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Two different approaches to solving the inverse problem of the calculus of variation for nonlinear equa-
tions are introduced. The first approach is based on an integral representation of the Lagrangian func-
tion, while the second one relies on the generalization of Lagrangian symmetry. As an application of the
first approach, we initially provide some useful remarks on the Lagrangians of the modified Emden-type
equation, and then construct Lagrangian functions for (i) a cubic–quintic Duffing oscillator, (ii) Liénard-
type oscillator and (iii) Mathews–Lakshmanan oscillator. Using the second approach, we obtain analytic
(Lagrangian) representations for the three velocity-dependent equations, namely, (iv) Abraham–Lorentz
oscillator, (v) Helmholtz oscillator and (vi) Van der Pol oscillator. For each of the systems in (i)–(vi)
we find the Jacobi integral and thereby provide a method for obtaining the Hamiltonian function.
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1. Introduction

The inverse problem in the calculus of varia-
tion involves deciding whether a given system of
second-order ordinary differential equations rep-
resenting dynamical systems is a solution of the
Euler–Lagrange equation and eventually finding its
Lagrangian representation, if the solution exists [1].
For linear ordinary differential equations, the set of
constraints for the existence of Lagrangians is pro-
vided by the so-called Helmholtz conditions [2, 3].
The equation of motion of a damped harmonic
oscillator

ẍ(t) + γ ẋ(t) + ω2x(t) = 0 (1)
violates these conditions such that we cannot find
a time-independent Lagrangian representation for
it. In (1), the over-dots denote the differentia-
tion with respect to t. Here γ represents the fric-
tional coefficient of the medium in which the oscil-
lator of angular frequency ω is embedded. An ex-
plicitly time-dependent Lagrangian of the damped
system was actually found [4, 5] during 1940’s.
For this Lagrangian, the canonical momentum is
time-dependent. This provides an awkward ana-
lytical constraint to use the corresponding Hamil-
tonian to quantize the system [6]. In 1931, Bate-
man [7, 8] suggested a very ingenious method to
find an explicitly time-independent Lagrangian for
the damped harmonic oscillator by doubling the

number of the system’s degrees of freedom. More
specifically, in conjunction with (1), an auxiliary
oscillator equation

ÿ(t)− γ ẏ(t) + ω2y(t) = 0 (2)

was considered to obtain the Lagrangian

L = ẋ(t)ẏ(t) +
γ

2

(
x(t) ẏ(t)− ẋ(t) y(t)

)
−ω2x(t)y(t). (3)

Physically, the energy drained out from the oscil-
lator in (1) is completely absorbed by that in (2)
such that these two oscillators together represent
a conservative system. The Euler–Lagrange equa-
tion [9] written in terms of y(t)(x(t)) gives the equa-
tion of motion for x(t)(y(t)). Because of this un-
usual behavior, the Lagrangian (3) is said to provide
an indirect analytic (Lagrangian) representation of
the system. The canonical quantization of damped
harmonic oscillator using the indirect Lagrangian
representation has been found to be quite satisfac-
tory [10–12] because the corresponding Hamiltonian
is time independent [5].

Traditionally, the Lagrangian function L of the
autonomous differential equation is expressed as
L = T − V , where T and V stand respectively
for the kinetic and potential energies of the system
represented by the equation. Such a Lagrangian is
referred to as standard. Relatively recently, a new
type of Lagrangian functions [13] has been proposed
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for dissipative-like autonomous differential equa-
tions. These do involve neither T nor V . As a result,
such Lagrangians were qualified as non-standard.
One can also find non-standard Lagrangian repre-
sentation for linear differential equations which vi-
olate Helmholtz conditions [14]. At the end of the
last decade, Musielak [15] and Cieśliński and Ni-
kiciuk [16] presented methods to write results for
non-standard Lagrangians of variety of nonlinear
dynamical systems. It was observed that some of
the equations follow from the inverse type of La-
grangian functions, while others follow logarithmic
functions. For example, the modified Emden-type
equation [17]

ẍ+ αxẋ+ βx3 = 0, x = x(t), (4)
was found to have Lagrangian representations given
by [13]

L =
1

ẋ+ kx2
for α = 3k and β =

α2

9
(5)

and

L = ln(ẋ+ k x2) for α = 4k and β =
α2

8
.

(6)
Writing (4)–(6) we omitted the argument t
from x(t). We shall follow this convention through-
out. The results for Lagrangians in (4) and similar
equations were chosen in an ad hoc fashion rather
than being derived from the solution of the inverse
problem in the calculus of variation [18].

In this context, we note that the work of Nucci
and Tamizhmani [19] is a step forward along this
line of investigation because the authors made the
use of the elegant method due to Jacobi [20] to
find the Lagrangian functions of some differential
equations (linear or nonlinear). The purpose of the
present paper is to introduce two uncomplicated
methods to solve the inverse variational problem
for nonlinear differential equations, and then use
them to construct non-standard Lagrangian repre-
sentations for a number of evolution equations that
play a role in many applicative contexts. The first
method of our interest makes use of the integral rep-
resentation of the Lagrangian function in terms of
the first integral of the equation of motion [21]. The
second method [22] sought by us depends on a sim-
ple but nontrivial generalization of the Lagrangian
symmetry [23].

