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An entangled quantum state is considered by applying a local photon excitation to each mode of
an entangled coherent state. The entanglement property is investigated in terms of the entropy of
entanglement. It is shown that applying a photon addition can improve the amount of entanglement.
It is also examined that in a specific region of parameters, the state |ψ−

1 (α,m, n)〉 is least entangled
when photon excitation is minimum. We study the statistical properties of such states by employing
the quasi-probability functions.
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1. Introduction

Quantum information processing uses the inher-
ent properties of quantum systems like the entan-
glement which has been widely considered as a use-
ful resource to perform quantum operations, uni-
versal quantum computing and quantum commu-
nications [1]. Most of the entangled states, which
are important from the quantum computing per-
spective, violate Bell-type inequalities [2–4], that
means the existence of such states cannot be ex-
plained by any local hidden-variable theory. The
concept of entanglement was introduced by Einstein
et al. [5] who designed a two-particle state that was
strongly entangled both in position and momentum
space. For instance, the two-mode squeezed vacuum
state exhibits quantum entanglement between the
idle mode and the signal mode, and is often ap-
plied as an entangled resource [6] for quantum dense
coding [7].

An entangled coherent state (ECS) [8, 9] can
be typified as two-mode continuous-variable states,
which are very efficient in both generating and
manipulating quantum information protocols [10].
In addition, continuous-variable entangled states
play a crucial role in performing quantum tele-
portation [11], quantum computation [12], entan-
glement purification [13], quantum error correc-
tions [14] etc. Moreover, a number of theoretical
schemes have been proposed to produce ECS in cav-
ity fields ([15, 16] and references therein). Therefore,
the study of entangled coherent states is of much

interest, as coherent states are macroscopic and sim-
plest classical-like continuous-variable states that
can be easily obtained from available laser sources.
Recently, a new entangled quantum state is in-
troduced by applying local coherent superposition
(CS) (r a† + ta) of photon addition and subtrac-
tion to each mode of an even entangled coherent
state (EECS) [6]. It is found that single- and two-
mode CS operations can improve the EPR corre-
lation of the EECS in a big (> 0.88) and small
(< 0.52) region of amplitude, respectively. Zhou et
al. [17] proposed two types of two-mode excited en-
tangled coherent states (TMEECSs) |ψ±(α,m, n)〉,
and investigated the influence of photon excitations
on quantum entanglement by studying the con-
currence of TMEECSs. A quantification of quan-
tum correlations of quasi-Werner states, prepared
by two superposed m-photon-added bipartite co-
herent states, has been done recently [18]. In these
previous literatures in the direction of ECSs, quan-
tum entanglement is explored by adding single or
equal number of photons to a bipartite superpo-
sition of coherent states with opposite phases in
the form |ψ〉 ∝ a†m ⊗ b†m(|α〉a |α〉b ± |−α〉a |−α〉b),
where a† (b†) is the photon creation operator for
mode a (b). In one of the introductory article,
the authors explored the entanglement property of
TMEECSs with a different number of excitations
by means of concurrence. But while observing the
influence of the photon excitations on the quantum
entanglement of the TMEECS |ψ±(α,m, n)〉, they
considered the specific case m = n in which there
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are the same photon excitations in each filed modes
of the TMEECS. However, a full characterization
including a graphical illustration of the entangle-
ment properties in both pure and mixed systems is
still needed to evaluate the effect of an arbitrary su-
perposition with different coherent states and differ-
ent photon addition numbers. We study (both an-
alytically and graphically) the impact of two con-
trol parameters, coherent state amplitude |α| and
photon-excitation pair (m,n), over a few entangle-
ment measures, namely P -function, Q representa-
tion and von Neumann entropy.

