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An entangled quantum state is considered by applying a local photon excitation to each mode of
an entangled coherent state. The entanglement property is investigated in terms of the entropy of
entanglement. It is shown that applying a photon addition can improve the amount of entanglement.
It is also examined that in a specific region of parameters, the state |¢)] (a,m,n)) is least entangled
when photon excitation is minimum. We study the statistical properties of such states by employing

the quasi-probability functions.
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1. Introduction

Quantum information processing uses the inher-
ent properties of quantum systems like the entan-
glement which has been widely considered as a use-
ful resource to perform quantum operations, uni-
versal quantum computing and quantum commu-
nications [1]. Most of the entangled states, which
are important from the quantum computing per-
spective, violate Bell-type inequalities [2-4], that
means the existence of such states cannot be ex-
plained by any local hidden-variable theory. The
concept of entanglement was introduced by Einstein
et al. [5] who designed a two-particle state that was
strongly entangled both in position and momentum
space. For instance, the two-mode squeezed vacuum
state exhibits quantum entanglement between the
idle mode and the signal mode, and is often ap-
plied as an entangled resource [6] for quantum dense
coding [7].

An entangled coherent state (ECS) [8, 9] can
be typified as two-mode continuous-variable states,
which are very efficient in both generating and
manipulating quantum information protocols [10].
In addition, continuous-variable entangled states
play a crucial role in performing quantum tele-
portation [11], quantum computation [12], entan-
glement purification [13|, quantum error correc-
tions [14] etc. Moreover, a number of theoretical
schemes have been proposed to produce ECS in cav-
ity fields ([15, 16] and references therein). Therefore,
the study of entangled coherent states is of much
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interest, as coherent states are macroscopic and sim-
plest classical-like continuous-variable states that
can be easily obtained from available laser sources.
Recently, a new entangled quantum state is in-
troduced by applying local coherent superposition
(CS) (ra' + ta) of photon addition and subtrac-
tion to each mode of an even entangled coherent
state (EECS) [6]. It is found that single- and two-
mode CS operations can improve the EPR corre-
lation of the EECS in a big (> 0.88) and small
(< 0.52) region of amplitude, respectively. Zhou et
al. [17] proposed two types of two-mode excited en-
tangled coherent states (TMEECSs) |94 (o, m,n)),
and investigated the influence of photon excitations
on quantum entanglement by studying the con-
currence of TMEECSs. A quantification of quan-
tum correlations of quasi-Werner states, prepared
by two superposed m-photon-added bipartite co-
herent states, has been done recently [18]. In these
previous literatures in the direction of ECSs, quan-
tum entanglement is explored by adding single or
equal number of photons to a bipartite superpo-
sition of coherent states with opposite phases in
the form [¢) oc a™™ @ bI™(|a), |a), £ |—a), |—a),),
where af (b) is the photon creation operator for
mode a (b). In one of the introductory article,
the authors explored the entanglement property of
TMEECSs with a different number of excitations
by means of concurrence. But while observing the
influence of the photon excitations on the quantum
entanglement of the TMEECS |4 (a, m,n)), they
considered the specific case m = n in which there
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are the same photon excitations in each filed modes
of the TMEECS. However, a full characterization
including a graphical illustration of the entangle-
ment properties in both pure and mixed systems is
still needed to evaluate the effect of an arbitrary su-
perposition with different coherent states and differ-
ent photon addition numbers. We study (both an-
alytically and graphically) the impact of two con-
trol parameters, coherent state amplitude |«| and
photon-excitation pair (m,n), over a few entangle-
ment measures, namely P-function, () representa-
tion and von Neumann entropy.

In the present work, we describe a class of
continuous-variable entangled states on the basis
of entangled bipartite coherent states (ECSs) [19],
called the photon-added entangled coherent states
(PAECSSs), which are obtained by the actions of cre-
ation operator on ECSs. We investigate the entan-
glement characteristics of the PAECSs by analyzing
the Schmidt decomposition and entropy of entangle-
ment. The paper is structured as follows. In Sect. 2,
we present the definition of the PAECSs we are con-
sidering here and write down their forms in terms of
Fock states and some results for their scalar prod-
ucts. In Sect. 3, we investigate the Schmidt decom-
position in terms of the excited even (odd) coherent
state. Then we calculate the von Neumann entropy
for the PAECSs and discuss the influence of differ-
ent excitation photon numbers on the entropy of en-
tanglement. The last section ends with a summary
of the main results of this article.

