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A new method of obtaining parameters of the repulsive part of the analytical potential energy curve
of a diatomic molecule, based on the deep neural network approach, is presented. The method was
successfully tested on artificially created spectra as well as an experimental bound→free spectrum
of the G0+u (6

1P1)(υ
′ = 39)→ X0+g transition in Hg2. The method was tested for a Morse and four-

parameter expanded Morse oscillator potentials but can be easily adaptable to other forms of analytical
potential energy curves.
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1. Introduction

Nowadays, artificial neural networks and espe-
cially deep neural networks (DNN) gain increasing
popularity in many applications from driving au-
tonomous cars [1] to the synthesis of photorealistic
images [2]. The neural networks are commonly used
in scientific research, e.g. in astronomy for detect-
ing gravitational lenses [3] or in particle physics for
searching exotic particles [4]. This technique is also
used in physical chemistry, e.g. for finding poten-
tial energy surfaces (PES) of simple molecules (e.g.
NH+

2 ) based on ab-initio energy points [5] or for
finding potential energy curve (PEC) of a diatomic
molecule below the dissociation limit based on the
so-called bound←bound experimental spectra [6, 7].
In this work, we present an application of deep neu-
ral network (DNN) for obtaining a repulsive part
of PEC (i.e., the part of PEC located above the
dissociation limit) of a diatomic molecule based on
bound→free experimental spectra.

Generally, there are two types of spectra that
can be observed for diatomic molecules as a re-
sult of transitions between different electronic states
(see Fig. 1), i.e., laser-induced fluorescence (LIF)
excitation spectra and LIF dispersed emission spec-
tra [8, 9]. In LIF excitation spectroscopy, the
laser that excites molecules from a lower (usually,
ground) to an upper (excited) state is gradually
tuned, and the spectrum is registered as the total
fluorescence of the excited molecules as a function
of the laser wavelength. The total fluorescence is

registered by the detector (usually a photomulti-
plier), which means that the spectral distribution
of the fluorescence is not taken into account. This
method is used to obtain so-called bound←bound
spectra, which are especially useful for obtaining the
PEC shape of the upper molecular state below the
dissociation limit. In LIF dispersed emission spec-
troscopy, the wavelength of the excitation laser is
fixed (it is adjusted to the energy of the chosen
rotational–vibrational transition in the molecule),
whereas the emitted fluorescence is registered by
the spectrometer equipped with a detector. The dis-
persed emission spectrum shows the spectral dis-
tribution of the observed fluorescence. This exper-
imental technique can be used for registration of
the so-called bound→free spectra which are useful
for obtaining characteristics of the repulsive part
of PEC of the lower state involved in the inves-
tigated transition, which can not be obtained by
other methods.

The bound→free LIF dispersed emission spec-
trum can be simulated using the BCONT pro-
gram [10], which — as an input — requires pa-
rameters of the lower and upper electronic states
of the studied transition. Generally, the shape
of bound→free LIF dispersed emission spectrum
depends on two factors: υ′-level wavefunction of
molecule in the upper (excited) state and the shape
of lower-state PEC above the dissociation limit (i.e.,
above the atomic asymptote with which the lower
state correlates). The shape of the υ′-level wave-
function in the upper state is determined by the
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Fig. 1. The scheme of collection of (a) LIF excitation and (b) LIF dispersed emission spectra. Details in text.

upper-state PEC. The PEC of the upper state is
usually known (it can be obtained, e.g. from the
analysis of bound ← bound LIF excitation spec-
tra). In this case, the shape of the repulsive part
of PEC in the lower state can be determined from
the analysis of bound→free LIF dispersed emission
spectrum.

To obtain the molecular potential below the
dissociation limit from the experimental data
one can use, e.g. Rydberg–Klein–Rees (RKR)
method [11, 12] (which, however, is error-prone in
the case of shallow potentials) or the inverted per-
turbation approach (IPA) methodology [13]. On the
other hand, the repulsive part of the potential can
be obtained from bound→free spectra, e.g. using
the RKR-like inversion procedure [14]. The results
of such an analysis for the ground state of Hg2
molecule are presented in [15, 16]. The repulsive
part of the potential can be also obtained using the
IPA method [17]. Obtaining the whole PEC based
on both bound→bound and bound→free spectra is
more a challenging task. An interesting example of
such an analysis for the a3Σ+

u state in Na2 molecule
is presented in [18]. Moreover, having high-quality
experimental data, there is also possible to deter-
mine the transition dipole moment function M(R)
which can be found in [18] and [19] for transitions
23Σ+

g − a3Σ+
u in Na2 and 43Σ+ − a3Σ+ in NaK,

respectively.
In recent years, among others our group proposed

methods of obtaining the internuclear potential of
dimers below the dissociation limit using artificial
intelligence algorithms, i.e., neural networks [6, 7]
and genetic algorithms [20]. Other groups reported
similar approaches [21, 22]. The method of obtain-
ing the repulsive part of the internuclear poten-
tial using DNN presented in this paper constitutes

a complement of our previous study devoted to the
determination of the shape of the internuclear po-
tential well below the dissociation limit using ex-
perimental data available [6].