In the present work, we describe a class of
continuous-variable entangled states on the basis
of entangled bipartite coherent states (ECSs) [19],
called the photon-added entangled coherent states
(PAECSs), which are obtained by the actions of cre-
ation operator on ECSs. We investigate the entan-
glement characteristics of the PAECSs by analyzing
the Schmidt decomposition and entropy of entangle-
ment. The paper is structured as follows. In Sect. 2,
we present the definition of the PAECSs we are con-
sidering here and write down their forms in terms of
Fock states and some results for their scalar prod-
ucts. In Sect. 3, we investigate the Schmidt decom-
position in terms of the excited even (odd) coherent
state. Then we calculate the von Neumann entropy
for the PAECSs and discuss the influence of differ-
ent excitation photon numbers on the entropy of en-
tanglement. The last section ends with a summary
of the main results of this article.

2. Photon-added entangled
coherent states

This section begins with entangled coherent
states (ECSs) defined as [19, 20]{

|ψ±1 (α, 0, 0)〉 = N±00
(
|α, α〉 ± |−α,−α〉

)
,

|ψ±2 (α, 0, 0)〉 = N±00
(
|α,−α〉 ± |−α, α〉

)
,

(1)

where |α, α〉 ≡ |α〉a ⊗ |α〉b is a bipartite coherent
state with |α〉 being a usual coherent state, defined
by applying the displacement operator D(α) =

eαa
†−α∗a upon the vacuum state. By using the over-

lap 〈α| − α〉 = e−2|α|
2

, the normalization constants
can be calculated as

N±00 =
1√
2

(
1± e−4|α|

2
)− 1

2

. (2)

Due to the overcompleteness of coherent states,
〈α| − α〉 6= 0 for finite values of α, thus the ECSs
are not mutually orthogonal. However, the overlap
〈α|−α〉 tends to zero very rapidly with increase of α.
Now, our states of interest (PAECSs) are m-photon
excitations of the mode a and n-photon excitations
of the mode b on the ECSs, respectively, which are
expressed as{ ∣∣ψ±1 (α,m, n)〉=N±mn a†mb†n( |α, α〉 ± |−α,−α〉 ),∣∣ψ±2 (α,m, n)〉=N±mn a†mb†n( |α,−α〉 ± |−α, α〉 ).

(3)

To find out the normalization factor N±mn, we first
derive an operator identity, the normal ordering
form of the Boson operator a†mb†n. Using the com-
pleteness of the coherent state 1

π

∫
d2α |α〉〈α| = 1

and the technique of integration within an ordered
product of operators (IWOP) [21] as well as the
vacuum projector |0〉〈0| =: exp

(
−a†a

)
: (here “::”

represents the normal ordering), we have

ana†m =

∫
d2α

π
an |α〉 〈α| a†m =∫

d2α

π
αnα∗m : exp(−|α|2 + αa† + α∗a− a†a): =

(− i)m+n :Hm,n(ia
†, ia):, (4)

where
Hm,n(ξ, η) =

(−1)n eξη
∫

d2z

π
znz∗m : exp

(
−|z|2 + ξz + ξz∗

)
:

(5)

is the integral form of the two-variable Hermite
polynomials [22]. The two-variable Hermite poly-
nomial is given by

Hm,n(ξ, η) =

min(m,n)∑
l=0

(−1)lm!n!

l! (m− l)! (n− l)!
ξm−lηn−l.

(6)

Using (5), the expectation of ama†m with respect
to the coherent state |α〉 can be calculated as
〈α|ama†m |α〉 = (−1)mHm,m

(
iα∗, iα

)
=

m!Lm
(
− |α|2

)
, (7)

where Lm(x) is them-th order Laguerre polynomial
and is defined as

Lm(x) =

m∑
l=0

(−1)lm!

(l!)2(m− l)!
xl. (8)

In a similar way, using (7) we obtain

〈α|ama†m|−α〉 = (−1)m e−2|α|
2

Hm,n(iα
∗,− iα) =

m! e−2|α|
2

Lm(|α|2). (9)

Using the results in (7) and (9), the normalization
constant N±mn can be obtained

N±mn =
{
2m!n!

