Proceedings of the International Conference on Oxide Materials for Electronic Engineering (OMEE 2021)

Four-Component Perovskites in A-R-Fe-O Systems at 1200°C (A — Alkaline-Earth, R — Rare-Earth Metal)

O. ZAREMBA*, V. HRYTSAN AND R. GLADYSHEVSKII

Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, 79005 Lviv, Ukraine

Doi: 10.12693/APhysPolA.141.304

*e-mail: oksana.zaremba@lnu.edu.ua

The formation of four-component perovskites in the A–R–Fe–O systems, where A is an alkaline-earth and R a rare-earth metal, was studied on the basis of the analysis of 36 polycrystalline samples synthesized by a multi-stage solid-state reaction method and annealed at 1200°C. X-ray diffraction was chosen as the main method of investigation. The existence of $A_{0.5}R_{0.5}FeO_3$ ternary compounds with CaTiO₃-type perovskite structures (Pearson symbol cP5, space group Pm-3m) was shown in the {Ca,Sr}–R–Fe–O systems, i.e., Ca_{0.5}Pr_{0.5}FeO₃ (a = 3.8501(3) Å), Ca_{0.5}Nd_{0.5}FeO₃ (a = 3.8486(4) Å), Sr_{0.5}Pr_{0.5}FeO₃ (a = 3.8783(4) Å), Sr_{0.5}Nd_{0.5}FeO₃ (a = 3.8752(4) Å), Sr_{0.5}Sm_{0.5}FeO₃ (a = 3.8653(2) Å). The remaining Ca_{0.5}R_{0.5}FeO₃ samples contained as main phase R_{1-x}Ca_xFeO₃ solid solutions with orthorhombic structure (x up to 0.25, GdFeO₃ type, oP20, Pnma), whereas the Sr_{0.5}R_{0.5}FeO₃ samples contained Sr_xR_{1-x}FeO₃ solid solutions with cubic structure (x up to 0.4, CaTiO₃ type). Annealing of Ba-containing samples at 1200°C led to the formation of Ba_{1-x}R_xFeO₃ ($x \simeq 0.15$) solid solutions based on the BaFeO₃ phase (CaTiO₃ type) for light rare-earth metals.

topics: alkaline-earth metal, rare-earth metal, iron, perovskite

1. Introduction

Perovskites form a huge family of compounds derived from the structure of the CaTiO₃ type. They possess numerous unique physical properties, among which are: colossal magnetoresistance, magnetic ordering, thermal, optical, dielectric, piezoelectric, and ferroelectric properties, electronic conductivity, superconductivity, catalytic activity, etc. Nowadays, perovskites, especially those containing alkaline-earth (A) and rare-earth (R) metals, represent an important class of fundamental materials due to their widespread application in various branches of technology [1–3]. Thus, a detailed study of the relationship between the conditions of formation, composition, crystal structures, and properties of perovskites is of great interest.

Analysis of literature data on A–R–Fe–O systems [4] showed the formation of four-component (A,R)FeO₃ perovskites in the vast majority of the cases. In the Ca–R–Fe–O systems, such phases exist for R = light rare-earth metal (except Pm and Eu) and Dy and belong to the CaTiO₃ or GdFeO₃ structure types. A similar situation is observed in the Sr–R–Fe–O systems, i.e., (Sr,R)FeO₃ phases are formed for R = light rare-earth metal (except Pm) and Dy and their structures can be described by the CaTiO₃, GdFeO₃, LaAlO₃, Ba(Pb_{0.5}Bi_{0.5})O₃, or $Sr(Fe_{0.5}Ru_{0.5})O_3$ types. Regarding the Ba–R–Fe–O systems, there is information about the formation of (Ba,R)FeO₃ phases with most R elements (except Pm, Eu, Dy, and Ho), and all of them belong to the CaTiO₃ type. We noticed that the phases described above differ not only in their structures but also in the conditions of formation and A/R ratio, which motivated us to carry out a systematic study of the AFeO₃–RFeO₃ cross-sections.