In Sect. 2, we provide a brief derivation of the
methods of our interest to solve the inverse prob-
lem. As a useful application of the first method,
we demonstrate that the Lagrangian in (4) can be
found for arbitrary values of α and β such that the
results in (5) and (6) are only special instances.
Further, we show that for α = 3k and β = α2/9
one can have a logarithmic Lagrangian representa-
tion of (4) in addition to the inverse one as given
in (5). But for α = 4k and β = α2/8, (4) does
not have any inverse type Lagrangian. Using the
second method we provide an ab intio derivation
of the Bateman Lagrangian in (3) and find that

the approach is especially important for velocity-
dependent nonlinear differential equations. We de-
vote Sect. 3 to present an uncomplicated method
of finding the first integral of nonlinear differential
equations and thereby obtain Lagrangian represen-
tations of a number dynamical systems using our
first method. Where-ever possible, we present re-
sults for both inverse and logarithmic Lagrangians
types. Here, we also implement the second method
to find Lagrangians for two nonlinear dissipative
equations and one third-order linear equation. In
Sect. 4, we look for Jacobi integrals [9] for the non-
standard Lagrangians found in Sect. 3, and then
provide results for the corresponding Hamiltonian
functions. And finally, in Sect. 5 we summarize our
outlook on the present work and make some con-
cluding remarks.

2. Methods for constructing
Lagrangian representation

2.1. Method 1: Lagrangian function
from an integral representation

The relationship between the Lagrangian and
constant of the motion is represented by the Jacobi
integral [9]

N∑
i=1

vi
(
∂L

∂vi

)
− L = K, (7)

where L = L(x,v) is the Lagrangian and K =
K(x,v) is the constant of the motion of the second-
order ordinary differential equation

ẍi = f i(xj , ẋj), i = 1, 2, . . . , N. (8)
Here x = (x1, . . . , xN ) and v = ẋ = (v1, . . . , vN ).
The equations for the characteristics of (7) are [24]

dv1

v1
= . . . =

dvN

vN
=

dL

L+K
. (9)

Writing (8) in the equivalent form dvi

dt = f i(x,v),
one can demand that the constant of the motion
K(x,v) is the first integral of the equation provided

N∑
i=1

(
f i(x,v)

∂K

∂vi
+ vi

∂K

∂xi

)
= 0. (10)

The solution of (10) or the integral surfaces can now
be obtained from

dv1

f1(x,v)
= . . . =

dvN

fN (x,v)
=

dx1

v1
= . . . =

dxN

vN
.

(11)
For an N -dimensional autonomous Newtonian sys-
tem the solution of (7) can be expressed as an inte-
gral over possible constants of the motion [21], and
thus we have

L(x,v) =
1

N

N∑
i=1

vi
vi∫

dξ
Ki(x, ξ)

ξ2
. (12)

For the one-dimensional system (12) reads

L(x, v) = v

v∫
dξ

K(x, ξ)

ξ2
. (13)
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In the following we shall use the integral representa-
tion of the Lagrangian function in (13) to deal with
the inverse problem of (4) in a more general con-
text. To find the constant of the motion, we shall
follow a very simple prescription, rather than taking
recourse to the use of (10) and (11).

We begin by writing (4) in the autonomous form
v(x)v′(x) + αx v(x) + βx3 = 0, (14)

where v(x) = dx
dt and v′(x) = dv(x)

dx . This first-order
linear differential equation can be solved to get the
constant of the motion

K(x, ẋ) =
2α√
α2 − 8β

arctan

(
h(αx2 + 4ẋ)

x2
√
α2 − 8β

)

+ ln
(
βx4 + αx2ẋ+ 2x2

)
. (15)

In principle, (15) can be used in (13) to construct
a Lagrangian for a modified Emden-type equation.
But it would be instructive to write from (15),
a constant of the motion for α = 3k and β = α2/9,
and find for (5) two Lagrangian representations,
which are not related by a trivial gauge term. For
these special values of the parameters, the constant
of the motion reduces to a very simple form given
by

K(x, ẋ) =

(
k x2 + ẋ

)2
k x2 + 2ẋ

. (16)

If K(x, ẋ) is a constant of the motion, its reciprocal

K1(x, ẋ) =
1

K(x, ẋ)
(17)

is also a constant of the motion. It is straightfor-
ward to verify that K1(x, ẋ) in conjunction with
(12) leads to the reciprocal Lagrangian as appears
in (5). Similarly, using (16) we obtain a logarithmic-
type Lagrangian

L1 =
1

2
ẋ ln

(
k x2 + 2ẋ

)
− k x2. (18)

The Lagrangians (5) and (18) for the same equa-
tion of motion are not related by the gauge term.
Such Lagrangians are called alternative or in-
equivalent Lagrangians [25]. The existence of al-
ternative Lagrangian description of physical sys-
tems has important consequences for the corre-
spondence between symmetries and constants of
motion [26].