2. Data preparation

The goal of this study is to check whether the
DNN can be used to find parameters of analytical
PEC of the lower state which would lead to a proper
simulation of experimental spectrum obtained us-
ing of the BCONT program. As an application, we
examined the G0+u (61P1)(υ′ = 39) → X0+g transi-
tion in Hg2 molecule [16], which LIF dispersed emis-
sion spectra are presented in Fig. 2. The presented
spectra contain bound→free and bound→bound
transitions. In the LIF dispersed emission spec-
troscopy the boundary between bound→free and
bound→bound part of the spectrum is determined
by the difference between the energy of vibrational
level in the upper state to which the molecule is ex-
cited and the energy of the asymptote of the lower
state. In case of the examined transition in Hg2
this boundary is located at 48853.7 cm−1, which
is marked by the blue dashed vertical line in Fig. 2.
In this work, we analyse only the bound→free
part, which is located on the left-hand side of the
vertical line.

Every bound→free LIF dispersed emission spec-
trum contains υ′ + 1 maxima, where υ′ is the vi-
brational number of the level in the upper state (in
the studied example υ′ = 39), to which molecules
are excited. However, the spectral resolution of
detection of the experimental spectra sometimes is
too low to resolve all maxima (especially in the high-
energy part of the spectrum), which can be easily
seen in Fig. 2 as trace (I).
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Fig. 2. The experimental LIF dispersed emission
spectra of the G0+u (υ

′ = 39) → X0+g transition
in Hg2 [16] analysed in this work. (I) Low resolu-
tion spectrum recorded with 100 cm−1 monochro-
mator slit-width. (II) Higher-resolution spectrum
combined with: low resolution spectrum from (I)
and higher resolution spectrum recorded with
monochromator slit-width 10 cm−1. The vertical
arrow denotes boundary between low- and higher-
resolution parts. The dashed blue vertical line shows
boundary between bound→free and bound→bound
parts of the spectrum. Details in text.

In the studied example, assuming that the G0+u
state potential is known, the positions of the ob-
served maxima depend on parameters of the X0+g
state potential. For a given set of potential pa-
rameters of the X0+g state, the simulated positions
of maxima in the emission spectrum can be eas-
ily found using BCONT program. In this work, we
assumed that the upper-state PEC is described by
the pointwise ab-initio potential of [23]. We also as-
sumed, that the repulsive part of the X0+g state
potential is described by the expanded Morse oscil-
lator (EMO) function [24]

VEMO(R) = De

[(
e−β(R)(R−Re) − 1

)2 − 1
]
. (1)

This EMO function has three parameters: potential
well depth De, internuclear equilibrium distance Re
and β(R) which determines the “width” of the po-
tential well. It is defined as power series

β(R) = β0 + β1
R−Rref

R+Rref
+ β2

(
R−Rref

R+Rref

)2

+ . . . ,

(2)
where Rref is the expansion centre usually (also in
this work) set to Re. If the series is cut after first
term (β(R) = β0), the EMO potential is reduced to
a Morse potential

VMorse(R) = De

[
(e−β(R−Re) − 1)2 − 1

]
. (3)

Here we represent the X0+g state potential by the
Morse potential (which should be sufficient to sim-
ulate a low-resolution experimental spectrum with
fewer resolved maxima presented in Fig. 2 by (I)) or

TABLE I

Parameters of Morse and four-parameter EMO rep-
resentations of the X0+g state in Hg2 obtained by the
DNN. Details in text.

Parameter Range∗
Morse

potential
Four-parameter
EMO potential

Re [Å] 3.5–3.75 3.498 3.449
De [cm−1] 365–385 376.62 374.25
β0 [Å−1] 1.2–1.45 1.4833 1.5535
β1 [Å−1] 0–0.03 – 6.44× 10−4

∗The range from which parameters are randomly
chosen during creation of training data set.

the EMO potential with only two non-zero β terms
(βi>2 = 0 in (1)), which was used to simulate the
spectrum collected with higher resolution (trace (II)
in Fig. 2). As the version of EMO potential used in
this work has four parameters (Re, De, β0 and β1),
in the further part of the article it will be compen-
diously named as four-parameter EMO potential.