This study follows up an investigation of ceramic samples of the A-R-Fe-O systems synthesized at 1000°C [5]. As a result of X-ray diffraction studies, the presence of four-component phases $R_{1-x}Ca_xFeO_3$ ($x \simeq 0.15$) with GdFeO₃-type perovskite structures (oP20, Pnma) was discovered in the Ca-R-Fe-O systems. We also showed that $Sr_{1-x}R_xFeO_3$ ($x \simeq 0.20$) phases with the CaTiO₃ structure type (cP5, Pm-3m) and $R_{1-x}Sr_xFeO_3$ $(x \simeq 0.10)$ phases with the GdFeO₃ structure type are formed on the SrFeO₃-RFeO₃ crosssections of the Sr-R-Fe-O systems. The formation of four-component perovskites in the Ba-R-Fe–O systems was not observed under the conditions of that investigation. The aim of this work was to find the existence of four-component perovskites in the A-R-Fe-O systems at a higher temperature $(1200^{\circ}C)$.

2. Experimental

Samples of nominal composition $A_{0.5}R_{0.5}FeO_3$ (A = Ca, Sr or Ba, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu) were obtained by a multi-stage solid-state synthesis from powders of alkaline-earth metal carbonates, rare-earth metal and iron(III) oxides of high purity. At the initial step, appropriate quantities of the reagents were mixed and heated in a muffle furnace SNOL-1.6 at 1000°C for 24 h to decompose the carbonates. Then the mixtures were ground, pressed into tablets ($m \simeq 0.5$ g), and again sintered under the same conditions. Finally, all the samples were ground, pressed, and annealed in a tube furnace SNOL-0.3/1250 at 1200°C for 8 h.

X-ray powder diffraction data, collected on a DRON-2.0M diffractometer (Fe K_{α} radiation, $20 \leq 2\theta \leq 80, 1^{\circ}/\text{min}$), were used for phase and structural analysis performed by the Rietveld method. The refinement of the structural parameters (unit-cell parameters; atom coordinates; site occupancies; scale factor; zero shift; FWHM parameters U, V, W; mixing parameter; asymmetry of peaks, etc.) was carried out using the DBWS program [6]. To evaluate the quality of the refinement, the reliability Bragg factor ($R_{\rm B}$) was applied.

3. Results and discussion

As a result of the phase analysis of the polycrystalline samples with nominal composition $A_{0.5}R_{0.5}FeO_3$ annealed at 1200°C, the formation of the ternary phases $Ca_{0.5}Pr_{0.5}FeO_3$ and $Ca_{0.5}Nd_{0.5}FeO_3$, which crystallize with cubic CaTiO₃-type structures (*cP5*, *Pm-3m*), was discovered. The refined crystallographic parameters of these perovskites are presented in Table I. The structural model for the refinements was taken from [7]. Diffraction patterns of the corresponding single-phase samples are shown in Fig. 1. The other $Ca_{0.5}R_{0.5}FeO_3$ samples contained, as

Fig. 1. XRD powder patterns of $A_{0.5}R_{0.5}FeO_3$ samples annealed at 1200°C.

TABLE I

Results of XRD phase and structural analysis of $A_{0.5}R_{0.5}FeO_3$ samples annealed at 1200°C (structure type CaTiO₃, Pearson symbol cP5, space group Pm-3m, content = 100 wt%).

Unit-cell		
parameter a [Å]	$R_{\rm B}$	
2 9501(2)	0.091	
3.6501(3)	0.081	
3 8486(4)	0.007	
3.0400(4)	0.097	
2 9792(4)	0.005	
3.0703(4)	0.095	
3.8752(4)	0.005	
3.8732(4)	0.095	
9.9651(4)	0.004	
3.0031(4)	0.094	
3 8653(2)	0.047	
5.0050(2)	0.041	
	Unit-cell parameter a [Å] 3.8501(3) 3.8486(4) 3.8783(4) 3.8752(4) 3.8651(4) 3.8653(2)	

the main phase, $R_{1-x}Ca_xFeO_3$ solid solutions based on the RFeO₃ phases (x up to 0.25, GdFeO₃ type, oP20, Pnma). The unit-cell volumes of the $R_{1-x}Ca_xFeO_3$ phases versus the atomic number of the rare-earth element (R) are displayed in Fig. 2. The cell parameters decrease linearly with the increasing atomic number of the rare-earth metal, in agreement with Vegard's law. Figure 3 shows the crystal structures of the cubic CaTiO₃ and orthorhombic GdFeO₃ perovskite types.

