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Flow-induced vibration of carbon nanotubes becomes an important topic in nanotechnology. In our
study, the non-linear vibrational behaviour of single-walled carbon nanotubes is presented. A single-
walled carbon nanotube is modelled as a simply supported beam embedded in the Winkler–Pasternak
foundation. For the analysis, the Euler–Bernoulli beam theory is used to develop the model. This
study uses a continuum approach which is widely employed for the dynamic behaviour of carbon
nanotubes. The governing non-linear equation of motion is solved using the homotopy perturbation
method. Elliptical functions are used to solve the exact solutions of these differential equations. The
results of the exact solutions in terms of elliptic functions are compared to both the linear and non-
linear frequencies. Concerning changes in the Winkler and Pasternak parameters, axial force and flow
velocity, the variation between linear and non-linear frequencies is studied. Furthermore, by adjusting
these parameters, the non-linear vibrational frequency can be fine-tuned.
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1. Introduction

Fluid conveyance devices made of carbon nan-
otubes (CNTs) are frequently employed in nan-
otechnology. The remarkable mechanical, electrical,
chemical and physical capabilities of CNTs have
made them suitable for a wide range of novel nan-
otechnology applications. CNTs are also employed
as nanopipes and nanotubes due to their hollow
cylindrical shape and extraordinarily high elastic-
ity and flexibility.

Flow-induced vibration of CNTs becomes an im-
portant topic in nanotechnology. Molecular dynam-
ics (MD) simulation and continuum approach are
the two most common approaches used to exam-
ine vibrational behaviour of nanotubes. Continuum
theories are frequently and effectively utilised to
model the dynamical behaviour of CNTs since MD
simulation is still time-consuming and requires a lot
of computational work, even for smaller nanostruc-
tures. The flow-induced vibration will be affected by
the viscosity of the fluid, the aspect ratio of CNT,
and the elastic medium constants. Because CNTs
are frequently embedded in a foundation, the me-
chanical characteristics of the medium have a sub-
stantial impact on the dynamic behaviour of nan-
otubes. The Winkler-type foundation, which repli-
cates an elastic medium as a collection of closely
spaced, mutually independent vertical springs, is
frequently used to describe the interaction between
the foundation and the CNT. However, because this
model shapes the foundation as a discontinuous and

incoherent medium, it is unable to accurately de-
termine the mechanical behaviour. The Pasternak-
type foundation model represents a more exact and
generalised medium simulation by using two inde-
pendent parameters (called the Pasternak param-
eters). Normal pressure is the first parameter, fol-
lowed by shear resistance, which is determined by
the elastic medium’s interaction with the shear de-
formation.

The vibration of CNTs was studied using several
theories and different types of supporting media,
both in linear and non-linear formulations. Tradi-
tional perturbation methods are used to solve the
final equation of motion. The most significant draw-
back of perturbation approaches is that the solution
is entirely dependent on the small perturbation pa-
rameter and is therefore only applicable to weak
non-linear situations. Approximate variational ap-
proaches, which are unique and simple techniques
with reasonably accurate findings, can be employed
instead of the classic perturbation methods to ob-
tain the analytical solution for highly non-linear
models. Approximate variational methods such as
variational iteration, homotopy perturbation, pa-
rameter expansion, max-min method, and energy
balance approach have been widely and successfully
used in a variety of non-linear mathematical, phys-
ical, and engineering applications.

In this work, non-linear vibration of single-walled
carbon nanotube (SWCNT) conveying fluid over
a Pasternak-type elastic basis is simulated using
continuum theory. The flow-induced vibrational
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behaviour of single-walled carbon nanotubes is in-
vestigated using the Euler–Bernoulli elastic theory.
The homotopy perturbation method is used to solve
the non-linear equation of motion. The Jacobian el-
liptical functions are used to solve exact solutions
of these dynamic equations. The results of exact so-
lutions in terms of elliptic functions are compared
with the solved linear and vibrational frequencies.
Concerning changes in the Winkler and Pasternak
parameters, axial force, and flow velocity, the vari-
ation between linear and non-linear frequencies is
investigated. Furthermore, by adjusting these pa-
rameters, the non-linearity of the model can be
fine-tuned.

