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Using Monte Carlo simulation, we have investigated the phase diagrams and magnetic properties of
a mixed spin-1 and spin-3/2 Blume–Emery–Griffiths model on a simple cubic lattice. First, the thermal
variations of the magnetizations of the Blume–Capel model (Blume–Emery–Griffiths model with zero
biquadratic coupling) as well as its phase diagram in the (temperature, crystal field) plane are plotted
showing the second-order phase transitions and the compensation temperatures. Then, we have studied
the effect of the introduction of a biquadratic coupling on the critical and compensation behaviours
already observed in the Blume–Capel model.
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1. Introduction

The Blume–Emery–Griffiths (BEG) model [1]
is one of the important lattice-spin models in
statistical physics for the analysis of the phe-
nomenon of phase transitions [2]. This is a spin-1
Ising model with bilinear and biquadratic nearest-
neighbour couplings and crystal field interaction,
originally introduced by Blume, Emery and Grif-
fiths to simulate the thermodynamic behaviour of
3He–4He mixtures. Later, the BEG model was rein-
terpreted to describe the phase transitions and
critical phenomena in many other systems, such
as semiconductor alloys [3], solid–liquid–gas sys-
tems [4], microemulsions [5], electronic conduction
models [6] etc.

Theoretically, the BEG model has been exam-
ined by several methods, namely mean-field approx-
imation (MFA) [1, 7–10], renormalization group
(RG) techniques [7, 10–12], Monte Carlo simula-
tion (MCS) [8, 11, 13–15], the exact recursion equa-
tions on the Bethe lattice [16, 17] and the effective
field theory (EFT) with correlations [18]. Most of
these works exhibit a rich variety of phase diagrams
showing second and first order transitions, criti-
cal endpoints, multi-critical points and reentrant
behaviour. Moreover, the presence of a non-zero

biquadratic interaction (K 6= 0) results in the
widening of the first-order transitions domain for
K > 0, while there is a clear reduction in this do-
main before vanishing for K < 0.

In recent years, remarkable attention has been
given to mixed-spin systems because of their inter-
esting properties for studying ferrimagnetism [19],
magneto–optical recording materials [20] and infor-
mation storage devices [21]. These mixed systems
consist of two interpenetrating and non-equivalent
sublattices with two unequal magnetic moments.
Consequently, many new phenomena appear that
cannot be observed in pure-spin systems, e.g. the
compensation temperatures. At these last points,
the total magnetization vanishes but the system
has not yet reached the critical temperature. This
is explained by the fact that the magnetizations
of the two sublattices are ferrimagnetically cou-
pled and have equal magnitude but opposite sign.
For instance, the oxalato-bridged heterotrinuclear
complex [NiCr2(bipy)2(C2O4)4(H2O)2]H2O [22] is
a good example of a mixed-spin system, and which
exhibits a ferrimagnetic coupling between Ni(II)
with S = 1 and Cr(III) with S = 3/2.

Among the mixed-spin systems recently studied
by researchers is the mixed spin-1 and spin-3/2
BEG model. It has been investigated by MCS on
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a honeycomb lattice [23] and by the two meth-
ods MFA and Migdal–Kadanoff RG technique on
a hypercubic lattice with attractive and repulsive
biquadratic couplings [10, 24]. These three men-
tioned works show various types of phase diagrams
with first and second order transitions, tricritical
and critical endpoints as well as compensation be-
haviour according to different physical parameters:
bilinear (J) and biquadratic (K) interactions, crys-
tal field and external magnetic field.

Thus, since the results of the Monte Carlo simula-
tion are more reliable compared to other approxima-
tion techniques, we have planned the investigation
of the mixed spin-1 and spin-3/2 Blume-Emery-
Griffiths model on a simple cubic lattice using MCS
in order to confirm the results obtained by other
methods [10, 24] in the absence of exact solutions,
in particular the domain of K which favors the crit-
ical and compensation points.

We organize our paper as follows: in Sect. 2,
we define the model to be studied and briefly
give the MCS for our system. The phase diagrams
and the numerical results are presented and dis-
cussed in Sect. 3. Finally, we provide conclusion
in Sect. 4.