The results of the phase analysis of the polycrystalline samples of nominal composition $Sr_{0.5}R_{0.5}FeO_3$ annealed at 1200°C are presented in Table II. In this case, the formation of ternary $Sr_{0.5}A_{0.5}FeO_3$ phases, characterized by the cubic CaTiO₃ perovskite structure, was observed for A = Pr, Nd, Sm, and Eu (see Tables I and II and Fig. 1). The samples with other rare-earth elements (except Er) were two-phase. They were contained in equilibrium $Sr_x R_{1-x} FeO_3$ solid solutions (based on the SrFeO₃ phase with the structure of cubic perovskite, x up to 0.4) and the corresponding $RFeO_3$ phase (with the structure of orthorhombic perovskite). It was not possible to trace some tendency of the cell parameters for the $Sr_{x}R_{1-x}FeO_{3}$ solid solutions, since the replacement of larger R atoms by smaller ones (from Gd to Lu) was accompanied by an increase of x (the content of Sr atoms).

The qualitative phase analysis of the $Ba_{0.5}R_{0.5}FeO_3$ samples annealed at 1200°C revealed the formation of four-component $Ba_{1-x}R_xFeO_3$ ($x \simeq 0.15$) perovskites with CaTiO₃-type structures for R = light rare-earth metals only. Samples with heavy rare-earth elements (R = Tb, Tm) contained more than three phases. The $Ba_{0.5}Yb_{0.5}FeO_3$ and $Ba_{0.5}Lu_{0.5}FeO_3$ samples, in turn, contained ≈ 60 wt% of the BaFe₂O₄ phase (own structure

Fig. 2. Unit-cell volume of $R_{1-x}Ca_xFeO_3$ phases versus atomic number of the rare-earth element (R).

Fig. 3. Crystal structures of the cubic $CaTiO_3$ (a) and orthorhombic GdFeO₃ (b) perovskite types.

type) and $\approx 40 \text{ wt\%}$ of the corresponding R_2O_3 sesquioxide (($Mn_{0.5}Fe_{0.5}$)₂ O_3 type), but no traces of a perovskite phase.

A comparison of the results obtained here with those from investigating the samples annealed at 1000°C [5] indicates an increased tendency to form perovskite phases in the A–R–Fe–O systems with the increase in the temperature to 1200°C.

4. Conclusions

The polycrystalline samples of $A_{0.5}R_{0.5}FeO_3$ nominal composition were synthesized by a solidstate reaction method at 1200°C and investigated using X-ray phase and structural analysis. In the result the existence of $A_{0.5}R_{0.5}FeO_3$ compounds with CaTiO₃-type perovskite structures (Pearson symbol cP5, space group Pm-3m) was indicated in the Ca,Sr-R-Fe-O systems: Ca_{0.5}Pr_{0.5}FeO₃, Ca_{0.5}Nd_{0.5}FeO₃, Sr_{0.5}Pr_{0.5}FeO₃, Sr_{0.5}Nd_{0.5}FeO₃, $Sr_{0.5}Sm_{0.5}FeO_3$, and $Sr_{0.5}Eu_{0.5}FeO_3$. Other Cacontaining samples contained $R_{1-x}Ca_xFeO_3$ solid solutions with orthorhombic structure (x up to 0.25, $GdFeO_3$ type, oP20, Pnma), as a main phase. For Sr-containing samples it was $Sr_x R_{1-x} FeO_3$ solid solutions with cubic structure (x up to 0.4, CaTiO₃ type, cP5, Pm-3m), whereas for Ba-containing samples — $Ba_{1-x}R_xFeO_3$ solid solutions (x up to (0.15) based on the BaFeO₃ phase (CaTiO₃ type) for light rare-earth metals only.

Results of XRD phase analysis of $Sr_{0.5}R_{0.5}FeO_3$ samples annealed at $1200^{\circ}C$.

