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We numerically study the thermodynamic critical behaviour of the one-dimensional ferromagnetic spin
model with variable interaction ranges using molecular dynamics simulation. Our results suggest that
the model presents an order to a disorder phase transition, if the range length parameter surpasses the
threshold ξc = 1.4. As expected, the order parameter of the magnetization M respects the Hamiltonian
mean field transition, which occurs at ξ = 2. We show that the evolution of the system temperature is
independent of the number of neighbours spins L considered in the system.
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1. Introduction

Since Onsager solved the two-dimensional Ising
model [1, 2], the famous lattice composed of short-
range interacting spins has been used as the main
model to investigate the phase transition behaviour
of interacting many-body systems [3–5]. It is known
from the early stages of development of Ising mod-
els that a one-dimensional system does not show
a phase transition if only short-range interactions
are considered [6], and it presents a critical be-
haviour depending on the number of connections
in the network, while a two-dimensional model
with short-range interaction has a Berezinskii–
Kosterlitz–Thouless phase transition [7, 8]. On
the other hand, models with long-range interac-
tions [9–12] justified when the potential energy de-
creases slowly with distance, are particularly in-
teresting for possible applications in biology and
physics [13].

In this paper we study the thermodynamic be-
haviour of the spin chain model in the absence of
an external magnetic field, introducing the appro-
priate order parameter to analyze the characteris-
tics of phase transition under a variable interac-
tions length of spin neighbours L [14]. We describe
how the thermodynamic properties [15], such as
the heat capacity Cv or magnetization M , vary de-
pending on the number of neighbors L connected

in a spin chain network. Different methods, like
the Monte Carlo simulation [16], have been pro-
posed to investigate the thermodynamic properties
of spin chain systems, but none of them explored
the presence of an order to disorder critical temper-
ature Tc as a function of the number of interact-
ing neighbors L in the spin chain models [17, 18].
The present approach enriches other different ap-
proaches in which the spin chain has been explored
from the short-range interaction limit to the long-
range interaction coupling case spins. In such cases,
the spin model is reduced to a Hamiltonian mean
field (HMF) model [19], while we focus on the L
variable, since all the spins of the chain interact
equally. We perform classical molecular dynamics
simulations, considering interacting linear spins lo-
cated in the same plan, to investigate the behaviour
of the system with variable order interactions [20].

2. Material and methods

2.1. The model

We consider a linear ferromagnetic spin Si model
with Hamiltonian

H =
1

2

N∑
i=1

P 2
i +

J

2L

N∑
i=1

i+L∑
j=i+1

(
1− cos (θi − θj)

)
,

(1)
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where

• J represents the coupling constant,
• L describes the number of nearest neighbors
per unit,

• Pi is the term of the conjugate momentum,
• θi describes the angle of spin at site i.

Each spin Si interacts equally with all other Sj spins
on every side of the chain. The spins are co-planar
and can rotate with an angle θi = (−π, π) around
the z-axis in the absence of the external magnetic
field H. In fact, the limit case of L = N

2 in each side
corresponds to the HMF with global interactions
between all spins of the model [21, 22], while L→ 1
in both sides is the nearest neighbour case. In (1)
we consider J > 0 for the ferromagnetic model. We
are interested in studying different regimes in the
model, from a short-range regime (L = 1) to the
limit of a fully coupled HMF regime [23] in order to
numerically explore the thermodynamic behaviour,
such as the heat capacity, magnetization, and the
Binder cumulant. In the following, we shall intro-
duce a dilution variable denoted as ξ, which can be
continuously shifted from the short-range interac-
tion model to the case of the long-range interaction
model. The parameter ξ is given by [24]

ξ =
log (NL)

log (N)
, (2)

where

• NL is the total number of links in the system,
• N represents the system size.