Generally, based on the positions of experimental
maxima, the trained DNN should return parame-
ters of the X0+g state potential which lead to the
BCONT simulation being in agreement with the ex-
perimental spectrum. Based on the previous exper-
imental results as well as of ab-initio calculations,
for each potential parameter of the X0+g state, we
defined a range in which the parameter value is
probably located. The chosen ranges are presented
in Table I.

To train the DNN for both network architec-
tures (first, designed for obtaining parameters of
a Morse potential and second, for obtaining param-
eters of a four-parameter EMO potential, more de-
tails in Sect. 3), we generated the data sets con-
taining over 10 000 data samples which served as
training and validation sets. In the data sets, each
sample contained two vectors. Namely,

1. The output vector yi = (Rie, D
i
e, β

i
0) for DNN

predicting parameters of a Morse potential or
yi = (Rie, D

i
e, β

i
0, β

i
1) for the DNN predicting

parameters of a four-parameter EMO poten-
tial.

2. The input vector xi which contained the dif-
ferences between energies of the first N max-
ima observed in the BCONT simulation of
the G0+u (61P1) (υ′ = 39) → X0+g transition
based on the X0+g state potential with param-
eters from yi and the energy of the first max-
imum observed in the simulation. It means
that j-th component of the xi vector xji =

E
simj

i − Esim0
i , where Esimj

i and Esim0
i , de-

notes energies of j-th and the first maximum
observed in the BCONT simulation based on
the X0+g state potential with the parameters
collected in yi vector.
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Using differences between the energies of subse-
quent maxima and the energy of the first maximum
(instead of the energies of subsequent maxima di-
rectly) is due to the fact that the experimental spec-
trum can be shifted along the x horizontal axis due
to limitation in measurement of absolute energies
in the spectrum. To compare the BCONT simula-
tion and experimental spectrum, the simulation is
shifted to obtain agreement between the energy of
the first experimental maximum and the first max-
imum in the simulation.

Vectors (xi,yi) consist of single vector pair used
in the process of training DNN. For each sample
in the data set, the values of potential parameters
(yi) were randomly chosen with uniform distribu-
tion from defined ranges (compare with the second
column of Table I). The value ofN was chosen based
on the number of maxima observed in the experi-
mental spectrum. In the case of the DNN which
predicts parameters of a Morse potential, we con-
sidered energies of the first 15 maxima (N = 15),
whereas in the case of DNN predicting parameters
of a four-parameter EMO potential, the energies of
the first 25 maxima were considered (N = 25).

3. Neural network architecture

The DNN was created in Python programming
language using TensorFlow library of [25] with
Keras API of [26]. The network was trained using
cloud environment Google Colaboratory [27], how-
ever it can also be trained or used on the local com-
puter. We prepared two architectures of DNN with
regard to potential type of the X0+g state. To ob-
tain parameters of a Morse potential, we used fully
connected DNN (called DNNMorse) contained 3 lay-
ers with 25, 10 and 3 neurons in subsequent layers.
To obtain parameters of four-parameter EMO po-
tential, the fully connected DNN (called DNNEMO)
with 6 layers was used (with 60, 60, 100, 100, 60 and
4 neurons in subsequent layers). The training sets
contained 12000 and 15000 samples for DNNMorse

and DNNEMO, respectively.
In both architectures, all layers had LeakyReLU

activation function with default value of negative
slope coefficient α = 0.3. The DNNs used ADAM
optimizer [28] with learning rate set to 0.008, the
weights were initialized using variance scaling ini-
tializer. The maximum number of epochs was set
to 2500, however further described early stopping
mechanism was also used. During learning process
the cost functions were calculated as the mean ab-
solute percentage error. The training data were nor-
malized using normalization module of the Keras li-
brary. For both networks, 10% of datasamples from
the training data sets were used as the validation
data set. Thanks to this approach we implemented
two improvements:

1. If the cost function for validation data set did
not decrease during 25 epochs, the learning
rate was reduced by multiplying it by 0.8.

2. If the cost function for validation data set de-
creased less then 0.0005 during 180 epochs,
the early stopping condition occurred, which
meant that the training process was ceased
and the weights associated with smallest value
of cost function (for validation data set) were
restored.

In Google Colaboratory environment the training
of DNN took usually 1–2 min in case of DNNMorse

and 5–7 min in case of DNNEMO. Using a local
computer (Intel(R) Core(TM) i5-1135G7 processor,
16GB of RAM, Nvidia GeForce MX 450) the same
processes took about 3–4 min for DNNMorse and
6–10 min for DNNEMO.

