pm2/V2]
(κ)θ φ θp φp θ φ

CBO 76.7 147.1 0.48 90 127.6 90 133 0.59 (23%)
90 138.6

LRB4 69.1 109.7 0.054 coincides with SPM
LBO 20.5 90 0.10 coincides with SPM
KB5 phase matching is absent

KNbO3 phase matching is absent
KTA phase matching is absent
KTP 90 156.6 2.0 coincides with SPM

and third, forth and first octants is 86.5◦. The same
angles for the KTP crystal are 96.5◦ and 83.5◦, so
the extreme surfaces do not reveal the symmetry
higher than orthorhombic.

For some crystals (KB5, KNbO3, KTA), the sff
PM conditions are not fulfilled for the considered
wavelengths. Also, as it is followed from our calcu-
lations, the use of type I (ssf) VPM does not allow
to increase the efficiency η compared to the case of
SPM for LBO crystals. In these cases, in Fig. 3, the
lines corresponding to SPM frame the edges of the
extreme surfaces and pass through the points cor-
responding to ηextrv . The same situation takes place
in the case of type II (ssf) VPM in LRB4, LBO and
KTP (Table III). In other cases the increase of the
SHG efficiency ensured by ssf vector PM is equal to
84% for CBO, 54% for LRB4, 145% for KB5, 49%

for KTP, 39% for KNbO3 and 17% for KTA crys-
tals, whereas for sff VPM in CBO it is remarkably
lower (23%). Thus, in some instances, especially for
ssf phase matching, the use of the vector PM allows
to obtain significantly higher efficiencies than the
use of scalar, indicating a possible way to enhance
the performance of non-linear optical devices.

4. Conclusions

Optimal geometries of vector phase matching
were determined for second harmonic generation
in biaxial non-linear optical crystals of orthorhom-
bic symmetry — CBO, LRB4, LBO, KB5, KNbO3,
KTA, KTP. The directions of wave vectors ensuring
the highest possible efficiency of SHG were defined
by the extreme surface method. Both first (ssf) and
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second (sff) type phase matching were considered.
As it is shown, the highest achievable SHG efficien-
cies for vector PM are not higher than the ones for
scalar PM in the cases of LRB4 (sff), KTP (sff) and
LBO (both types of PM). Besides, sff PM is absent
in KB5, KNbO3 and KTA crystals at the initial
beams wavelengths considered. Relative increasing
of the efficiency in the case of ssf VPM is equal to
84% for CBO, 54% for LRB4, 145% for KB5, 49%
for KTP, 39% for KNbO3 and 17% for KTA. For
sff VPM the relative increase of the efficiency is ob-
served only for one of the investigated crystals, i.e.,
CBO, and amounts about 23%.
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