2.2. Method 2: Lagrangian from equation
of motion

While recognizing the importance of the first inte-
gral in solving the inverse variational problem, Ho-
jman et al. [27] raised a very important question.
Can the equations of motion themselves, rather
than their first integrals, be used to provide a La-
grangian description of mechanical systems? In [22],
it was firmly established that for linear Newtonian
systems one can always use the equations of mo-
tion to find a satisfactory solution to the inverse
problem.

It is well known in classical mechanics that the
so-called Noether’s theorem [23] provides a rela-
tion between symmetries of the Lagrangian with
the conserved quantities of the equation of motion.
It is less well known, however, that the symme-
tries of the equations of motion form a larger set
than the symmetries of the Lagrangians. However,
if s-equivalence is taken into account, the set of
Lagrangian symmetries coincides with that of the
equation of motion. By s-equivalence, we mean a La-
grangian symmetry in which several constants of the
motion may be associated with one symmetry trans-
formation [28]. Understandably, the study in [27] is
a kind of generalization of the traditional Noethe-
rian symmetry. In this context, an interesting result
that was found is outlined below.

If the second-order differential equation (8)
follows from an action principle with the La-
grangian L(xi, ẋi), then this equation will also
follow from a higher-order action characterized by
an acceleration-dependent Lagrangian L̄(xi, ẋi, ẍi)
given by

L̄(xi, ẋi, ẍi) = µi
(
ẍi − f i

(
xi, ẋi

))
. (19)

The Lagrangians L(xi, ẋi) and L̄(xi, ẋi, ẍi) are
related by a gauge term written as

L(xi, ẋi) = L̄(xi, ẋi, ẍi) +
dg(xi, ẋi)

dt
(20)

such that

µi = −∂g(xi, ẋi)

∂ẋi
. (21)

In general, the concept of higher-order action that
leads to a generalized classical mechanics is due to
Euler who found the differential equation [29, 30]

n∑
i=0

(−1)i
(

d

dt

)i
∂L

∂x(i)
= 0 (22)

for the n-th order Lagrangian L =
L(xi, ẋi, ẍi, . . . , x(n)). We shall now show that
the auxiliary equation (2) introduced by Bate-
man [7] to find the time-independent Lagrangian
for a damped harmonic oscillator follows naturally
from (19) and thereby obtain the result in (3).

From (1) and (19) we write
L̄(x, ẋ, ẍ, y) = y (ẍ+ γ ẋ+ ω2x) (23)

and substitute (23) in the second-order Euler–
Lagrange equation obtained from (22) for n = 2. In
writing (23), we have identified µ1 as y. This gives
the expected equation

ÿ − γ ẏ + ω2y = 0. (24)
In view of (20), we write the second-order La-
grangian for the uncoupled systems in (1) and (2)
as

L(x, ẋ, ẍ, y, ẏ, ÿ) = y (ẍ+ γ ẋ+ ω2x)

+x (ÿ − γ ẏ + ω2 y)− d

dt
(y ẋ+ x ẏ). (25)

The third term in (25) stands for the gauge term
of the second-order Lagrangian [31]. The above
Lagrangian gives (3) to within a multiplicative
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constant. As a useful addendum we will show in
Sect. 3 that the method can be adapted to deal
with nonlinear problems.

3. Lagrangians for nonlinear
dynamical systems

Here we first will use Method 1 (Sect. 2.1) to
compute results for the Lagrangian representation
of (i) a cubic–quintic Duffing oscillator [32], (ii)
a Liénard-type nonlinear oscillator or generalized
Emden-type equation [17] and (iii) Mathews–
Lakshmanan oscillator [33]. Similar results for
dissipative systems (iv) Abraham–Lorentz oscilla-
tor [34], (v) Helmholtz oscillator [35] and (vi) Van
der Pol oscillator [36] will then be obtained by the
use of Method 2 (see Sect.2.2). The oscillator in
(iv) is represented by a third-order linear differ-
ential equation and its Lagrangian function plays
a crucial role in quantizing the radiation-damped
harmonic oscillator [37].