4. Results

4.1. Tests on artificially generated spectra

The main goal of training the DNN was to find
the repulsive part of PEC of the X0+g state in Hg2
which lead to the proper simulation of the exper-
imental spectrum of the G0+u → X0+g transition.
However, to verify the correctness and versatility of
the proposed method, we also conducted tests on ar-
tificially generated spectra (reference spectra). This
idea is based on the fact that knowing PEC of the
repulsive part of the X0+g state (i.e., potential pa-
rameters), it is very easy to obtain the simulated
spectrum of the G0+u → X0+g transition using the
BCONT program. To test the DNN one can ran-
domly choose parameters of the X0+g state PEC,
next, perform BCONT simulation based on these
parameters, and use the simulated spectrum (pre-
cisely, the energies of maxima obtained from the
spectrum) to test the DNN.

Let us assume that EDNN
i and Eref

i are energies
of the position of the i-th maximum in the spec-
trum simulated based on the DNN result and in
the reference spectrum, respectively. Therefore, we
can introduce metric C which evaluates the agree-
ment between simulation based on the DNN result
and the reference spectrum. It is defined as

C =
1

N

N∑
i=1

∣∣(Eref
i − Eref

0 )− (EDNN
i − EDNN

0 )
∣∣ ,
(4)

where N is the number of considered maxima in
the spectrum. It is obvious that in case of “a perfect
simulation” (Eref

i = EDNN
i for each maximum) C is

equal zero.
For both DNN architectures we created new data

sets containing 1000 samples with PEC parameters
chosen randomly from the same ranges as in the case
of training data sets. Table II collects the results of
performed tests, whereas Fig. 3 shows comparison
between simulations based on DNN results and ref-
erence spectra for samples for which C parameter is
similar to average C in the whole data set. Figure 4
presents the distribution of C for the test data sets
for both DNN architectures. As one can see, the
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Fig. 3. Comparison between (I) artificially created
reference spectra from test data sets and (II) sim-
ulation based on DNN result. Panels (a) and (b)
present results for DNN predicting parameters of
a Morse potential and four-parameter EMO poten-
tial, respectively. Presented examples have agree-
ment metrics C similar to an average C in test data
set for DNN predicting particular type of poten-
tial ((a) 12.8 cm−1 and (b) 46.9 cm−1). Insets show
fragments depicted with blue rectangles and arrows
indicate the last maxima, which were considered by
the DNNs (N values correspond to the length of
input vectors of DNNs). Details in text.

averaged C parameter for DNNMorse is significantly
lower than that for DNNEMO. This is due to the fact
that predicting parameters of four-parameter EMO
potential is more challenging than for a Morse po-
tential, which has only three parameters. However,
for both analysed forms of potential the parame-
ters predicted by DNNs lead to BCONT simulation
with satisfactory agreement with the relevant refer-
ence spectrum, which is depicted in Fig. 3.

4.2. Simulation of experimental spectra

LIF dispersed emission spectrum of the G0+u →
X0+g transition in Hg2 [16] encompasses 8000 cm−1
(i.e., 40 nm). Due to the vast range of the spec-
trum, its low-resolution version was recorded with
a larger monochromator step (distance between
neighbouring points along the horizontal axis)
δ = 7.2 cm−1 and the monochromator slit-width
was set to 100 cm−1. The spectrum is shown
in Fig. 5a (trace (I)). To resolve maxima in the

Fig. 4. Distribution of C metric parameter which
measures agreement between simulation based on
DNN result and reference spectrum for the test data
sets. Panel (a) and (b) show results for DNNMorse

and DNNEMO, respectively. Details in text.

TABLE II

Analysis of agreement between reference spectra and
their simulations based on DNN results measured by
C metric parameter (compare with (4)). Statistics for
the test data set (not used to train the DNN) contain-
ing 1000 samples. Details in text.

Average
[cm−1]

Median
[cm−1]

Std. dev.
[cm−1]

DNNMorse (N = 15) 12.8 9.7 11.7
DNNEMO (N = 25) 46.9 37.2 39.7

high-energy part of the spectrum (which are not re-
solved in the low-resolution spectrum), the part of
the spectrum for energies above 46500 cm−1 was
recorded with higher resolution (δ = 2.4 cm−1,
20 cm−1 slit-width).

It is worth mentioning that only the high-energy
part of the spectrum was recorded with higher res-
olution due to the fact that high-resolution mea-
surements are significantly more time consuming
than low-resolution ones. Traces marked by (I) in
Fig. 5b and c present the experimental spectrum
combined with the low- and higher-resolution parts
for energies smaller and larger than 46500 cm−1,
respectively.