[
Lm(| − α|2)Ln(−|α|2)

±e−4|α|
2

Lm(|α|2)Ln(|α|2)
]}− 1

2

={
2
[
Lm,n

(
|−α|2,−|α|2

)
±e−4|α|

2

Lm,n
(
|α|2, |α|2

) ]}− 1
2

(10)

by introducing the notation Lm,n(x, y) =
m!n!Lm(x)Ln(y). Specially, in the limit m→ 0
and n→ 0, |ψ±1 (α,m, n)〉 and |ψ

±
2 (α,m, n)〉 reduce

to the usual entangled coherent states in (1).
If m = 0 or n = 0, the excitations turns to single-
mode excited coherent states [23]. If m = n 6= 0,

184



Two-Mode Photon-Added Entangled Coherent States. . .

the excitations turn to two-mode excited en-
tangled coherent states [24]. Therefore studying
|ψ±1 (α,m, n)〉 and |ψ±2 (α,m, n)〉 will help to con-
clude about the behavior of all these states. Using

a†m|n〉=
√

(n+m)!
n! |n+m〉 and the Fock state rep-

resentation of a coherent state, we have obtained
the following expressions

a†mb†n |α, α〉 = e−|α|
2
∞∑

p,q=0

√
(p+m)! (q + n)!

p! q!

×αp+q
∣∣p+m, q + n

〉
, (11)

a†mb†n |−α,−α〉 = e−|α|
2
∞∑

p,q=0

√
(p+m)! (q + n)!

p! q!

× (−α)p+q
∣∣p+m, q + n

〉
, (12)

a†mb†n |α,−α〉 = e−|α|
2
∞∑

p,q=0

√
(p+m)! (q + n)!

p! q!

×(−1)q αp+q
∣∣p+m, q + n

〉
, (13)

a†mb†n |−α, α〉 = e−|α|
2
∞∑

p,q=0

√
(p+m)! (q + n)!

p! q!

×(−1)pαp+q
∣∣p+m, q + n

〉
. (14)

Therefore, (3) can be rewritten as

|ψ±1 (α,m, n)〉=N±mn e−|α|
2
∞∑

p,q=0

√
(p+m)! (q+n)!

p! q!

×αp+q
(
1± (−1

)p+q) ∣∣p+m, q + n
〉
, (15)

|ψ±2 (α,m, n)〉=N±mn e−|α|
2
∞∑

p,q=0

√
(p+m)! (q+n)!

p! q!

×αp+q
((
− 1
)q ± (− 1

)p) ∣∣p+m, q + n
〉
, (16)

which implies that they are actually truncations
of the two-mode ECSs given by an equation
with respect to the mode a, b, where all the
terms related to the Fock states of the mode
a : |0〉, |1〉, . . . , |m− 1〉 and the Fock states of the
mode b : |0〉, |1〉, . . . , |n− 1〉 are removed. Finally,
this expansion also leads to the following results
for the scalar products

〈
ψ±1 (α,m

′, n′)
∣∣ψ±1 (β,m, n)〉 = N±m′mN

±
n′n

[
Am′m(α, β)An′n(α, β) +Am′m(−α,−β)An′n(−α,−β)

±Am′m(α,−β)An′n(α,−β)±Am′m(−α, β)An′n(−α, β)
]
, (17)

〈
ψ±2 (α,m

′, n′)
∣∣ψ±2 (β,m, n)〉 = N±m′mN

±
n′n

[
Am′m(α, β)An′n(−α,−β) +Am′m(−α,−β)An′n(α, β)

±Am′m(α,−β)An′n(−α, β)±Am′m(−α, β)An′n(α,−β)
]
, (18)

〈
ψ±1 (α,m

′, n′)
∣∣ψ±2 (β,m, n)〉 = N±m′mN

±
n′n

[
Am′m(α, β)An′n(α,−β) +Am′m(−α,−β)An′n(−α, β)

±Am′m(α,−β)An′n(α, β)±Am′m(−α, β)An′n(−α,−β)
]
, (19)

where
Amn(α, β) = (− i)m+nHm,n(iα

∗, iβ)

× exp
(
− (|α|2+|β|2)

2 + α∗β
)
. (20)

3. Entanglement of photon-added
entangled coherent states

Let the normalized even and odd coherent states
be respectively
|αe〉 = 1√

2
(
1+exp(−2|α|2)