(i) The cubic–quintic Duffing oscillator repre-
sented by

ẍ+ ax+ bx3 + cx5 = 0 (26)
with constant values of a, b and c arise in
a number of applicative contexts [38]. The first-
order autonomous differential equation correspond-
ing to (26) given by

v(x)v′(x) + ax+ bx3 + cx5 = 0 (27)
can easily be integrated to get the constant of the
motion

K(x, ẋ) = 6ax2 + 3bx4 + 2cx6 + 6ẋ2. (28)
From (13) and (28) we find the Lagrangian

L =
1

2
ẋ2 − 1

2
a x2 − 1

4
bx4 − 1

6
cx6. (29)

Since (26) can easily be integrated to get a con-
stant of the motion, the above result for L could also
be obtained by using the famous formula L = T−V .
But a number of inequivalent Lagrangians can be
constructed by using various powers of the first in-
tegral in (28). Thus in close analogy with our ob-
servation on the results of the modified Emden-type
equation (4), it may be of some interest to find the
Lagrangian of (26) for K1(x, ẋ). In this case we get
a fairly complicated result

L1 =
1

r x2
+

√
6 ẋ

r3/2 x3
arctan

(√
6ẋ√
r x

)
(30)

with
r = 6a+ 3b x2 + 2c x4. (31)

The cubic–quintic Duffing oscillator is primar-
ily represented by the standard Lagrangian (27).
But (30) shows that it can also be represented by
a non-standard Lagrangian. In an interesting pa-
per Urenda-Cazares et al. [39] obtained the inte-
gral of motion for a damped cubic–quintic Duff-
ing oscillator with variable coefficients. In the ab-
sence of damping the equation considered in [39]

coincides with that of ours as given in (26) except
that the coefficients a, b, c are now time-dependent.
The constant of the motion for this undamped os-
cillator can also be found by converting it into the
autonomous form and solving the resultant equa-
tion. The time dependence of the coefficients poses
no problem because t now enters the autonomous
equation as a parameter.

In the standard procedure to construct time-
dependent constant of the motion for damped
nonlinear systems, one applies the well-known
Lie symmetry method [23, 40]. Urenda-Cazares
et al. [39], however, followed a different route to
find a first integral for the damped system. In
particular, they sought to eliminate the damping
term from the equation by using a transformation
that is often employed to remove first-order term
from a second-order ordinary differential equation.
This permitted them to treat the damped and
undamped systems on equal footing. We are
interested here to find analytic representation of
damped systems using the equation of motion only.
In the Appendix we present our results for the
Lagrangian and corresponding Jacobi integral [9]
for the damped cubic–quintic Duffing oscillator
and make some appropriate comments.

(ii) Here the equation of our interest is the
Liénard-type nonlinear oscillator represented
by [17]

ẍ+ k xẋ+ λx+
k2

9
x3 = 0. (32)

When studying the dynamical properties of (32),
Chandrasekar et al. [41] provided a non-standard
Lagrangian representation for (32). In respect
of this we shall show that a relatively simpler
representation can be obtained by using the in-
tegral representation (13). For (32), an equation
analogous to that in (27) reads

v(x)v′(x) + k xv(x) + λx+
k2

9
x3 = 0. (33)

The first integral obtained from (33) can be found
as

K(x, ẋ) =

(
9λ+ 3k ẋ+ k2 x2

)2
9λ+ 6k ẋ+ k2 x2

. (34)

From (13) we now obtain the Lagrangian
L = 3k ẋ ln

(
9λ+ 6k ẋ+ k2 x2

)
− 2k2 x2. (35)

Similarly, for K1(x, ẋ) = 1/K(x, ẋ) we find

L1 =
1

9λ+ 3k ẋ+ k2 x2
. (36)

Interestingly, from (35) and (36) we see that as
with (4) (for α = 3k, β = α2/9) the Liénard-type
oscillator can also have both logarithmic and
inverse Lagrangian representation.

(iii) The Mathews–Lakshmanan oscillator [33]

ẍ+
λx

1− λx2
ẋ2 +

ω2 x

1− λx2
= 0 (37)

may be regarded as the zero-dimensional version
of the scalar non-polynomial field equation [42].

67



B.A. Khan et al.

It can also be considered as an oscillator with
a position-dependent effective mass [43]. Writing
(37) as an autonomous first-order differential
equation, we found its first integral as

K(x, ẋ) =
λ ẋ2 − ω2

1 + λx2
. (38)

In fact, (38) in conjunction with (13) leads to the
well known result for the Lagrangian [44], i.e,

L =
λ ẋ2 + ω2

1 + λx2
. (39)

Similarly, the constant of the motion
K1(x, ẋ) = 1/K(x, ẋ) gives

L1 = (1 + λx2)

[
ω −
√
λ ẋ arctan

(
h

√
λ ẋ

ω

)]
.

(40)
Since arctan(hx) = 1

2 ln( 1+x
1−x ), the fairly compli-

cated result in (40) actually represents a logarithmic
Lagrangian.