Several analytical investigations of the vibra-
tional behaviour of carbon nanotubes have been
conducted in the last few decades, and their so-
lutions to non-linear equations are studied and
compared with other techniques. Homotopy per-
turbation technique was introduced in 1990s by
J.M. He [1], who explained the basic concept of
the homotopy perturbation approach and demon-
strated it for certain cases. J.H. He [1] concluded
that since the new method does not require small
parameters in the equations, it can overcome the
limitations of previous perturbation methods. The
homotopy perturbation method yields approxima-
tions that are valid not just for small but also for
very large values. In addition, their first-order ap-
proximations are highly precise.

J.H. He introduced the variational iteration ap-
proach — a novel type of analytical tool for non-
linear problems — which provides an approxi-
mate solution for some well-known non-linear prob-
lems [2]. J.H. He concludes that a correction func-
tional can be quickly generated by a general La-
grange multiplier, and the multiplier can be op-
timized by examining several situations using the
variational iteration method. The introduction of
constrained variations in the corrective functional
makes it easier to determine the multiplier. When
compared to Adomian’s technique, the approxima-
tions obtained by this method converge to the exact
answer faster than Adomian’s.

In [3], J.H. He applied the homotopy perturba-
tion approach to a Duffing equation with a high
order of non-linearity to show how effective and
convenient this approach is. The results show that
the proposed method’s first-order approximation
is valid even for very large non-linear parameters
and is more accurate than the perturbation solu-
tions at the second order of approximation. In [4],
J.H. He used the homotopy perturbation method to
solve non-linear boundary value problems and com-
pared the results with the various methods and re-
vealed that the present method is very effective and
convenient.

Erignen’s nonlocal elasticity theory is used to cre-
ate a non-linear model for the vibration of a single-
walled carbon nanotube by Soltani and Farshidi-
anfar [5]. With simple boundary constraints, the

nanotube is immersed in a Pasternak-type founda-
tion. The non-linear equation of motion is solved
using the energy balance method (EBM) to get
a precise flow-induced frequency. The results reveal
that by introducing axial stress to the nanotube, the
model’s non-linearity may be efficiently controlled.

Later, Natsuki et al. [6] demonstrated a wave
propagation methodology for the vibrational analy-
sis of fluid-filled double-walled carbon nanotubes.
The governing equations of vibration for carbon
nanotubes were simplified by the shell equations.
The van der Waals interaction between two nearby
carbon nanotubes is used to model the double-
walled carbon nanotubes as a two-shell model.

The effect of the internal flowing fluid and com-
pressive axial load on the non-linear vibration and
stability of embedded carbon nanotubes was stud-
ied by Rasekh and Khadem [7]. The vibrational be-
haviour of the embedded carbon nanotube is mod-
elled using the Euler–Bernoulli beam theory. A mul-
tiple scales perturbation approach is used to analyse
the problem. The surrounding elastic media is found
to play a significant role in the carbon nanotube’s
stability.

The influence of an internal moving fluid on free
vibration and flow-induced structural instability of
carbon nanotubes is investigated by Yoon et al. [8].
The influence of the resonant frequencies on the
flow velocity is illustrated in detail, and the critical
flow velocity at which the structural instability of
carbon nanotubes develops is estimated. To exam-
ine the dynamic behaviour of an inclined SWCNT
subjected to a viscous fluid flow, Kiani [9] pro-
posed a mathematical model and studied all pa-
rameters affecting the frequency of vibration. The
size-dependent non-linear free vibration and insta-
bility of fluid-conveying single-walled boron nitride
nanotubes (SWBNNTs) in a thermal environment
is investigated by Ansari et al. [10]. The problem
is solved by the generalized differential quadrature
method. The effects of different parameters on in-
stability and vibration are studied in detail.

Hosseini and Sadeghi-Goughari [11] analysed the
instability and vibration characteristics of fluid con-
veying carbon nanotube under a longitudinal mag-
netic field. They concluded that a strong magnetic
field decreases the interior fluid flow. Using a nonlo-
cal continuum theory, Wang et al. [12] studied the
effect of non-linear vibration of carbon nanotube
embedded in a viscous elastic matrix. Based on the
findings, it can be concluded that parametric exci-
tation can drastically alter the stable zone.