) (|α〉+ |−α〉) (21)

and
|αo〉 = 1√

2
(
1−exp(−2|α|2)

) (|α〉 − |−α〉). (22)

Therefore,

|α, α〉+ |−α,−α〉 =
(
1 + e−2|α|

2) |αe〉 |αe〉

+
(
1− e−2|α|

2) |αo〉 |αo〉 ,

|α, α〉 − |−α,−α〉 =
√
1− e−4|α|2

(
|αo〉 |αe〉

+ |αe〉 |αo〉
)
,

|α,−α〉+ |−α, α〉 =
(
1 + e−2|α|

2) |αe〉 |αe〉

−
(
1− e−2|α|

2) |αo〉 |αo〉 ,

|α,−α〉 − |−α, α〉 =
√
1− e−4|α|2

(
|αo〉 |αe〉

− |αe〉 |αo〉
)
.

(23)
By substituting (23) into (3), we have obtained
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|ψ+
1 (α,m, n)〉 = N+

mn e
−|α|2

(√
Lm+,n+ |αe,m〉 |αe, n〉+

√
Lm−,n− |αo,m〉 |αo, n〉

)
, (24)

|ψ−1 (α,m, n)〉 = N−mn e
−|α|2

(√
Lm−,n+ |αo,m〉 |αe, n〉+

√
Lm+,n− |αe,m〉 |αo, n〉

)
, (25)

|ψ+
2 (α,m, n)〉 = N+

mn e
−|α|2

(√
Lm+,n+ |αe,m〉 |αe, n〉 −

√
Lm−,n− |αo,m〉 |αo, n〉

)
, (26)

|ψ−2 (α,m, n)〉 = N−mn e
−|α|2

(√
Lm−,n+ |αo,m〉 |αe, n〉 −

√
Lm+,n− |αe,m〉 |αo, n〉

)
, (27)

where |αe,m〉 (|αo, n〉) is the normalized even (odd)
coherent state [25], and

L±m(x) = exLm(−x)± e−xLm(x) (28)
and

Lm±,n± = m!n! L±m(|α|2)L±n (|α|2). (29)
Note that (24)–(27) give the Schmidt decomposition
in terms of the excited even (odd) coherent states.
It can be seen that when m = n, |ψ−1 (α,m, n)〉 and
|ψ−2 (α,m, n)〉 are always the maximally entangled
states.

Here we use the entropy of entanglement to
analyze the entanglement properties of PAECSs.
The von Neumann entropy [26] for the re-
duced density matrix ρb ≡ Tra

(
|ϕ〉ab 〈ϕ|ab

)
of a pure entangled state |ϕ〉ab is defined
as E(|ϕ〉ab) = −Tr

(
ρb log2(ρb)

)
. So by applying

Schmidt decomposition of PAECSs in (24)–(27), the
reduced density matrix ρb for |ψ+

1 (α,m, n)〉 can be
expressed as

ρb = Tra

(∣∣ψ+
1 (α,m, n)

〉〈
ψ+
1 (α,m, n)

∣∣) =

N+
mn e

−2|α|2
[
Lm+,n+ |αe, n〉 〈αe, n|

+Lm−,n− |αo, n〉 〈αo, n|
]

(30)

Now, the two nonnegative eigenvalues λ±(ψ+
1 ) of ρb

are as follows
λ±(ψ

+
1 ) =

1

2
±
√

1

4
−
(
N+
mn

)2
e−4|α|2Lm+,n+Lm−,n−.

(31)
Similarly, the two nonnegative eigenvalues of other
PAECSs are
λ±(ψ

−
1 ) =

1

2
±
√

1

4
−
(
N−mn

)2
e−4|α|2Lm+,n−Lm−,n+

(32)

λ±(ψ
+
2 ) =

1

2
±
√

1

4
−
(
N+
mn

)2
e−4|α|2Lm+,n+Lm−,n−

(33)

λ±(ψ
−
2 ) =

1

2
±
√

1

4
−
(
N−mn

)2
e−4|α|2Lm+,n−Lm−,n+,

(34)

respectively. Thus, the entropy of entanglement of
PAECSs are

E(|ψ〉) = −λ+ log2 (λ+)− λ− log2 (λ−) . (35)

It is interesting to note that the entropy
of |ψ+

1 (α,m, n)〉 is equal to the entropy of
|ψ+

2 (α,m, n)〉 and the entropy of |ψ−1 (α,m, n)〉 is
equal to the entropy of |ψ−2 (α,m, n)〉.