(iv) The motion of an accelerated charged par-
ticle including the reactive effects is given by the
so-called Abraham–Lorentz equation [34] which in
one dimensional case can be written as

mẍ+ k x−mτ ...x = 0. (41)
The third term in (41) with

τ =
2

3

e2

mc2
(42)

has its origin in the radiative reaction and repre-
sents the jerk term in the equation of motion. We
shall present here an indirect Lagrangian represen-
tation of (41). To that end, we write a Lagrangian

L̄ = y
(
mẍ+ k x−mτ ...x

)
(43)

characterized by two degrees of freedom, namely,
x(t) and y(t). The third-order Lagrangian when
substituted in (22) for n = 3 gives the associated
equation [7]

mÿ + k y +mτ
...
y = 0 (44)

such that we can write an indirect Lagrangian
L = y (mẍ+ k x−mτ ...x )

+x (mÿ + k y +mτ
...
y ) + a− b (45)

for the dual system. Here, a and b given by

a = mτ
d

dt
(yẍ− xÿ) (46)

and

b = m
d

dt
(yẋ+ xẏ) (47)

represent the appropriate gauge terms which have
been used to write (45) in the maximally reduced
form

L = mẋẏ +
mτ

2

(
ẋÿ − ẏẍ

)
− k xy. (48)

From (48) we see that we need a second-order La-
grangian to analytically represent the third-order
equation (41). As expected in the absence of ra-
diative reaction, i.e., τ = 0, (48) gives the usual
harmonic oscillator Lagrangian.

(v) The simple nonlinear differential equation [45]
ẍ+ δẋ+ αx− βx2 = 0 (49)

with constant values α, β and δ represent the
Helmholtz oscillator. Since it involves a dissipative
term linear in velocity, its Lagrangian representa-
tion can be found following the method used in the
previous example. But here we should remember
that linear and nonlinear terms contribute to a La-
grangian with unequal weights [46]. The weight fac-
tors are determined by demanding that the com-
puted Lagrangian function should reproduce the
equation of motion via the Euler–Lagrange equa-
tion. Thus, in close analogy with (43), we write

L̄ = y
(
ẍ+ δ ẋ+ αx− wβ x2

)
, (50)

where w stands for the required weight factor. In
writing (50) we assumed that weight factor of the
linear terms is unity. The postulated second-order
Lagrangian in (50) leads to the associated equation

ÿ − δ ẏ + α y − 2wβ xy = 0 (51)
that we need to construct L. We thus write the La-
grangian for (49) in the form

L = − d

dt

(
yẋ+ ẏ x

)
+ y

(
ẍ+ δ ẋ+ αx− wβ x2

)
+x
(
ÿ − δ ẏ + αy − 2wβ xy

)
. (52)

We have verified that L in (52) when used in the
Euler–Lagrange equation reproduces (49) if w =
2
3 . Our final result for the required Lagrangian
reads

L = ẋẏ +
δ

2
(xẏ − yẋ)− αxy + βx2y. (53)

In [35] Almendral and Sanjuan made use of Lie the-
ory of differential equations to study the symmetries
and integrability of (49) and found that only under
certain conditions on the parameters one can obtain
the time-dependent first integral of the equation. In
particular, for α = 6δ2/2 such a first integral could
be written as

K(x, ẋ, t) =

[(
ẋ+

2δ

5
x
)2
− β x3

]
e

6
5 δt. (54)

Also by defining the canonical variables, i.e.,

p =
√

2
(
ẋ+

2δ

5
x
)

e
3
5 δt and q =

√
2xe

2
5 δt,

(55)
it was possible to construct a Hamiltonian function

H(q, p, t) =
1

2

(
p2 −

√
2β

3
q3
)

e−δt/5 (56)

which via the Hamilton’s equations leads to the
Helmholtz equation for the chosen value of α. It
is straightforward to use the transformation

L(q, q̇, t) =
(
pq̇ − L(q, q̇, t)

)
p=p(q,q̇,t)

(57)

to obtain a time-dependent Lagrangian function

L = eδt
(
ẋ2 +

4δ

5
xẋ+

4δ2

25
x2 +

2β

3
x3
)

(58)

for the Helmholtz equation under the given para-
metric condition.
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(vi) The Van der Pol equation
ẍ− µ(1− x2)ẋ+ x = 0 (59)

for a positive parameter µ, it represents an oscil-
lator which absorbs energy from the surrounding
area when x < 1 and dissipates energy when
x > 1. Periodic motion of this type is qualified as
relaxation oscillations. A great variety of physical
processes, ranging from the economic crisis to
the beating of the human heart, can be mod-
eled by (59). Following the method used for the
Helmholtz oscillator, we found the Lagrangian

L = ẋẏ +
µ

2
(ẋy − ẏx) +

µ

4
(x3ẏ − x2yẋ)− x y

(60)
which can reproduce both (59) and its associate
equation given by

ÿ + µ(1− x2)ẏ + y = 0. (61)

4. Hamiltonizing non-standard
Lagrangians

We shall present here the Hamiltonian formula-
tion of classical mechanics for nonlinear systems
treated in Sect. 3. The Hamiltonian mechanics pro-
vides a framework for the theoretical extension to
other advanced areas of physics including quantum
mechanics [47]. For historical reasons, we shall be-
gin with the so-called Jacobi integral which provides
a statement for the conservation of energy [20]. For
a first-order Lagrangian L(q̇i, qi, t) involving only
the generalized coordinates and velocities, the Ja-
cobi integral

J (1) = q̇i
∂L

∂q̇i
− L (62)

can be found in any standard text book. Ad-
mittedly, J (1) represents one of the first inte-
grals of motion and/or is a conserved quantity
only if the Lagrangian is not an explicit function
of time.