2. Photon-added entangled
coherent states

This section begins with entangled coherent
states (ECSs) defined as [19, 20]

{ W]it(avo’o» = N(%(|CM7O[> + |_aa —Cv>),
‘1/}3:(0‘70’0» = N(%(|O‘7_O‘> + ‘_O‘vo‘>)7

where |o, ) = |a), ® |a), is a bipartite coherent
state with |a) being a usual coherent state, defined
by applying the displacement operator D(a)

eaaT—a

lap (o] —a) =€
can be calculated as

= (1 + e—4la‘2)7% . (2)

V2

Due to the overcompleteness of coherent states,
(o] — @) # 0 for finite values of «, thus the ECSs
are not mutually orthogonal. However, the overlap
(o] —a) tends to zero very rapidly with increase of «.
Now, our states of interest (PAECSs) are m-photon
excitations of the mode a and n-photon excitations
of the mode b on the ECSs, respectively, which are
expressed as

|7/}1i(a7 m, n)>:N7:rEn aTman( |O[, a> + ‘_O‘7 —O[> )a
|7/}§:(O‘7 m, n)>:Nr:rEn aTman( |aa 70‘) + |7O‘7 a> )
3)

“@ ypon the vacuum state. By using the over-
2
—2lal” the normalization constants

+
NOO_
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To find out the normalization factor Nt , we first
derive an operator identity, the normal ordering
form of the Boson operator a!™b™. Using the com-
pleteness of the coherent state 1 [ d?a|a)(a| =1
and the technique of integration within an ordered

product of operators (IWOP) [21] as well as the

vacuum projector [0)(0] =: exp (—a'a) : (here “::”
represents the normal ordering), we have
d2
aratm = [ S %n o) (o] ™™ =
™
d2
/ 2 angrm cexp(—|a? + aa’ + a*a —a'a): =
T

(i)™ H,, (id', ia):,
where
Hm,n(€7 77) =

(4)

n £ d2Z n *xm 2 *
(=1)™ e —— "z rexp (—|z]® + &z + £2%) :
()
is the integral form of the two-variable Hermite
polynomials [22]. The two-variable Hermite poly-
nomial is given by
min(m,n)

H7n,n(§777) = Z l!(

=0

(—=1)!m!n! gm=tyn—i
m—10)!(n—-1)!

(6)
Using (5), the expectation of a™a!™ with respect
to the coherent state |a) can be calculated as

(ala™a™ |a) = (—1)"™ Hpm (ia*, ia) =

m! Ly (— |af?), (7)

where L, (z) is the m-th order Laguerre polynomial

and is defined as

—1)lm!
nte) = 3 i = i

=0

(®)

In a similar way, using (7) we obtain

(ala™al™| —a) = (~1)™e 2" H,, (ia*, —ia) =

mle 2 L (laf?). (9)

Using the results in (7) and (9), the normalization
constant N;&  can be obtained

NE = {2m!n! {Lm(| — a|?)Ln(~|al?)

090 L of2) Lu(af?)}
{2[Lnnt

iefll‘al? me (|O[|2, |O[|2) :| }

by introducing the mnotation Ly, ,(z,y)
m!n! Ly, (x) L, (y). Specially, in the limit m — 0
and n — 0, [¢(a,m,n)) and |5 (o, m,n)) reduce
to the usual entangled coherent states in (1).
If m = 0 or n = 0, the excitations turns to single-
mode excited coherent states [23]. If m =n #0,

—al?, —laf?)