Geometric non-linear nonlocal model of sup-
ported carbon nanotubes transporting fluid is de-
rived and analytical solutions were found by Dai
et al. [13]. The nonlocal effect is shown to have
a considerable impact on the nanotube’s natural
frequencies before and after buckling. Recently,
many researchers [14–16] studied the linear and
non-linear vibration characteristics of functionally
graded nanoshells conveying fluid.
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2. Mathematical modelling

Figure 1 shows a hollow cylindrical tube
of single-walled carbon nanotubes carrying fluid
in a Pasternak-type elastic media. The Euler–
Bernoulli beam theory is employed to simulate the
vibrational behaviour of the nanotube, which is
based on the assumption that it is simply supported
at both ends.

The small scale effects are significant in the vi-
bration of SWCNT conveying fluid, Eringen non-
local continuum theory is used, based on the non-
local continuum theory of Eringen titled “Stress at
a point depends on strain field at every point in the
body”. The relationship between a nonlocal stress
tensor (σ′) and a local stress tensor (σ) is expressed
as (

1− (e0 a)
2∇2

)
σ = σ′, (1)

where (e0a) is the small scale parameter, e0 is a con-
stant, and ∇2 is the Laplacian operator.

Using Newton’s law, the governing equation of
the transverse motion of an SWCNT conveying fluid
can be expressed as [5]

∂Q

∂x
= mc

∂2w

∂t2
+ ke w − kp

∂2w

∂x2
+ F

∂2w

∂x2
+ Fw,

(2)
where x is the axial coordinate, t denotes time,
w(x, t) denotes the SWCNT transverse deflection,
mc is the mass of the nanotube per unit length,
ke and kp are the Pasternak parameters represent-
ing the Winkler and Pasternak constants, F is the
transverse shear force whereas Q represents the ap-
plied axial tension. Force per unit length induced
by the fluid flow is represented by Fw here and is
given as

Fw = mf

(
2µ

∂2w

∂x∂t
+ µ2 ∂

2w

∂x2
+
∂2w

∂t2

)
, (3)

where mf is the mass of the fluid per unit length
of an SWCNT, and µ is the uniform mean flow
velocity.

The transverse shear force Q, the bending mo-
ment M of the model, and the longitudinal force N
are related by the Euler–Bernoulli beam theory as
follows

∂Q

∂x
=
∂2M

∂x2
+N

∂2w

∂x2
, (4)

where

M =

∫
dAc z σxx =

∫
dAc zE εxx, (5)

N =

∫
dAc σxx =

∫
dAcE εxx. (6)

Using nonlocal realtionships from (1), the moment
relationship can be written as(

1− (e0a)2∇2
)
M =

∫
dAc zE εxx. (7)

The axial strain and axial stress on the nanotube
are represented by εxx and σxx, respectively. The
distance from the neutral axis is represented by z,
while the cross-section of the nanotube is repre-
sented by Ac.

The displacement field is given by

u(x, y, z, t) = u(x, t)− z ∂w(x, t)

∂x
,

w(x, y, z, t) = w(x, t).

(8)

The longitudinal displacement is denoted by u. The
strain displacement relation is given by

εxx = εx0 + z κx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂
2w

∂x2
.

(9)

Substituting (9) into (7), we get(
1− (e0a)2∇2

)
M = E I

∂2w

∂x2
. (10)

Here, I is the second moment of the area with re-
spect to center. The longitudinal displacement u can
be expressed as a function of the transverse dis-
placement w and axial tension F [5] as follows

u =
xF

EAc
− 1

2

x∫
0

dx

(
∂w

∂x

)2

+
x

2L

L∫
0

dx

(
∂w

∂x

)2

.

(11)

The longitudinal force N is expressed as fol-
lows [5]

N = F +
EAc

2L

L∫
0

dx
(∂w
∂x

)2
. (12)

Substituting (12) and (2) into (4) and using (3),
the non-linear governing equation of motion is ex-
pressed as

mc
∂2w

∂x2
+ EI

∂4w

∂x4
+ kew − kp

∂2w

∂x2
+ F

∂2w

∂x2
+mf

(
2µ

∂2w

∂x∂t
+ µ2 ∂

2w

∂x2
+
∂2w

∂t2

)
− EAc

2L

∂2w

∂x2

L∫
0

dx
(∂w
∂x

)2

−(e0a)2
∂2

∂x2

[
mc

∂2w

∂x2
+ EI

∂4w

∂x4
+ kew − kp

∂2w

∂x2
+ F

∂2w

∂x2
+mf

(
2µ

∂2w

∂x∂t
+ µ2 ∂

2w

∂x2
+
∂2w

∂t2

)

−EAc

2L

∂2w

∂x2

L∫
0

dx
(∂w
∂x

)2]
= 0. (13)
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Fig. 1. A single walled carbon nanotube embed-
ded in a Pasternak type foundation model char-
acterized by the Winkler (ke) and Pasternak (kp)
constant.