It is not easy to obtain a result similar to that
in (62) for the n-th order Lagrangian which satis-
fies (22). However, in the following we provide a sim-
ple derivation for the Jacobi integral for a second-
order Lagrangian L(qi, q̇i, q̈i, t) satisfying the differ-
ential equation

d2

dt2

(
∂L

∂q̈i

)
− d

dt

(
∂L

∂q̇i

)
+
∂L

∂qi
= 0. (63)

The total time derivative of this Lagrangian can be
written as

dL

dt
= q̇i

∂L

∂qi
+ q̈i

∂L

∂q̇i
+

...
qi
∂L

∂q̈i
+
∂L

∂t
. (64)

If we now substitute ∂L
∂qi

obtained from (63) in (64)
and, subtract and add q̈i ∂L∂q̇i to the resulting expres-
sion, we arrive at

dL

dt
=

d

dt

[
q̈i
∂L

∂q̈i
+ q̇i

∂L

∂q̇i
− q̇i

d

dt

(
∂L

∂q̈i

)]
+
∂L

∂t
,

(65)

so as to identify

J (2) = q̈i
∂L

∂q̈i
+ q̇i

∂L

∂q̇i
− q̇i

d

dt

∂L

∂q̈i
− L (66)

as the Jacobi integral of the second-order La-
grangian L(qi, q̇i, q̈i, t). It is straightforward to ver-
ify that for the cubic–quintic Duffing oscillator the
Jacobi integrals J (1)’s computed by using the La-
grangians in (29) and (30) are in exact agree-
ment with the constant of the motion K(x, ẋ) given
in (28) and 1/K(x, ẋ). Similar conclusions also hold
good for the Lagrangians of the Liénard-type oscil-
lator and Mathews–Lakshmanan oscillator.

For dissipative systems, we first calculate the Ja-
cobi integral for the damped harmonic oscillator by
using (62) and the Lagrangian function in (25) and
find

J
(1)
dho = ẋ ẏ + ω2 x y. (67)

The result in (67) does not have any effect of dis-
sipation and is exactly the same as that found for
two uncoupled harmonic oscillators using their indi-
rect analytic or Lagrangian representation [48]. The
reason for this is that the damped harmonic and its
associate form a conservative system. However, the
time derivative of (67) can be written in the form

dJ
(1)
dho

dt
= ẏ
(
ẍ+ γ ẋ+ ω2x

)
+ ẋ
(
ÿ − γ ẏ + ω2y

)
.

(68)

Since dJ
(1)
dho

dt can be made to vanish by using the
equations of motion for the damped harmonic oscil-
lator and its associate, the expression in (68) really
represents a constant of the motion for the Bateman
dual system. The Jacobi integrals for the Lorentz
and Van der Pol oscillators are given by

J
(1)
L = ẋẏ + αx2y − µxy (69)

and
J
(1)
V P = J

(1)
dho

∣∣∣
ω=1

, (70)

respectively.

The Abraham–Lorentz system is described by
a second-order Lagrangian given in (48). There-
fore, its Jacobi integral will be computed using (66).
From (48), we have

∂L

∂ẍ
= −mτ

2
ẏ,

∂L

∂ÿ
=
mτ

2
ẋ (71)

and
∂L

∂ẋ
= mẏ +

mτ

2
ÿ,

∂L

∂ẏ
= mẋ− mτ

2
ẍ. (72)

From (66), (71) and (72), we get the Jacobi integral
for the Abraham–Lorentz equation as

J
(2)
AL = mẋẏ +mτ(ẋÿ − ẏẍ) + k xy. (73)

It is straightforward to see for the first-order La-
grangian, the Jacobi integral in (62) provides a use-
ful basis for a smooth transition from the descrip-
tion of mechanical systems in (qi, q̇i) space to that
in (qi, pi) space. This can be achieved by first intro-
ducing the definition of canonical momentum
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pi =
∂L

∂q̇i
(74)

and then replacing the Jacobi integral by the Hamil-
tonian function H to write

H(q, p, t) = {piq̇i − L(q, p, t)}
∣∣∣
q̇=q̇(q,q̇,t)

. (75)

It is well known that Euler–Lagrange equations re-
sult from Hamilton’s principle considered in the
(q, q̇, t) space. Similarly, a variational principle in
the phase space [49] leads to Hamilton’s equations
of motion

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
. (76)

The recipe given above for going from Lagrangian
to Hamiltonian holds good for the standard La-
grangian. It is of interest to verify if (74) and (75)
are also true for non-standard Lagrangians. To that
end, we make use of (74) and (75) to obtain the
Hamiltonian function