The normalization constant L corresponds to the
number of links per unit [23], it is imposed by the
variable ξ and defined by the relation

L =
22−ξ (N − 1)

ξ

N
. (3)

For ξ = 1 the model is a linear chain with only
nearest neighbors (a single coupling link per unit is
set on each side). On the other hand, ξ = 2 corre-
sponds to the full coupled spins regime (the HMF
case, see (1)).

2.2. Simulation

2.2.1. Molecular dynamics equations

Using a classical method of molecular dynam-
ics process, we study the interactions of a variable
range on one-dimensional N spin chain, using the
equations of motion derived from (1) [25]

τi = −
∂H

∂θi
, (4)

where τi represent the torque on the spin i and is
given by

τi = −
J

2L

N∑
i=1

i+L∑
j=i+1

sin (θi − θj) . (5)

The dynamics of each spin Si (i = 1, . . . , N) in the
chain obeys the following equation of motion

I θ̈i = τi − γ θ̇i +Ri(t), (6)
where

• γ represents the rotational friction coefficient,
• θ̈i and θ̇i are the second and first-time deriva-
tives of the orientation moments of spins.

In the initial state, all the spins respect the fer-
romagnetic condition and are parallel oriented with
θi = 0 and θ̇i = 0 at t = 0, as in the steady state
given by (1). Symmetrically, the other important
condition of simulation implies an introduction of
a term of generating an angular velocity θ̇ attached
to each spin Si. This is represented by our approach
to the Langevin thermostat, which adds random
forces to the system according to (6). We have used
random numbers given by a Gaussian distribution
with zero mean and the variance scaled by [20]√

2kBT γI
δt (7)

According to (7) the random force Ri can be writ-
ten as

Ri(t) = Gi

√
2kBT γI

δt (8)
where Gi is uniformly distributed in the range
−1 → 1, while the temperature T in units of NJ

kB
,

where kB is the Boltzmann constant, I is the mo-
ment of inertia, and γ represents the friction pa-
rameter.

We would like to mention that, when the system
is in contact with a Langevin bath, the chain of
spins is set on an out of equilibrium state, so its
energy will decrease with time. The friction param-
eter γ controls the damping force characterized by
the fluctuation–dissipation state, and stabilizes the
rotation of the spin chain for various values of tem-
perature T . The numerical equation of motion of
the model becomes

θ̈i = −
J

2L

N∑
i=1

i+L∑
j=i+1

sin (θi − θj)− θ̇i +Ri(t). (9)

2.2.2. Numerical simulation

The simulations presented here start from an ini-
tial chain with ferromagnetic configuration, with
θ̇i(0) = 0 for all particles in the system. Then we
integrate θ̈i from (9) according to the velocity. Dur-
ing the simulation, the trajectory of the system
is calculated by integrating the equations of mo-
tions [26, 27]. The temporal evolution of our sys-
tem is described by the laws of classical mechan-
ics. The time increment for numerical integration
of the dynamical equations is set according to ve-
locity Stormer–Verlet method [25]

θi(t+ δt) = θi(t) + θ̇i(t) δt+
τi(t)

2I
δt2, (10)

θ̇i(t+ δt) = θ̇i(t) +
τi(t)

2I
δt. (11)
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The temperature values are inferred from the
average values of the rotational kinetic energy
(equipartition theorem), in a sufficiently long
molecular dynamics run. For the numerical simu-
lation of the ferromagnetic spin chain, we use an al-
gorithm with the Langevin thermostat carried out
at a range of bath temperature T = (0.2, 0.6), con-
sidering several sizes of the system and time step
δt = 0.005 under the periodic boundary condition,
with a computed time equal to 1000 000 MD steps.
We use the coupling strength J = 1. At every tem-
perature a parallel initial condition for Si is consid-
ered. To investigate the thermodynamic behaviours
for various interaction range states in our model,
we compute the torque τi and the interaction field
between each spin Si at every molecular dynam-
ics step for every diluted parameter ξ ∈ (1, 2).
Finally, averages are performed for all measured
quantities, such as the heat capacity Cv, magne-
tization M and the Binder cumulant UB measured
after a 50000 MD steps, where the steady equilib-
rium is achieved†.