In order to detect the influence of the photon ex-
citations on the quantum entanglement of PAECSs,
we plot E as a function of |α| in Fig. 1 for differ-
ent values of m and n. We find that interchang-
ing the number of photon excitations between two
modes does merely affect the entanglement amount
of PAECSs, that means E(α,m, n) = E(α, n,m).
One can see that E is sensitive to the values of
photon excitations m, n, and increases while m
and n are increasing from 2 to 20 and 1 to 4,
respectively. When m = n = 0, our result is in
accordance with [1] where Francisco et al. observed
that concurrence C(ψAB) increases asymptotically

Fig. 1. The entropy of entanglement for the states
(a) |ψ+

1 (α,m, n)〉 and (b) |ψ−
1 (α,m, n)〉 as a func-

tion of |α| for m = n = 0 (solid blue line), m = 2,
n = 1 (darker red dashed line), m = 3, n = 7 (ma-
genta dash-dotted line) and m = 20, n = 4 (green
dotted line).
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Fig. 2. The entropy of entanglement for the states
(a) |ψ+

1 (α,m, n)〉 and (b) |ψ−
1 (α,m, n)〉 as a func-

tion of m and for n = 0 (blue points), n = 1 (darker
red points), n = 4 (magenta points) and n = 20
(green points) with |α| = 0.2.

from 0 to 1 as α increases. Thus photon addi-
tion process can be identified as an entanglement
enhancer operation for superpositions of coherent
states (SCS). In Fig. 1b, E of |ψ−1 (α,m, n)〉 vs |α|
is shown. It is clear from (31)–(34) that the be-
haviour of |ψ+

2 (α,m, n)〉 (|ψ−2 (α,m, n)〉) is simi-
lar as |ψ+

1 (α,m, n)〉 (|ψ−1 (α,m, n)〉). As m = n,
E(|ψ−1 〉) and E(|ψ−2 〉) reach their maximal value 1,
which implies that |ψ−1 (α,m, n)〉 and |ψ

−
2 (α,m, n)〉

are always maximally entangled states. Specifically,

in the region of very small |α|, the entropy of
|ψ+

1 (α,m, n)〉 does not depend much more on pho-
ton excitation pair (m,n). When |α| < 0.2, the
most entangled |ψ−1 (α,m, n)〉 corresponds to the
case m = n = 0. This is because even for no photon
excitations, there is an entangled coherent photon
state. This makes the entangled photon-added co-
herent states more robust even for a small photon
number. In Fig. 2, the dependence of entropy on
photon excitation numberm is presented for a given
fixed n and |α| = 0.2. It is shown that the entropy
of entanglement for |ψ+

1 (α,m, n)〉 increases steadily
while n is increasing from 0 to 20, keeping |α| fixed
at 0.2. However, it is observed that the entropy of
|ψ−1 (α,m, n)〉 (assuming n = 0, 1 or 4), attains its
maximal value when m = 0, 1 or 4, respectively.
That suggests in the case of |ψ−1 (α,m, n)〉, the state
is most entangled when m = n.