H =
p2

24
+ 6ax2 + 3bx4 + 2cx6 (77)

for the Lagrangian in (29) of the cubic–quintic Duff-
ing oscillator. It is easy to combine (76) and (77)
to obtain differential equation (25) and thus ver-
ify that (77) indeed represent the correct Hamilto-
nian. A more interesting example in respect of this
is provided by the Liénard-type oscillator in (32) for
which we wrote two Lagrangian functions, namely,
the logarithmic and inverse-type ones. The logarith-
mic result in (35) when used in the definition of
canonical momentum leads to an expression that
does not permit us to express ẋ as a function of p
and x and is therefore unsuitable to give a Hamil-
tonian representation of the oscillator. Fortunately,
this is not the case with the inverse-type Lagrangian
of (36). Here the use of (74) gives

ẋ =

√
3k −

(
9λ+ k2x2

)√
p

3k
√
p

(78)

which in conjunction with (75) leads to the Hamil-
tonian

H = 2

√
p

3k
− p

k

(
1

3
k2x2 + 3λ

)
. (79)

Results similar to those in (78) and (79) for the
Lagangian in (39) of the Mathews–Lakshmanan os-
cillator read

ẋ = p
2λ (1 + λx2) (80)

and

H =
p2

4λ

(
1 + λx2

)
− ω2

(1 + λx2)
2 . (81)

The other Lagrangian in (40) is not suitable to pro-
vide a similar Hamiltonian representation of the sys-
tem.

We have found indirect Lagrangian representa-
tions for the damped harmonic oscillator, Helmholtz
and Van der Pol oscillators. These systems can
also be hamiltonized by using the procedure fol-
lowed above. For example, the well known results for
canonical momenta and Hamiltonian of the damped
harmonic oscillator are given by [10]

px = ẏ − γ

2
y, py = ẋ+

γ

2
x, (82)

and

H = pxpy +
γ

2
(ypy − xpx) +

(
1− γ2

4

)
xy.

(83)
Here px and py stand for canonical conjugate mo-
menta corresponding to x and y coordinates. The
results for the canonical momenta and Hamiltonian
for the Helmholtz oscillator closely resemble those
of the damped harmonic oscillator and are given by

px = ẏ − δ

2
y, py = ẋ+

δ

2
x (84)

and

H = pxpy+
δ

2

(
ypy − xpx

)
− βx2y+

(
α− δ2

4

)
xy.

(85)
Similar results for the Van der Pol oscillator read

px = ẏ − α

2
y +

α

4
x2y, (86)

py = ẋ+
α

2
x− α

4
x3, (87)

and
H = pxpy −

α

2

(
xpx − ypy

)
− α

4
x2
(
ypy − xpx

)
+
α2

4
x3y
(

1− 1

4
x2
)
y +

(
1− 4α2

)
xy. (88)

The Abraham–Lorentz equation (41) is character-
ized by a second-order Lagrangian. Consequently,
it was hamiltonized by Englert [37] by applying Os-
trogradsky formalism [50] to generalized momenta.
More recently Bender et al. [51] found a simpler
quadratic Hamiltonian for the system.

5. Concluding remarks

The inverse problem for systems described by
linear differential equation has an old root in the
classical mechanic’s literature [52]. This is, how-
ever, not true for nonlinear equations. Only in
the recent past, there were attempts [13, 15, 16]
to preserve the Lagrangian structure of nonlinear
differential equations. The nonlinear systems were
found to admit non-standard Lagrangian represen-
tation. These Lagrangians were proposed to iden-
tify the class of equations that admit analytic de-
scription. For example, in [13] a general form of
(5) written as L = 1/(ẋ + kU(x, t)) was substi-
tuted in the Euler–Lagrange equation to verify that
this proposed expression of L stands for the La-
grangian for the second-order Riccati equation pro-
vided we choose U = c0(t) + c1(t)x + c2(t)x2. In
this work we have chosen to work with two differ-
ent approaches to obtain both standard and non-
standard Lagrangian representations of nonlinear
systems; (i) For velocity-independent equations we
employed (13) to construct the Lagrangian func-
tions from their first integrals and (ii) we adapted
the method followed in [22] to obtain similar results
for velocity-dependent equations.
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The method used in (i) clearly demonstrates
how one dimensional autonomous dynamical sys-
tems can have infinitely many analytic represen-
tations corresponding to different functions of the
first integral. In this context, the results for the
non-standard Lagrangians in (30), (36) and (40) ob-
tained by using reciprocal of the first integrals can
be regarded as a useful addendum to those found
in the existing literature [15, 16]. One may, how-
ever, try to improve on our approach by introducing
more efficient methods to compute first integrals.
Such studies, on the one hand, are likely to broaden
the scope of applicability of our approach and, on
the other hand, are likely to shed new light on the
system integrability [53]. The indirect analytic rep-
resentation given in (3) for the damped harmonic
oscillator is a very well-known result in the clas-
sical mechanic’s literature. But it appears that we
do not have similar results for equations of nonlin-
ear dissipative systems. Thus we made use of the
method in (ii) to obtain the Lagrangian functions
in (48), (53) and (60) for three physically impor-
tant dissipative nonlinear systems. In this context,
we also computed results for Jacobi integrals to pro-
vide appropriate Hamiltonian representations of the
systems.