The heat capacity Cv for a given configuration
of various interaction ranges is computed from the
energy system as

Cv =
1

kBT 2

(
〈E2〉 − 〈E〉2

)
. (12)

In order to understand the order-disorder be-
haviour of the system near to Tc in terms of the
phase transition, we measure the order parameter
using the magnetization average 〈M〉 of the system
via the following equations

Mx =
1

N

N∑
i

cos(θi), (13)

My =
1

N

N∑
i

sin(θi), (14)

Mxy =
√
M2
x +M2

y . (15)

The average equilibrium magnetization 〈M〉 of the
spin chain is calculated by

〈M〉 = 1

tsimulation

tsimulation∫
0

dtMxy(t). (16)

In order to confirm whether the variable interac-
tions from the short-range to the long-range of a lin-
ear spin system present a thermodynamical critical
behaviour, we should check the critical temperature
with the Binder cumulant method [28]. It is usually
defined as [29]

UB = 1− 1
3

〈M4〉
〈M2〉2 , (17)

where M2 and M4 are the thermal averages of the
second and fourth moments of the magnetization
defined by (16).

†11 (one) MD is accomplished when the equation of rota-
tion has been integrated once for all spins in the model.

3. Results and discussion

To study the thermodynamic behaviour of the
variable interaction range of linear spin Si sys-
tems defined by (1)–(4), we have numerically
integrated (11). We used the Stormer–Verlet
method [25] for various sizes of oscillator spins. The
simulation step size δt was selected to be 0.005
for a total of 1000 000 MD steps. To minimize all
statistical fluctuations, we average the data over
the final 50000-time steps for every chain size with
a unit inertia term (I = 1). Independent numeri-
cal simulations were needed to study the thermo-
dynamic critical behaviour for various ξ where, as
stated above, ξ corresponds to the key interaction
parameter to change the model from a short to
long-range interaction regime by connecting each
spin to L neighbors in each side according to
a power law given by (2) and (3). The evolution
of the number of links as a function of the sys-
tem size is presented in Fig. 1 for two different
values of ξ.

Figure 2a–c shows the heat capacity Cv for a var-
ious dilution parameters (interaction range of os-
cillators in the ferromagnetic spin chain) ξ = 1.3,
ξ = 1.4, ξ = 1.6 and for N = 20 to 640, assuming
the periodic boundary conditions and considering
a system temperature variation from 0.2 to 0.6. It
was found that after excitation of the system at
t = 0 the characteristic of the heat capacity Cv
varies with the number of spin neighbors L when
the dilution parameter ξ changes from 1 to 2. The
result shows that the critical behaviour of the heat
capacity Cv is obvious when the range parameter
surpasses ξ = 1.4 (see Fig. 2b).

Figure 2d shows the variation of Cv with temper-
ature T for different system sizes in the case of the
globally interacting system (ξ = 2). We notice that
the Cv curves cross at T ≈ 0.50 for all system sizes.

Fig. 1. Variation of the number of links (L) as
a function of system (N) sizes for ξ equal to 1.4
and 1.6.
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Fig. 2. Heat capacity for a variable-range ξ interaction values, i.e., (a) ξ = 1.3, (b) ξ = 1.4, (c) ξ = 1.6, (d)
ξ = 2 full coupling (HMF model).

Fig. 3. Binder cumulant for variable-range ξ values, i.e., (a) ξ = 1.3, (b) ξ = 1.4, (c) ξ = 1.6, (d) (d) ξ = 2
full coupling (HMF model).
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Fig. 4. Scaling order parameter for a variable-range ξ values, i.e., (a) ξ = 1.3, (b) ξ = 1.4, (c) ξ = 1.6, (d)
ξ = 2 full coupling (HMF model).

Fig. 5. Heat capacity Cv for a spin chain size
N = 320 under several length of spins neighbors.