The boundary conditions of the simply supported
SWCNT is written as

w(0, t) =
∂2w(0, t)

∂x2
= 0 at x = 0,

w(L, t) =
∂2w(L, t)

∂x2
= 0 at x = L.

(14)

One can express w(x, t) as the two independent
functions of time and space, i.e.,

w(x, t) = q(t)φ(x), (15)
where φ is the normalized mode shape from the lin-
ear vibration analysis. Substituting (15) into (13),
we have

q̈(t) +
1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0 q(t)

+
ω2
0

4r2
q3(t) = 0. (16)

The dimensionless parameters and variables are de-
fined as follows

ω0 =
π2

L2

√
EI

mc +mf
, e =

π

L
e0A, r =

√
I

Ac
,

Ke =
L4

π4

1

EI
ke, Kp =

L2

π2

1

EI
kp,

T =
L2

π2

1

EI
F, U =

L

π

√
mf

EI
µ. (17)

3. Solution

3.1. Homotopy perturbation technique

Traditional perturbation methods and homotopy
techniques are fully utilized in the presented ho-
motopy perturbation method. This method over-
comes the drawbacks of the traditional perturbation
methods and accurately predicts non-linear system
behaviour. Let us consider the following non-linear
differential equation, i.e.,

A(u) + f(r) = 0, (18)
where A is a general differential operator, f(r) is
a known analytic function.

The operator A can be divided into two parts
L and N , where L is linear and N is non-linear.
Therefore, (18) can be rewritten as follows

L(u) +N(u)− f(r) = 0. (19)

By the homotopy technique, we construct a homo-
topy of (18) which satisfies both,
H(v, p) = (1− p)

[
L(v)− L(u0)

]
+ p

[
A(v)− f(r)

]
,

(20)
and
H(v, p) = L(v)− L(u0) + pL(u0) + p

[
N(v)− f(r)

]
,

(21)
where p ∈ (0, 1) is an embedding parameter, and u0
is an initial approximation that satisfies the bound-
ary conditions.

From (20) and (21), one has

for p = 0, H(v, 0) = L(v)− L(u0) = 0,

for p = 1, H(v, 1) = A(v)− f(r) = 0.
(22)

The solution can be expressed as
v = v0 + p v1 + p2v2 + . . . (23)

The approximate solution of (18), therefore, can be
readily obtained as follows

u = v0 + v1 + v2 + . . . (24)
The flow-induced non-linear frequency of CNT can
be determined by solving the non-linear equation of
motion.

The governing differential equation of motion is

q̈(t) +
1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0q(t)

+
ω2
0

4r2
q3(t) = 0. (25)

The initial conditions are
q(0) = a0, q̇(0) = 0. (26)

The approximate solution is expressed as
q(t) = a0 cos(ωt), (27)

where ω is the non-linear flow-induced frequency
and a0 is the initial amplitude of the vibration.
Therefore, the homotopy of (25) can be written
as

L(v)− L(q0) + pL(q0) + p ε v3 = 0, (28)

where L(q) = q̈(t) +
1+(1+e2)(Ke+Kp−T−U2)

1+e2 ω2
0q(t)

and ε =
ω2

0

4r2 . By the homotopy manipulation as be-
fore, we have the following linear systems

L(v0)− L(q0) = 0, v0(0) = a0, v′0(0) = 0,

L(v1) + L(q0) + ε v30 = 0, v′1(0) = v1(0) = 0.

(29)
We set v0(t) = q0(t) = a0 cos(ωt) as the initial
approximation of (28). Therefore, from (29), we
have
∂2v1
∂t2

+
1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0v1

+a0

(
1− ω2+

3εa20
4

)
cos(ωt)+

εa30
4

cos(3ωt) = 0.

(30)
The solution of (30) can be readily obtained from
the variational iteration method [2] as follows
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v1(t) =

t∫
dt sin(τ − t)

[(
−ω2 +

1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0 +

3

4
εa20

)
a0 cos(ωτ)

εa30
4

cos(3ωt)

]
=(

− ω2 +
1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0 +

3

4
εa20

)
a0
(

cos(ωt)− cos(t)
)

ω2 − 1

εa30
(

cos(3ωt)− cos(t)
)

4(9ω2 − 1)
.

