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In this work, we calculate the dielectric function, depending on frequency, wave-vector and temperature
in a two-dimensional nanostructure, including a single-layer quantum well. For this purpose, we used
the theoretical expressions, also taking into account the exchange interactions of particles in a quantum
well (a layer) placed in a boundless medium. These expressions include the response function, the
Fourier transform of the Coulomb potential, and the local field correction factor. As it follows from
our calculations, a considered nanostructure forms an active material, increasing and decreasing the
electromagnetic field for some types of photons and also not allowing some types of photons to pass
into the material. The temperature dependence of the dielectric function shows that increasing the
temperature changes the interaction of the electromagnetic field with the structure.
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1. Introduction

Nanotechnologies and nanostructures are respon-
sible for many outstanding properties that can be
used in a wide range of practical applications. In
this work, we consider a two-dimensional particle
system with a quantum well, interacting with the
two-dimensional gas of particles (holes) of the en-
vironment. The calculations were carried out us-
ing the theoretical expressions from [1] that in-
clude the response function, Fourier transform of
the Coulomb potential and the local field correc-
tion factor. These expressions take the form

ε(q, ω, T ) = 1− ν(q)χ0(q, ω, T )

1 + ν(q)χ0(q, ω, T )G(q)
(1)

where G(q) — a local field correlation factor con-
taining exchange correlation effects, χ0 — noninter-
acting electronic response function [2], and ν(q) —
the Fourier transform of the Coulomb interaction
such that

ν(q) =
2πe2

εs q
F (q l), (2)
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3x+ 8π2

x

x2 + 4π2
− 32π4

x2
1− e−x

x2 + 4π2
(3)

where L — the quantum layer thickness, εs —
a background dielectric constant, F (x) — the form
factor of an infinite rectangular quantum well [3].
In [4] we showed that the most important parame-
ter in such studies is the size of the well, its form can
be expressed by the structure factor, and the value
of the potential barrier does not change the energies

more than about 10%. Therefore, we consider the
infinite rectangular quantum well. The expressions
for the real and imaginary part of response func-
tion (χ0) are given in [6, 7] for dimensionless tem-
perature, wave vector, energy and chemical poten-
tial, depending on the temperature. These functions
have the following forms
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We used (1)–(5) for the investigations of the real
part of the dielectric function and to analyze its
dependence on different parameters.

2. Results and discussions

2.1. The dependence of Re(ε) on the frequency

For our investigations, we used the following pa-
rameters

L = 20× 10−9 m, ε0 = 8.85× 10−12 F/m,

εs = 3.5× 10−3, G (Q) =

{
0.21, if Q ≤ 2,

0.42, otherwise,

(6)
and we calculated the real part of the dielectric
function at room temperature, as a function of fre-
quency for different wave vectors. The obtained
family of curves is shown in Fig. 1.

As we can see for particles with a large momen-
tum (curve 4 in Fig. 1), the dielectric function does
not change significantly with frequency, but it un-
dergoes a general trend, i.e., it is constant for low
frequencies and weakly dependent on the frequency
of the high frequency region. For some small mo-
menta (curves 1 and 2 in Fig. 1), we observe the area
with the special point min(Re(ε)) for the dielectric
function, where the nonlinear effect of the quan-
tum layer on the two-dimensional electron gas can
be observed. On the other hand, for high frequen-
cies, the curves go towards the limit value, which,
as our calculations have shown, is constant and in-
dependent of frequency, wave vector and temper-
ature. For all values shown in Fig. 1, we obtain
positive values of the dielectric function. In Fig. 1,
we also see nonmonotonic dependence of the real
part of the dielectric function on the wave vector.
This nonmonotony is vividly illustrated in Fig. 2,
which shows the obtained dependence of the dielec-
tric function on the frequency for small wave vec-
tors: curve 1) for q = 0.12; curve 2) for q = 0.15;
curve 3) for q = 0.17; curve 4) for q = 0.2.

Fig. 1. The real part of the dielectric function of
a two-dimensional electron gas in a medium with
a quantum well for wave vectors 0.4 < q < 1.5: 1 —
q = 0.4, 2 — q = 0.45, 3 — q = 0.5, 4 — q = 1.5.

Fig. 2. The real part of the dielectric function of
a two-dimensional electron gas in a medium with a
quantum well for wave vectors 0.12 < q < 0.2: 1 —
q = 0.12, 2 — q = 0.15, 3 — q = 0.17, 4 — q = 0.2.

Fig. 3. The real part of the dielectric function of
a two-dimensional electron gas in a medium with a
quantum well for wave vectors 0.145 < q < 0.16 1
— q = 0.145, 2 — q = 0.15, 3 — q = 0.155, 4 —
q = 0.16.