4. P - and Q-functions of photon-added
entangled coherent states

The Glauber–Sudarshan P distribution func-
tion gives a quasi-probability distribution in phase
space, which can assume negative and singular val-
ues for nonclassical fields. If the Glauber–Sudarshan
P -function exhibits a nonclassical character, then
the state is entangled [27]. In this section, we study
the nonclassicality of the PAECSs characterized by
the P -function and Q-function. For a bipartite sys-
tem, the density matrix can be expressed in terms of
the diagonal two-mode coherent state |z1, z2〉 as [28]

ρ =

∫
d2z1 dz2 P (z1, z2) |z1, z2〉 〈z1, z2| (36)

To calculate the P -function, we recall the antinor-
mal ordering form of an arbitrary two-mode state ρ
by using [29]

ρ =

∫
d2z1 d2z2

π2

... 〈−z1,−z2| ρ |z1, z2〉 exp
(
|z1|2 + |z2|2 + z1

∗a− z1a† + z2
∗b− z2b† + a†a+ b†b

)... (37)

where “
...
...” stands for the antinormal order-

ing, |z1, z2〉 is a two-mode coherent state. Using
〈z1|z2〉 = exp(− |z1|

2

2 − |z2|
2

2 + z1
∗z2), the density

matrix for the state |ψ±1 (α,m, n)〉 can be written as

ρψ±1
=

(N±mn)
2 e−2|α|

2

π2

... exp(a†a+ b†b)
∂2(m+n)

∂α∗(m+n)∂α(m+n)


δ2(α− a)δ2(α− b)

±δ(α+ a)δ(α∗ − a†)δ(α∗ − b†)δ(α+ b)

±δ(α− a)δ(α∗ + a†)δ(α∗ + b†)δ(α− b)
δ(α+ a)δ(α∗ + a†)δ(α∗ + b†)δ(α+ b)

 ... (38)

Similarly for |ψ±2 (α,m, n)〉,

ρψ±2
=

(N±mn)
2 e−2|α|

2

π2

... exp(a†a+ b†b)
∂2(m+n)

∂α∗(m+n)∂α(m+n)


δ(α+ a)δ(α∗ − a†)δ(α∗ + b†)δ(α− b)

±δ2(α− a)δ2(α+ b)

±δ2(α+ a)δ2(α− b)
δ(α− a)δ(α∗ + a†)δ(α∗ − b†)δ(α+ b)

 ... (39)
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Comparing (38) and (39) with (37), the P -functions can be obtained as

Pψ±1
(z1, z2) =

(N±mn)
2 e−2|α|

2−|z1|2−|z2|2

π2

∂2(m+n)

∂α∗(m+n)∂α(m+n)


δ2(α− z1)δ2(α− z2)

±δ(α+ z1)δ(α
∗ − z∗1)δ(α∗ − z∗2)δ(α+ z2)

±δ(α− z1)δ(α∗ + z∗1)δ(α
∗ + z∗2)δ(α− z2)

δ(α+ z1)δ(α
∗ + z∗1)δ(α

∗ + z∗2)δ(α+ z2)


(40)

and

Pψ±2
(z1, z2) =

(N±mn)
2 e−2|α|

2−|z1|2−|z2|2

π2

∂2(m+n)

∂α∗(m+n)∂α(m+n)


δ(α+ z1)δ(α

∗ − z∗1)δ(α∗ + z∗2)δ(α− z2)

±δ2(α− z1)δ2(α+ z2)

±δ2(α+ z1)δ
2(α− z2)

δ(α− z1)δ(α∗ + z∗1)δ(α
∗ − z∗2)δ(α+ z2)


(41)

It is clearly seen that the P -function is highly sin-
gular, consisting of a series of terms of higher-order
derivatives of a delta function. There is another dis-
tribution function called the Q-function that is re-
lated to the P -function by [30]

Q(z1, z2) =
1

π2
〈z1, z2| ρ |z1, z2〉 =

1

π2

∫
d2µ d2νP (µ, ν)e−|µ−z1|

2−|ν−z2|2 (42)

which is always positive. Note that if the function
P (µ, ν) is like a classical probability distribution,
then Q(z1, z2) > 0. However, if Q is zero, then P
must become at least negative in some parts, which
refers to the nonclassicality of the state. Hence, the
exact zeros of the Q-function are also a signature
for the nonclassicality of the field. The Q-functions
of PAECSs can be calculated as

Qψ±1
(z1, z2) =

1

π2
〈z1, z2| ρψ±1 |z1, z2〉 =

(N±mn)
2

π2
|z1|2m|z2|2ne−2|α|

2−|z1|2−|z2|2
[
eξ
∗α+ξα∗ ± e−ξ

∗α+ξα∗ ± eξ
∗α−ξα∗ + e−ξ

∗α−ξα∗
]