(31)

The constant ω can be identified by various
methods such as the weighted residual method
(least-squares method, method of collocation, the
Galerkin method). For this, we will use a very

simple technique to determine the constant. To
eliminate the secular term which may occur in the
next iteration, we set the coefficient which multi-
plies the cosines to zero. Thus,

(
−ω2 +

1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0 +

3εa20
4

)
a0

ω2 − 1
+

εa30
4(9ω2 − 1)

. (32)

From (32), the non-linear frequency ω can be ex-
pressed as
ω =√

1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0 +

3

4
εa20.

(33)
The linear frequency ωL can be obtained by remov-
ing the non-linear terms and it has the following
form

ω =

√
1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0 .

(34)
To show the pure non-linearity effect, “the non-
linear frequency variation” ∆ω [%] is defined

∆ω =
ω − ωL

ωL
× 100. (35)

This parameter demonstrates the difference be-
tween the linear and non-linear model of a CNT
conveying fluid based on the non-linearity of CNT.

3.2. Exact solutions by Jacobian elliptical
function method

Let us consider the following non-linear differen-
tial equation

q̈(t) +
1 + (1 + e2)(Ke +Kp − T − U2)

1 + e2
ω2
0q(t)

+
ω2
0

4r2
q3(t) = 0. (36)

The initial conditions are
q(0) = a0, q̇(0) = 0. (37)

The exact solution to (36) is expressed as follows
q(t) = c1 cn(ωt+ c2,m), (38)

where cn(ωt,m) is the Jacobi elliptic cosine func-
tion and m is the elliptic modulus. The elliptic
modulus and parameter ω are expressed as follows

ω =

√
1 + (1 + e2((Ke +Kp − T − U2)

1 + e2
ω2
0 + εa20,

(39)

m =

√
a20 ω

2
0

8ω2 r2
. (40)

The values of c1 and c2 are determined from the
initial conditions q(0) = a0 and q̇(0) = 0. To find
c1 and c2, we must solve the system obtained from
the initial conditions, i.e.,
c1 cn(c2,m) = a0, −ω sn(c2,m) dn(c2,m) = q̇(0).

(41)

From the above equations we get c1 = a0 and
c2 = 0. So the final solution is expressed as

q(t) = a0 cn(ωt,m), (42)

where the non-linear frequency of the vibration is
given as

ωNL =
πω

2K(m)
. (43)

4. Results and discussion

4.1. Validation

The impacts of different parameters on the non-
linear flow-induced frequency of the SWCNT sub-
merged in an elastic medium are evaluated using
material and geometrical characteristics from [8].
The CNT is assumed to have Young’s modulus of
1 TPa and an effective wall thickness of 10 nm.
The inner diameter, the mass density, and the as-
pect ratio of the SWCNT are 80 nm, 2300 kg/m3,
and 20, respectively. The Winkler and Pasternak
constant and the axial tension F are set to be zero
(kw = kp = F = 0) and the fluid inside the nan-
otube is assumed to be that of water with the mass
density 1000 kg/m3.
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Fig. 2. Comparison of dynamic deflection between
the linear, HPM, and exact solution at high flow
velocity U = 0.9.

Fig. 3. The non-linear frequency variation ∆ω [%]
against the maximum non-linear amplitude a0 with
various Winkler constants ke.

The dynamic transverse deflection of the SWCNT
midpoint is presented in Fig. 2 to test the model’s
correctness. The results are compared with the lin-
ear solution and exact solutions in terms of the
Jacobi elliptic functions based on flow velocity
(U = 0.9). The excellent fit between HPM and ex-
act solutions supports the homotopy perturbation
technique’s validity. Furthermore, the linear solu-
tion predicts a critical flow velocity of 1192.73 m/s,
whereas the perturbation technique and exact so-
lutions suggest 1192.84 m/s and 1192.88 m/s,
respectively.

4.2. Nonlinear frequency-amplitude relation

The variations between linear and non-linear fre-
quencies were plotted against non-linear amplitude
(a0) concerning the change in the Winkler, Paster-
nak parameters (ke, kp) and axial force F .