Simulation based on a Morse potential with
parameters obtained by DNNMorse is shown as
trace (II) in Fig. 5a and b. To simulate the influ-
ence of different monochromator slit-widths, the
simulated spectrum was convolved with a Gaussian
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Fig. 5. (I) Experimental spectra and (II) their
simulations based on the DNN results of the
G0+u (6

1P1)(υ
′ = 39) → X0+g transition in Hg2.

Trace (I) in panel (a) shows low-resolution ex-
perimental spectrum recorded with 100 cm−1

monochromator slit-width whereas traces (I) in
panel (b) and (c) present combination of low- and
higher-resolution spectra recorded with 100 cm−1

and 20 cm−1 monochromator slit-widths, respec-
tively. The simulation (traces (II) presented in panel
(b) and (c)) is based on a Morse potential with
parameters predicted by DNNMorse, whereas sim-
ulation in panel (c) is based on four-parameter
EMO potential with parameters predicting by
DNNEMO. Boundary of insets are depicted with
blue rectangles. Values of parameters of both po-
tentials predicted by DNNs are collected in Table I.
Details in text.

function with different σ parameters, i.e.,
σ = 60 cm−1 and σ = 10 cm−1 in Fig. 5a
and b, respectively. One can see that the sim-
ulation is in agreement with the low-resolution
spectrum (Fig. 5a), whereas in the case of the
higher-resolution spectrum (inset in Fig. 5b) there

are significant disagreements between simulation
and experimental spectrum. The result of simula-
tion based on four-parameter EMO potential with
parameters predicted by DNNEMO is presented
as (II) in Fig. 5c. In this case, the simulation is
in agreement with the experimental data also in
the higher-resolution part of the spectrum. It is
also important to emphasize that the simulation
presented in this work should be compared with
the experimental spectrum only with respect to
position of minima and maxima, and not com-
paring intensities of maxima. The experimental
spectrum consists of two parts, which were recorded
using different spectrometer settings (especially,
the entrance slit) and, afterwards, were manually
combined into one spectrum. Due to the procedure,
the simulated intensities of maxima may differ
from the observed ones.

It should be also stressed that the simulation pre-
sented in Fig. 5 refers only to the bound→free part
of the spectrum. The experimental spectrum con-
tains also the bound→bound component in its high-
frequency part, which was not considered in the sim-
ulation. The simulation of bound→bound part of
the spectrum, which can be done using e.g. LEVEL
program [29], depends on the part of PEC below the
dissociation limit. We envision that there is a pos-
sibility of designing DNN method, which can deter-
mine the whole PEC based on both bound→bound
and bound→free spectra. This problem is compli-
cated, however, we are going to explore it in the fu-
ture.

5. Conclusions

The test results conducted for artificially created
test data sets show that the potential parameters
predicted by both DNNMorse and DNNEMO can lead
to CO simulation the consistent with corresponding
reference spectra (compare with Fig. 3). Moreover,
simulations of the G0+u (υ′ = 39) → X0+g transition
in Hg2 based on potential parameters predicted by
both DNNs also show a good agreement with the
experimental spectra (compare with Fig. 5). This
indicates that the presented method can be used
for obtaining the repulsive part of PEC above its
dissociation-energy limit based on LIF dispersed
emission spectra. The presented method can be eas-
ily adapted to other forms of analytical PEC, e.g.
Lennard–Jones or van der Waals potentials.

The dispersed emission spectrum depends on
both lower and upper electronic state potentials
involved in the observed transition. In this analy-
sis, we used a newer, more precise representation of
the potential of the G0+u state obtained using IPA
method [23], whereas the analysis presented in [16]
based on the previous G0+u state representation ob-
tained using RKR-method. Due to this fact, a direct
comparison of the potential energy curve of theX0+g
state obtained in this work with the curve of [16] is
difficult. Consequently, the most reliable method of
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assessing the quality of the determination of the re-
pulsive part of the X0+g state potential in Hg2 using
DNN is the comparison of the simulation based on
the obtained X0+g state potential with the experi-
mental spectrum (see Fig. 5).

It is also important to emphasize that the method
presented in this work is an alternative approach
to the problem of determining the repulsive part
of diatomic molecule potential. We do not claim
the presented method is better than the respected
RKR-like inversion procedure [14], but we show the
possibility of using neural networks to find the re-
pulsive parts of potential energy curves using dis-
persed emission spectra. In the future, we are going
to develop a method that can by employed to ob-
tain the whole molecular potential based on both
bound←free and bound←bound spectra.
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