TABLE II

Nominal	XRD	Structure	Pearson	Space	Content
composition	composition	type	symbol	group	[wt%]
$\mathrm{Sr}_{0.5}\mathrm{Pr}_{0.5}\mathrm{FeO}_3$	$Sr_{0.54(3)}Pr_{0.46(3)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	100
$\mathrm{Sr}_{0.5}\mathrm{Nd}_{0.5}\mathrm{FeO}_3$	$Sr_{0.51(3)}Nd_{0.49(3)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	100
$\mathrm{Sr}_{0.5}\mathrm{Sm}_{0.5}\mathrm{FeO}_3$	$Sr_{0.45(2)}Sm_{0.55(2)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	100
$\mathrm{Sr}_{0.5}\mathrm{Eu}_{0.5}\mathrm{FeO}_3$	$Sr_{0.46(1)}Eu_{0.54(1)}FeO_3$	$CaTiO_3$	cP5	Pm- $3m$	100
$\mathrm{Sr}_{0.5}\mathrm{Gd}_{0.5}\mathrm{FeO}_3$	$Sr_{0.62(2)}Gd_{0.38(2)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	82.0
	GdFeO_3	$\rm GdFeO_3$	oP20	Pnma	18.0
$\mathrm{Sr}_{0.5}\mathrm{Tb}_{0.5}\mathrm{FeO}_3$	$Sr_{0.60(3)}Tb_{0.40(3)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	68.9
	TbFeO_{3}	$GdFeO_3$	oP20	Pnma	31.1
$Sr_{0.5}Dy_{0.5}FeO_3$	$Sr_{0.61(2)}Dy_{0.39(2)}FeO_3$	$CaTiO_3$	cP5	Pm- $3m$	67.2
	$DyFeO_3$	$GdFeO_3$	oP20	Pnma	32.8
$\mathrm{Sr}_{0.5}\mathrm{Ho}_{0.5}\mathrm{FeO}_3$	$Sr_{0.68(2)}Ho_{0.32(2)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	61.7
	HoFeO ₃	$GdFeO_3$	oP20	Pnma	38.3
$\mathrm{Sr}_{0.5}\mathrm{Er}_{0.5}\mathrm{FeO}_3$	$Sr_{0.71(1)}Er_{0.29(1)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	52.8
	$Er_{0.91(2)}Sr_{0.09(2)}FeO_3$	$\rm GdFeO_3$	oP20	Pnma	42.6
	$\mathrm{Er}_{2}\mathrm{O}_{3}$	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	4.6
$\mathrm{Sr}_{0.5}\mathrm{Tm}_{0.5}\mathrm{FeO}_3$	$Sr_{0.71(1)}Tm_{0.29(1)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	57.2
	$\mathrm{Tm}\mathrm{FeO}_3$	$GdFeO_3$	oP20	Pnma	42.8
$\mathrm{Sr}_{0.5}\mathrm{Yb}_{0.5}\mathrm{FeO}_3$	$Sr_{0.72(1)}Yb_{0.28(1)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	56.7
	YbFeO ₃	GdFeO_3	oP20	Pnma	43.3
$\mathrm{Sr}_{0.5}\mathrm{Lu}_{0.5}\mathrm{FeO}_3$	$Sr_{0.74(1)}Lu_{0.26(1)}FeO_3$	CaTiO ₃	cP5	Pm- $3m$	53.8
	$LuFeO_3$	$GdFeO_3$	oP20	Pnma	46.2

References

- P. Wagner, G. Wackers, I. Cardinaletti, J. Manca, J. Vanacken, *Phys. Status Solidi A* 9, 1700394 (2017).
- [2] R.J.D. Tilley, *Perovskites Structure-Property Relationships*, John Wiley & Sons, UK 2016.
- [3] S. Thomas, A. Thankappan, Perovskite Photovoltaics. Basic to Advanced Concepts and Implementation, Academic Press, Elsevier, 2018.
- [4] P. Villars, K. Cenzual, Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds, ASM International, Materials Park (OH), 2019/2020.

- [5] V.V. Hrytsan, O.I. Zaremba, R.E. Gladyshevskii, Visn. Lviv. Univ. Ser. Khim. 62, 99 (2021).
- [6] D.B. Wiles, A. Sakthivel, R.A. Young, Program DBWS3.2 for Rietveld analysis of X-ray and neutron powder diffraction patterns, School of Physics, Georgia Institute of Technology, Atlanta (GA) 1998.
- [7] C.H. Yo, I.Y. Jung, K.H. Ryu, K.S. Ryu, J.H. Choy, J. Solid State Chem. 114, 265 (1995).