_1
2

(10)
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the excitations turn to two-mode excited en- atmptn o —af? Vp+m)(g+n)
tangled coherent states [24]. Therefore studying |~ ) =e Z plql
[ (o, m,n)) and |43 (a, m,n)) will help to con- P,q=0
clude about the behavior of all these states. Using X (—1)Parta {p +m,q+n). (14)
at™|n)= ("'H" |n +m) and the Fock state rep-  Therefore, (3) can be rewritten as
resentation of a coherent state, we have obtained . I !
o v (p+m)! (g+n)!
the following expressions |¢f(a,m,n)> :Nnim el Z : pl>ql
p.g=0 o
atmptn _ ol vV +m)g+n)
o, 0 = e p;o P x4 (14 (=1)7*) [p+m, g +n), (15)
xaPT|p+m,q+n), (11) s ] 1
=0 P!
a"™b" | —a, —a) = e7lol Z Vi +m)! (g +n)! .
’ pa=o P! xa?t 0 ((=1)" % (=1)") [p+m.g+n). (16)
which implies that they are actually truncations
X (—a)Pta Ip+m,q+n), (12)  of the two-mode ECSs given by an equation
with respect to the mode a, b, where all the
terms related to the Fock states of the mode
mitn al? p + m q +n
al™b’" o, —a) = el Z il T )! a:]0),|1),...,/m —1) and the Fock states of the
p,q=0 P mode b:10),]1),...,|n —1) are removed. Finally,
this expansion also leads to the following results
1) o4
x(=1)Ter ’p Tm, gt n>, (13) for the scalar products

<d)1i(a7m/an/)|wli(ﬁ7man)> NniL mN'rTn [Am/m(oz,ﬁ) ””( ﬂ) +Am m( a, —ﬂ)An/n(—O[, _5)

A (0, —B) A, =) & Ao (=, B) A (~a, B)|, (17)

<¢§t(a7 m/7 n/)|¢§t(ﬁa m, TL)> = N;E/mN»,:lt/n [Am’m(a7 6)An/n(_aa _B> + Am’m(_au _ﬁ)An’n(aa 5)

iAm’m(aa _ﬁ)An’n(_av ﬁ) + Am’m(_aa 5)An’n(av _6)] ) (18)

<T/Jf:(047m/an/)|?/’2i(ﬂ,ma n)> = NilmN;lt/n [Am’m(a7ﬁ)An’n(aa 75) + Am’m(fav 75) n’ n( 36)

:l:Am’m(057 _ﬁ) nn( B) :I:Am m( O‘aﬁ)An’n(_o‘v _/8)]7 (19)
[
where Therefore,
Apn(a, B) = (=)™t H,, n(ia*, 1) |, @) + |—a, —ar) = (1 + e_glo“z) |ae) |xe)
X exp ( - L—;WZ) + a*ﬁ). (20) +(1 - o2l ) lao) |ao)
|a,a) = |-a, —a) = V1 — e~ (|ao) |ac)
3. Entanglement of photon-added + o) ae) ),

entangled coherent states

. o, —a) + |-, 0) = (14 e72) Jac) ac)
Let the normalized even and odd coherent states

be respectively —(1- e~2lol’ ) o) o)
e/ — 1 - 21 / ]
|a > \/2<1+exp(—2|a|2)) (|a> * | a>) ( ) |Oé, —O(> - |—O[, Oé> = 1- e—4\(x| (|a0> ‘Oée>
and —Jae) |ao) )
_ 1 (23)
o= 5 (o)~ 1e)). (@2 |
2(1_exp(_2|a‘2)) y substituting (23) into (3), we have obtained

185



A. Chatterjee

[ (o) = N o™ (Lo laesm) e, m) + /Lo loioym) oo, ) ). (24)
67 (0 mym)) = Nope ™ (VLo Lo, m) e, ) + /T lae,m) o, m) ) (25)
i (s, ) = Ny (VL laesm) laesn) = /T lao,m) oo, ) ) (26)
|¢2_(a,m,n)> n€ ~lel? ( Ly, n+ |a07 >|ae7n> Y Lm+,n— |aev |a07 ) (27)
[
where |ae, m) (o, n)) is the normalized even (odd)  respectively. Thus, the entropy of entanglement of
coherent state [25], and PAECSs are
LE(@) = ¢ Lyn(—2) £ €~ Lyn(2) (28)  B() = A logy (\r) — A_logy (A1) (35)
and It is interesting to note that the entropy
Lo+ ne =min! LE(|a]?) LE(Jal?). (29)  of |¢f(a,m,n)) is equal to the entropy of

Note that (24)—-(27) give the Schmidt decomposition
in terms of the excited even (odd) coherent states.
It can be seen that when m = n, |¢7 (o, m,n)) and
[ty (v, m,n)) are always the maximally entangled
states.