(43)

and

Qψ±2
(z1, z2) =

1

π2
〈z1, z2| ρψ±2 |z1, z2〉 =

(N±mn)
2

π2
|z1|2m|z2|2n e−2|α|

2−|z1|2−|z2|2
[
eη
∗α+ηα∗ ± e−η

∗α+ηα∗ ± eη
∗α−ηα∗ + e−η

∗α−ηα∗
]
, (44)

where
ξ ≡ z1 + z2, η ≡ z1 − z2. (45)

To see the behavior of the Q-function of the
PAECSs, we plot Q(z1, z2) as a function of z1
and z2, for fixed values of |α|2 (see Fig. 3). In the
context of entropy of entanglement, |α| = 0.2 is
a point of utmost interest as the behaviour of the
entropy is just reversed before and after this point
(see Figs. 1 and 2). To check if the Q-function is
also responsive to this specific point, we assume
|α|2 = 0.05 and |α|2 = 0.5 in the first and the sec-
ond rows of the Q plots, respectively. The choice of
|α| is in accordance with the experimental values
given by Zavatta et al. [31]. If there is no photon
excitation, i.e., when m = n = 0 (see Fig. 3a),
Q(z1, z2) of |ψ+

1 (α,m, n)〉 exhibits a single peak

structure at centre. If m 6= 0 and n 6= 0, the sin-
gle peak is split into four adjacent peaks. While in-
creasing the excitation photon numbers m and n
further, these four peaks gradually move away from
each other along the z1 and z2 directions, respec-
tively. We can see that diagonal two peaks tend
to be flatten with increasing values of m and n.
It is also observed that when |α|2 changes from
0.05 to 0.5, the peaks disappear immediately. In ad-
dition, to make a comparison of the entanglement
properties between the PAECSs (|ψ+

1 (α,m, n)〉 and
|ψ−1 (α,m, n)〉), we plot Q(z1, z2) of |ψ−1 (α,m, n)〉
in Fig. 4. One can clearly see that the influence
of photon excitations on Q(z1, z2) of |ψ−1 (α,m, n)〉
is similar to that of |ψ+

1 (α,m, n)〉, except that the
increasing values of (m,n) make the other two di-
agonal peaks smooth.
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Fig. 3. Q-function of |ψ+
1 (α,m, n)〉 for different values of photon-excitationsm = n = 0 in (a) and (d),m = 2,

n = 1 in (b) and (e), m = 3, n = 7 in (c) and (f) respectively, and for fixed values of |α|2 (|α|2 = 0.05 in upper
row and |α|2 = 0.5 in lower row).

Fig. 4. Q-function of |ψ−
1 (α,m, n)〉 for different values of photon-excitationsm = n = 0 in (a) and (d),m = 2,

n = 1 in (b) and (e), m = 3, n = 7 in (c) and (f) respectively, and for fixed values of |α|2 (|α|2 = 0.05 in upper
row and |α|2 = 0.5 in lower row).

5. Conclusion

In summary, we consider a class of the photon-
added entangled coherent states (PAECSs), which
are obtained by acting a creation operator on ECSs.
We give the Schmidt decomposition of the PAECSs
in terms of the excited even (odd) coherent states.
Then we calculate their von Neumann entropy of en-
tanglement and discuss the influence of the photon
excitations on quantum entanglement. We find that
the entropy E of PAECSs is sensitive to the photon
excitations to both modes. The line plots for en-
tropy of |ψ+

1 (α,m, n)〉 are increasing as m changes
from 0 to 20 and n changes from 0 to 4, respec-
tively. In case of |ψ−1 (α,m, n)〉 and |ψ

−
2 (α,m, n)〉,

the states are always maximally entangled while

m = n. We calculate the Q-distribution of the
PAECSs and study its behavior graphically. The
results show that the nonclassical effects revealed
by this distribution function are affected by photon
excitation numbers m and n in a significant way.
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