Individual plots are demonstrated for each pa-
rameter. The effects of the Winkler, Pasternak pa-
rameters, and axial forces are presented in the fol-
lowing Figs. 3, 4 and Fig. 5. Figure 3 shows that
the increase in the Winkler constant substantially
reduces the non-linear frequency. Figure 3 reveals
also that at high amplitude, the non-linearity of
the model increases linearly when there is no sur-
rounding medium (i.e., ke = 0). For a stiff elastic
medium, with an increase in the Winkler constant

Fig. 4. The non-linear frequency variation ∆ω [%]
against the maximum non-linear amplitude a0 with
various Pasternak constants kp.

Fig. 5. The non-linear frequency variation ∆ω [%]
against the maximum non-linear amplitude a0 with
various F .

(i.e. ke > 107 Pa), the non-linear frequency varia-
tion decreases. When a nanotube vibrates in a stiff
medium, its non-linear frequency tends to become
linear. In Fig. 4 the Pasternak constant kp has very
little effect on the non-linear vibration frequency.
Figure 5 shows that the effect due to the axial force
is very small when compared with the Winkler and
Pasternak parameters.

4.3. Nonlinear frequency-flow velocity relation

The variation between the linear and non-linear
frequencies is plotted against the dimensionless
fluid flow velocity (U) for the Winkler, Pasternak
parameters (ke, kp) and axial force F , as shown
in Figs. 6 and 7.

Individual plots are demonstrated for each pa-
rameter. The effects of the Winkler, Pasternak pa-
rameters, and the axial forces are presented in
Figs. 8, 9 and Fig. 10, respectively. It is observed
that at high flow velocity, the non-linear frequency
variation is high when there is no surrounding
medium or ke = 0. For a stiff elastic medium
(i.e. ke > 107 Pa), the variation between the lin-
ear and non-linear frequencies remains unchanged.
For U < 0.5, the percentage of variation remains
constant for all values of the Winkler and Paster-
nak constants. When the constant values decrease,
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Fig. 6. Three-dimensional plot showing the non-
linear frequency variation ∆ω [%] against the max-
imum non-linear amplitude a0 with various Winkler
constants ke.

Fig. 7. Three-dimensional plot showing the non-
linear frequency variation ∆ω [%] against the max-
imum non-linear amplitude a0 with various Paster-
nak constants kp.

Fig. 8. The non-linear frequency variation ∆ω [%]
against the maximum non-linear amplitude a0 with
various Winkler constants ke.

the percentage variation of frequencies increases
with the flow velocity U . The value of ∆ω [%] de-
clines and remains constant with any increase in
flow velocity at low fluid velocities (U < 0.5) and
as shear stiffness of the elastic medium rises. This
demonstrates that the SWCNTs non-linear vibra-
tion behaviour is unaffected by the fluid flow and
may be ignored in a media with high shear strength.
The effects of axial forces show no significant effects
in frequency variation.

Fig. 9. The non-linear frequency variation ∆ω [%]
against the maximum non-linear amplitude a0 with
various Pasternak constants kp.

Fig. 10. The non-linear frequency variation ∆ω
[%] against the maximum non-linear amplitude a0

with various axial force F .

5. Conclusion

Using continuum theory, a non-linear vibration
model of a fluid conveying SWCNT embedded in
the Winkler–Pasternak foundation is developed, in-
cluding the nonlocal elasticity theory. The non-
linear equation of motion is solved using the ho-
motopy perturbation method, and the analytical
solution is obtained. The Jacobi elliptic functions
are used to derive exact answers. Exact solutions
in terms of the Jacobi elliptic functions are used
to verify the correctness of the results. The results
show that:

• At low flow velocities and vibration ampli-
tudes, the variation between the non-linear
and linear frequencies is insignificant.

• When the amplitude and flow velocity are
both high, the non-linear flow-induced fre-
quency deviates significantly from the linear
frequency.

• When CNTs are embedded in media with
high Pasternak parameters, the model’s non-
linearity has no meaningful influence on the
frequency.
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• At high flow velocity and for large vibration
amplitudes, the axial tension limits the non-
linear effect and the flow-induced vibration of
the nanotube.

An analytical presentation allows for a better un-
derstanding of the system’s features and allows for
more generalisations to be made. Another possible
application of analytical solutions is the provision
of accurate reference data for the assessment of nu-
merical methods. The reliable analytical results pre-
sented here are deemed beneficial.
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