Here we use the entropy of entanglement to
analyze the entanglement properties of PAECSs.
The von Neumann entropy [26] for the re-
duced density matrix pp Tra (9)ap (Plus)
of a pure entangled state |y¢), is defined
as E(|p),,) = —Tr(pyloga(py)). So by applying
Schmidt decomposition of PAECSs in (24)—(27), the
reduced density matrix p; for |17 (o, m,n)) can be
expressed as

o (o ) ()] ) =

2
N 2 Lo laesm) (e,

Py =

Lo |0, ) {0, | (30)

Now, the two nonnegative eigenvalues A4 (1;) of py
are as follows

Ae(¥)) =
1 1
\/ - (Nntn)2 ei4la|2Lm+,n+me,n7~
! (31)

-+
2

Similarly, the two nonnegative eigenvalues of other

PAECSs are

A+ (1)
1 \/ _4|a|2Lm+,n—Lm—,n+
2 (32)
+
Vs )
1 1
2 \/ N$n ? _4|a|2Lm+,n+Lmanf
2 4 (33)
Ax(y) =
1 1 N
—=x \/ - (Nmn) ei4la|2Lm+,nfLm7,n+a
2 4 (34)
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|95 (o, m,n)) and the entropy of |¢] (a,m,n)) is
equal to the entropy of |15 (o, m, n)).

In order to detect the influence of the photon ex-
citations on the quantum entanglement of PAECSs,
we plot E as a function of |a| in Fig. 1 for differ-
ent values of m and n. We find that interchang-
ing the number of photon excitations between two
modes does merely affect the entanglement amount
of PAECSs, that means E(a,m,n) = E(a,n,m).
One can see that E is sensitive to the values of
photon excitations m, n, and increases while m
and n are increasing from 2 to 20 and 1 to 4,
respectively. When m = n = 0, our result is in
accordance with [1] where Francisco et al. observed
that concurrence C(1/*B) increases asymptotically

1.0
0.8
0.6
0.4
0.2
0.0

Fig. 1. The entropy of entanglement for the states
(a) |¥] (o, m,n)) and (b) ] (o, m,n)) as a func-
tion of |a| for m = n = 0 (solid blue line), m = 2,
n =1 (darker red dashed line), m = 3, n = 7 (ma-
genta dash-dotted line) and m = 20, n = 4 (green
dotted line).
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0.8}() . in the region of very small |a|, the entropy of
.« " |1 (a,m,n)) does not depend much more on pho-
0.6 . ton excitation pair (m,n). When |a| < 0.2, the
. most entangled |y (o, m,n)) corresponds to the
N 04 L4 ° . .
. . o case m = n = 0. This is because even for no photon
o2l Lo ‘ . . excitations, there is an entangled coherent photon
' PR S e e e state. This makes the entangled photon-added co-
ool 8% ¢ ° herent states more robust even for a small photon
2 4 6 8 10 number. In Fig. 2, the dependence of entropy on
m photon excitation number m is presented for a given
(b) . ® fixed n and |a| = 0.2. It is shown that the entropy
0.8 . " of entanglement for |4} (o, m,n)) increases steadily
1

0.6 R I I while n is increasing from 0 to 20, keeping |a] fixed
- ' ° 3 : at 0.2. However, it is observed that the entropy of
04f o Tt e e 0., |1 (o, m,n)) (assuming n = 0, 1 or 4), attains its
o2k St e e e e e maximal value when m = 0, 1 or 4, respectively.
' That suggests in the case of |¢)] (o, m, n)), the state

0.0 is most entangled when m = n.