The inverse problems in natural sciences, ranging
from geophysics to medical diagnostics, have been
widely discussed in the literature [54]. Here one at-
tempts to discover the cause of a set of observed
data. In classical mechanics, however, the solution
of the inverse problem consists in expressing an or-
dinary differential equation (linear or nonlinear) in
Hamilton’s variational form. It remains an interest-
ing curiosity to extend our treatment to field the-
ory [55] where the time evolution of physical sys-
tems is expressed by partial differential equations.

Appendix: Lagrangian and Jacobi integral
of (26) with variable coefficients

We consider the equation of motion of the oscil-
lator written as

ẍ+ γ ẋ+ a(t)x+ b(t)x3 + c(t)x5 = 0. (89)
Here the system is not acted on by an external
force and the damping coefficient γ is independent
of time. As regards the inverse problem of the cal-
culus of variation, the external force F (t) always
contributes a term q(t)F (t) to the Lagrangian func-
tion [48] and in all practical situations, the damping
coefficient does not depend on time. Following our
treatment of the Helmholtz oscillator we introduce

L̄ = y(t)
(
ẍ+ γ ẋ+ a(t)x+ ω1b(t)x

3 + ω2c(t)x
5
)
.

(90)
Here ω1 and ω2 represent weight factors that
we need to obtain the correct Bateman-type La-
grangian for the nonlinear equation (90). The
second-order Lagrangian in the x variable gives the
associated equation

ÿ − γ ẏ + a(t)y + 3ω1bx
2y + 5ω2c(t)x

4y = 0.

(91)
For the final solution of the inverse problem we now
introduce

L = L̄+ x
(
ÿ − γ ẏ + a(t)y + 3ω1b(t)x

2y

+5ω2c(t)x
4y
)
− d

dt
(ẋy + ẏx), (92)

which via the Euler–Lagrange equation
d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0 (93)

yields the oscillator equation (90) provided ω1 = 1
2

and ω2 = 1
3 . Thus we have

L = ẋẏ +
xẏ − yẋ

2
− a(t)xy − b(t)x3y − c(t)x5y.

(94)
The Lagrangian in (95) gives the associated equa-
tion (equation for the y degree of freedom) and we
have

ÿ − λẏ + a(t)y + 3b(t)x2y + 5c(t)x4y = 0. (95)
It is easy to verify that for γ = 0 the Lagrangian
in (94) provides an indirect analytic representation
for (26) with time-dependent coefficients.

For γ = 0 the Lagrangian in (25) gives an indi-
rect analytic representation of two uncoupled har-
monic oscillators. The standard harmonic oscillator
Lagrangian can be found from it using the prescrip-
tion y, ẏ → x, x. This approach, however, needs
some modification for application to nonlinear sys-
tems. For the undamped cubic–quintic oscillator we
first modify (94) to read

L0 = L(γ = 0, y, ẏ = x, x) =
1

2
ẋ2 − 1

2
a(t)x2

−1

2
ω3b(t)x

4 − 1

2
c(t)x6 (96)

and then demand that the Euler–Lagrange equation
for L0 should reproduce (26) with time-dependent
coefficients. In this way we get ω3 = 1

2 and ω4 = 1
3

such that L0 has the same form as the result in (29).

Substituting (96) in (57) the Jacobi integral J (1)
0

for the undamped oscillator obtained from (90)
comes out as

J
(1)
0 =

1

2
ẋ2 +

1

2
a(t)x2 +

1

4
b(t)x4 +

1

6
c(t)x6.

(97)
The time derivative of (97) tells us that the Jacobi
integral J (1)

0 is a constant of the motion under the
constraint

1

2
ȧ(t)x2 +

1

4
ḃ(t)x4 +

1

6
ċ(t)x6 = 0. (98)

Clearly, for time-independent coefficients, the con-
straint disappears such that the related Jacobi in-
tegral is now equal to the constant of the motion
K(x, ẋ) (28) to within a multiplicative constant.

The Lagrangian (94) having two degrees of free-
dom leads to the Jacobi integral

J (2)
γ = ẋẏ + a(t)xy + b(t)x3y + c(t)x5y (99)
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for the undamped system. In view of (89) and (95)
it can be shown J

(2)
γ is a constant of the motion

provided
ȧ(t)xy + ḃ(t)x3y + ċ(t)x5y = 0, (100)

which again disappears when coefficients of (89) are
time independent.
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