The behaviour of curves 1, 3, 4 actually repro-
duce the dependence for large wave vectors in Fig. 1.
There are constant values of the dielectric function
for a certain frequency range (ω � ωkr), a sharp
decline of the function to its smallest value, fol-
lowed by its monotonic growth and following to
its asymptote. However, in contrast to the previous
case, there is a range of values for which the dielec-
tric function is negative. Besides, curve 2 in Fig. 2
has an inverse tendency — the dielectric function
is constant and negative for low frequencies with
a sharp increase in the narrow area and a maximum
at a certain point, and the monotonic decrease to
the asymptotic value. As Re(ε) increases, we ob-
serve a change in its sign. For a narrow range of
values of the wave vector (0.145; 0.15; 0.155; 0.16)
we obtained the dependence presented in Fig. 3.
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Fig. 4. Re(ε(t)) for (a) q = 0.15 and (b) q = 0.17:
1 — ω = 0.2, 2 — ω = 0.25, 3 — ω = 0.3, 4 —
ω = 0.35, 5 — ω = 0.4, 6 — ω = 0.45.

As one can see from curve 3 in Fig. 2, just after
achieving the dimensionless pulse q = 0.17, we ob-
serve inversion dependence typical for the full range
of wave vectors.

2.2. Temperature dependence

We also investigated the temperature depen-
dence of the real part of the dielectric function for
q = 0.15, which falls into a special region (Fig. 4a),
and for q = 0.17 (Fig. 4b). We obtained the in-
verse trend of the temperature dependence for vi-
brations with the same frequencies but different
wave vectors:

• curve 1 (ω = 0.2) has negative values and in-
creases monotonically for q = 0.15, and for
q = 0.17 it has positive values and decreases
monotonically;

• curve 2 (ω = 0.25) increases monotonically
and changes its sign for q = 0.15, and for
q = 0.17 it decreases monotonically, always
being positive;

• curve 3 (ω = 0.3) is a positive and monotoni-
cally decreasing function for both cases;

• curves 5 (ω = 0.4) and 6 (ω = 0.45) are
nonmonotonic, weakly dependent on temper-
ature, positive for q = 0.15 and negative for
q = 0.17;

• for some vibrations (curve 2 in Fig. 4a and
curve 4 in Fig. 4b), increasing the temperature
leads to the sign change in Re(ε).

The inverse tendencies that we observed in the
dependence of the actual dielectric function on fre-
quency also occur with an increase of the tempera-
ture (amplified by the temperature dependence). As
our calculations show, for large wave vectors and
high frequencies, the dielectric function is a con-
stant asymptotic value independent of the parame-
ters of the problem.

3. Conclusions

Investigations of the dielectric function of a two-
dimensional electron structure with a quantum well,
in which the exchange interaction between parti-
cles is taken into account, for room temperature
showed that:

1. There is a large range of values of the wave
vector (0.17 < q < 1.5) for which the dielec-
tric function of the frequency is nonmonotonic
in a minimum. It means that medium with
a quantum well will attenuate electromagnetic
oscillations for certain frequencies (decreasing
part of the function) and reinforce for other
ones (growing area). For high frequencies, in
all cases the dielectric function goes to its
asymptotic value and is independent of the
wave vector, temperature and frequency.

2. For a small region of oscillations with the wave
vector 0.145 < q < 0.16, we get a region with
a negative dielectric constant — such elec-
tromagnetic oscillations will not pass inside
the structure, but will be reflected from the
surface.

3. In both region cases, the many-body interac-
tion of electrons leads to the fact that such
a structure interacts with the electromagnetic
field as an active material.

4. The temperature dependence of the dielec-
tric function for the two analyzed regions re-
veals inverse dependence of the dielectric con-
stant. Namely, Re(ε) is negative for: curve 1
(ω = 0.2) at q = 0.15 (Fig. 4a) and curve 5
(ω = 0.5) at q = 0.17 (Fig. 4b), or positive
for: curve 1 (ω = 0.2) at q = 0.17 (Fig. 4b)
and curve 5 (ω = 0.5) at q = 0.15 (Fig. 4a).

5. The temperature increase leads to the sign
change in Re(ε) for some oscillations: curve 2
(ω = 0.25) at q = 0.15 (Fig. 4a) and curve 4
(ω = 0.35) at q = 0.17 (Fig. 4b).

6. Different temperature dependence of Re(ε)
denotes that the frequency dependence is
a strongly nonmonotonic function. We passed
our calculations for room temperatures to
follow the influences of electron quasi-
momentum and frequencies. For small mo-
mentum, we obtained a family of nonmono-
tonic functions with singularity typical for
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generalized functions. To the left of singular-
ity (for small frequencies), we get the func-
tion almost independent on ω, with the values
overcoming asymptotic, typical for the right
side of singularity. After the singularity, our
function increases rapidly and moves to the
asymptotes (curve 1 for our dimensionless cal-
culations). This actually means that we get
higher values of Re(ε) for small ω. Such a con-
clusion is in good agreement with the fact
that the layered systems are effective for low
energies [7].

We see that the presence of a quantum well in
a two-dimensional structure leads to an inhomoge-
neous and nonlinear response of the medium to the
applied electromagnetic field. Some oscillations will
not pass into such an environment, and some will
be amplified or attenuated by the medium. How-
ever, the asymptotic values of the dielectric function
are constant, independent of frequency, and change
slightly with temperature. They are the same for
Re(ε(∞)) and have different values for Reε(0), de-
pending on the wave vector of the particle.
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