0 2 4 6 8 10
m

4. P- and @Q-functions of photon-added

entangled coherent states
Fig. 2. The entropy of entanglement for the states

(?) 1 (@, m,m)) and (b) Wf(%m» n)) as a func- The Glauber-Sudarshan P distribution func-
tion of m and for n = 0 (blue points), n = 1 (darker tion gives a quasi-probability distribution in phase
red points), n = 4 (magenta points) and n = 20 space, which can assume negative and singular val-

(green points) with |a = 0.2. ues for nonclassical fields. If the Glauber-Sudarshan

P-function exhibits a nonclassical character, then
Thus photon addi- the state is entangled [27]. In this section, we study
tion process can be identified as an entanglement the nonclass.icality of the PAECSS Chargcter%zed by
enhancer operation for superpositions of coherent  the P -function and Q-function. For a bipartite sys-
states (SCS). In Fig. 1b, E of ¢y (o, m,n)) vs |o] tem, ‘Fhe density matrix can be expressed in terms of
is shown. It is clear from (31)-(34) that the be- the diagonal two-mode coherent state |z1, z2) as [28]

from 0 to 1 as « increases.

haviour of [ (a,m,n)) (|5 (a,m,n))) is simi- _ / 2
lar as |1/Jfr(a7in,n)> (|¢f(a,?n, n))). As m = n, p= | dardza Pl z) o, 22) (21, 2] (36)
E(J17)) and E(|1p5 ) reach their maximal value 1,  To calculate the P-function, we recall the antinor-
which implies that | (o, m,n)) and |¢5 (o, m,n))  mal ordering form of an arbitrary two-mode state p
are always maximally entangled states. Specifically, by using [29]

J

d?z; d%z .
p:/% (=21, —22| p|21, 22) exp (|z1|2—|—|z'2|2+21 a—zia’ + 2* b—szT—l-aTa,—l-bTb): (37)

(

|21| _ lzel?

where “::” stands for the antinormal order- <Zl|22> = exp(— + 217 22), the 'density
ing, |z1,2) is a two-mode coherent state. Using  matrix for the state |97 (@, m,n)) can be written as

J

i 8?(a—a)6?(a — b)
£ 22l 2(m+n) +(a +a)d Do —bN)d(a+b) | .
o :(Nmn); - explala i b8 — 2 (ar+a)da” —af)o(a” —b1)o(a+b) | . (38)
1 7r darrmFm)dalm+n) | 450 — q)§(a* + al)d(a* + b1)d(a — b)
L S(a+a)d(a* +af)d(a* + b1)d(a + b)
Similarly for |w2i (a,m,n)),
[ (o + a)d(a* —ah)d(a* +bF)d(a — b)
PO s gty O £ af(a D
pd’z = ) . exp(a a+b b) Oa*(m+n) §o(m+n) i(SQ(CM + a)(;Q(a _ b) (39)
| 6(a— a)d(a* + ah)§(a* —b")(a + b)
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Comparing (38) and (39) with (37), the P-functions can be obtained as

8 (o — 21)0% (o — 22

)

(NE )Ze—2lal’=la "~z H§2(m+n) +6(a+ 21)d(a* — 27)0(a* — 23)0(a + 22)
Pyx(z1,29) = —% 3 (m+n) g (m+n)
1 T Oa*(m+n) g lm+tn ié(a—zl)(S(a*—|—zi‘)5(a*+z;)5(a—22)
0(a+ 2z1)0(a* + 27)0(a* + 23)0(a + 22)
(40)
and
0(a+ z1)0(a* — 25)d(a* + 25)0(a — 22)
(NE )2e—2lal* |z~ H2(m+n) +6% (o — 21)0% (o + 22)
P‘lii (2’1,22) = mn 2
2 m Do (mn) gam+n) 6% (o + 21)0%(a — 22)
0(a—z1)0(a* 4+ 27)d(a* — 25)0(a + 22)
(41)

It is clearly seen that the P-function is highly sin-
gular, consisting of a series of terms of higher-order
derivatives of a delta function. There is another dis-
tribution function called the Q-function that is re-
lated to the P-function by [30]