Moreover, the peak of Cv approaches the analytic
transition for the fully coupled HMF model studied
by Antoni et al. [30] as indicated by the following
equation

Tc =
J

2kB
. (18)

To investigate the Binder cumulant in our model,
we first measure the magnetization M for each size
N and compute its value according to (17) for

different interaction ranges from ξ = 1 to 2. In
Fig. 3a–d, we have presented the Binder cumulant
method. We notice that the results cross at a similar
Tc value for large interaction range ξ ≥ 1.4, which
confirms the findings obtained via previous results
for Cv (see Fig. 3c and d). Figure 3a and b shows
that there is no Binder cumulant cross point that
would indicate a critical behaviour.

In this study, our main finding is the presence of
a critical interaction range for the thermodynamic
behaviour of a ferromagnetic linear spin chain, be-
yond which Tc disappears even when the interaction
range parameter ξ is below than 1.4. The finite-size
scaling [31, 32] of magnetization parameter shown
in Fig. 4a–d is an important tool for analyzing the
results of our molecular dynamics simulation. This
method shows a clear cross point around Tc ' 0.5
which becomes sharper as L increases, with even-
tually only a discernible cross point of all curves
at a large diluted value of ξ = 1.4. We note that
the spin chain has a single critical interaction range
length at ξ = 1.4. This indicates that the disap-
pearance of the order-disorder parameter state is
observed with the occurrence of an almost perfect
phase transition characterized by ξ = 1.4.

In Fig. 5 we plot the heat capacity as a function of
system temperature T for various interaction range
length L (ξ = 1, 1.3, 1.4, 1.5, 1.6 and 2). We note
that the critical behaviour of our model is less ob-
vious as L increases and that it eventually goes to
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Fig. 6. Behavior of the simulated system tempera-
ture (Tsys) as function of desired temperature (Treq)
(a) under varing number of nearest neighbors (L)
and (b) under different friction γ values. The differ-
ent lines represent temperature of the system calcu-
lated from the equipartition of the energy equation
and the dotted line represents the required temper-
ature (Langevin bath temperature).

real transition from order to disorder parameter at
a sufficiently long interaction range. This indicates
that for a ferromagnetic linear spin chain, the crit-
ical interaction range Lc exists. We can clearly see
that the critical value ξc = 1.4 is well obtained.

In Fig. 6a and b, we have traced the system tem-
perature as a function of the required temperature
(bath temperature of simulation) for various inter-
action ranges ξ = 1, 1.3, 1.4, 1.5, 1.6 (Fig. 6a) and
under different friction parameter γ = 1, 10, 20
(Fig. 6b). The temperature results obtained with
various ξ and γ = 1 show that there is no depen-
dence between the calculated temperature of the
system and the number of neighbors L. However,
as shown in Fig. 6b, there exists a clear dependence
between the calculated temperature and the friction
factor γ. At the lower damping regime γ = 1, the
calculated temperature of the system does not reach
the temperature of the bath.

4. Conclusions

We have studied by the molecular dynamics tech-
nique the influence of the number of neighbors spin
L on the thermodynamic critical behaviour of fer-
romagnetic oscillators spins in one dimension with
different ranges of interactions. We introduced the
parameter ξ, which allows to switch the number of
links L from a linear chain with nearest neighbors
coupling characterized by ξ = 1, to a full coupling
configuration with ξ = 2 (HMF) model [30]. We
identified two main regions. In the first region, for
ξ < 1.4, the model has a one-dimensional nearest
neighbors behaviour and thus does not display any
critical temperature Tc, as our numerical simula-
tions showed. In the second region, ξc ≥ 1.4, on
the contrary — the model presents the quasi-long-
range order state and we can observe the mean field
phase transition Tc of the magnetization at 0.5 for
ξ = 2, identical to that of the Hamiltonian mean
field model [30, 33]. In addition, we show numer-
ically that the systems temperature is affected by
the friction parameter γ, which seems to be size-
independent of the number L of spin neighbors.
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