1
Q(z1,22) = = (z1,22] pl21, 22) =

1
= / A2 A2y P (p, v)elnmailimlvmal® o y)
T

J

1
Qui (21, 22) = —5 (21, 22| pyx |21, 22) =

(

which is always positive. Note that if the function
P(u,v) is like a classical probability distribution,
then Q(z1,22) > 0. However, if @ is zero, then P
must become at least negative in some parts, which
refers to the nonclassicality of the state. Hence, the
exact zeros of the @-function are also a signature
for the nonclassicality of the field. The Q-functions
of PAECSs can be calculated as

+ )2
(Nm2n) ‘Zl|2m‘22|2ne—2\a|2—|z1|2—|22|2 |:e£*a+€a* 4 e—f*a—i—fa* + e&*a—&a* + e—&*a—&a*] (43)
s
and
1
Qui (21, 22) = —5 (21, 22| pyt |21, 22) =
+ \2
(Nmzn) ‘Zl|2m‘z2|2ne—2|a\2—\zl|2—|22|2 |:en*a+no¢* + e—n*a+no¢* + en*a—na* + e—n*a—na*:|’ (44)
T
[
where structure at centre. If m # 0 and n # 0, the sin-
E=z1420, N=21— 2. (45) gle peak is split into four adjacent peaks. While in-

To see the behavior of the @-function of the
PAECSs, we plot (Q(z1,22) as a function of z
and zy, for fixed values of |a|? (see Fig. 3). In the
context of entropy of entanglement, |o| = 0.2 is
a point of utmost interest as the behaviour of the
entropy is just reversed before and after this point
(see Figs. 1 and 2). To check if the @-function is
also responsive to this specific point, we assume
|a|? = 0.05 and |a|? = 0.5 in the first and the sec-
ond rows of the @ plots, respectively. The choice of
|| is in accordance with the experimental values
given by Zavatta et al. [31]. If there is no photon
excitation, i.e., when m = n 0 (see Fig. 3a),
Q(z1,22) of |¢] (a,m,n)) exhibits a single peak
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creasing the excitation photon numbers m and n
further, these four peaks gradually move away from
each other along the z; and z, directions, respec-
tively. We can see that diagonal two peaks tend
to be flatten with increasing values of m and n.
It is also observed that when |a|? changes from
0.05 to 0.5, the peaks disappear immediately. In ad-
dition, to make a comparison of the entanglement
properties between the PAECSs (|1} (o, m,n)) and
\@/}f(a,m,ﬂ))), we plOt Q(Zl,ZQ) of \1/11_(oz,m,n)>
in Fig. 4. One can clearly see that the influence
of photon excitations on Q(z1, 22) of |¢] (a, m,n))
is similar to that of |4 (a,m,n)), except that the
increasing values of (m,n) make the other two di-
agonal peaks smooth.
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Fig. 3.

Q-function of |4 (o, m, n)) for different values of photon-excitations m = n = 0 in (a) and (d), m = 2,

n=11n (b) and (e), m = 3, n = 7 in (c) and (f) respectively, and for fixed values of |a|? (|a|* = 0.05 in upper

row and |a|? = 0.5 in lower row).

Fig. 4. Q-function of ¢ (o, m,n)) for different values of photon-excitations m = n = 0 in (a) and (d), m = 2,
n=11n (b) and (e), m = 3, n = 7 in (c) and (f) respectively, and for fixed values of |a|* (Ja|* = 0.05 in upper

row and |a|?> = 0.5 in lower row).

5. Conclusion

In summary, we consider a class of the photon-
added entangled coherent states (PAECSs), which
are obtained by acting a creation operator on ECSs.
We give the Schmidt decomposition of the PAECSs
in terms of the excited even (odd) coherent states.
Then we calculate their von Neumann entropy of en-
tanglement and discuss the influence of the photon
excitations on quantum entanglement. We find that
the entropy F of PAECSs is sensitive to the photon
excitations to both modes. The line plots for en-
tropy of |1 (a, m,n)) are increasing as m changes
from 0 to 20 and n changes from 0 to 4, respec-
tively. In case of ] (a,m,n)) and |y (o, m,n)),
the states are always maximally entangled while
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m n. We calculate the @Q-distribution of the
PAECSs and study its behavior graphically. The
results show that the nonclassical effects revealed
by this distribution function are affected by photon
excitation numbers m and n in a significant way.
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