2. Model and Monte Carlo simulation

We consider a ferrimagnetic BEG model with
mixed spins S = 3/2 and σ = 1 located in al-
ternating sites of a simple cubic lattice. The two
sublattices (A) and (B) are occupied, respectively,
by spins Si which can take the values of ±3/2 and
±1/2, and by spins σj which can take the values of
±1 and 0. The Hamiltonian of this system is given
by [1]

H = −JAB

∑
〈ij〉

Siσj −K
∑
〈ij〉

S2
i σ

2
j

−∆
( ∑

i∈(A)

S2
i +

∑
j∈(B)

σ2
j

)
, (1)

where JAB and K are the bilinear and biquadratic
interactions, respectively, between the first nearest
neighbouring spins 〈ij〉 (JAB < 0 since we study
the ferrimagnetic case), and ∆ is the crystal field
applied on the spins S and σ.

In this work, we simulate the Hamiltonian de-
scribed by (1) on a simple cubic lattice of volume
L × L × L with a linear lattice size L = 30 using
the Monte Carlo method based on the Metropolis
algorithm [25, 26]. Beginning from a random initial
configuration of spins, our program generates con-
figurations by trying to flip the spins — these flips
are accepted or rejected according to a probability
in Boltzmann statistics. Moreover, we apply peri-
odic boundary conditions in the three directions.
At each temperature, the averages of the physi-
cal quantities are calculated using 105 Monte Carlo
steps per site after discarding the first 2× 104 steps
per site to reach the equilibrium of the system. It is

also interesting to mention the existence of pertur-
bations in the Monte Carlo simulation for systems
with spins larger than 1

2 , notably in the regions sep-
arating the ordered and disordered phases at low
temperatures.

The magnetizations per site mA and mB of the
sublattices (A) and (B) are expressed, respectively,
as

mA =
2

N

∑
i∈(A)

Si, (2)

and

mB =
2

N

∑
j∈(B)

σj (3)

and the total magnetization per site MT is defined
by

MT =
mA +mB

2
, (4)

where N = L × L × L is the number of magnetic
atoms of the system, and β = (kBT )

−1 with kB the
Boltzmann constant and T the absolute tempera-
ture. In the following, we take kB = 1.

3. Results and discussion

3.1. Case of K = 0 (Blume–Capel model)

First of all, it should be noted that the Blume–
Capel (BC) model [27, 28] is a BEG system with
zero biquadratic interaction (K = 0). Let’s start
by presenting our results concerning the BC model
with mixed spins (1, 3/2), in particular the influ-
ence of the crystal field ∆ on the magnetic prop-
erties of the system. Figures 1 and 2 show, re-
spectively, the temperature dependence of the sub-
lattice magnetizations (mA and mB) and the to-
tal magnetization (MT) for some selected values of
∆/|JAB | = −3.0, −2.99, −2.95, −2.90, −2.50, −2.0
and −1.0 when K = 0.

Fig. 1. The thermal variations of the sublattice
magnetizations per site mA and mB for some se-
lected values of ∆/|JAB | when K = 0.
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Fig. 2. The thermal variations of the total mag-
netization per site MT for some selected values of
∆/|JAB | when K = 0.

In Fig. 1, when the temperature increases, one
can observe that for all selected values of ∆/|JAB |,
except for −3.0, the magnetization mA decreases
continuously from its saturation value 1.5 at T = 0
until vanishing beyond the critical temperature TC ,
whereas the magnetization mB starts from its min-
imum value −1.0 and increases in a continuous
way to zero at TC . This justifies that there is only
a second-order phase transition for these values of
∆/|JAB |. However, for ∆/|JAB | = −3.0, mA and
mB are zero regardless of temperature.

In Fig. 2, by increasing the temperature for
∆/|JAB | = −2.50, −2.0 and −1.0, the total magne-
tizationMT decreases continuously from its satura-
tion value 0.25 at T = 0, to vanish beyond TC . For
∆/|JAB | = −2.90, −2.95 and −2.99, MT decreases
monotonically from the saturation value 0.25 to
a minimum, then increases to a slightly greater
value than 0, and finally decreases to zero at TC . In
the case of ∆/|JAB | = −2.95 and −2.99 as opposed
to ∆/|JAB | = −2.90, the minimum value of MT

is smaller than 0, which means that MT meets the
axis MT = 0 at two points with temperatures lower
than TC , and these are compensation temperatures
(Tcomp). Finally, for ∆/|JAB | = −3.0,MT is null for
all values of temperature. Our system presents here
five types of MT curves according to the extended
Néel’s nomenclature [29, 30], i.e., types Q, R, S, N
and W.

In order to clearly show the compensation be-
haviour, we present the thermal variations ofMT on
a smaller scale in the vicinity of the compensation
points for ∆/|JAB | = −2.99, −2.97, −2.95, −2.93,
−2.91, −2.90 as plotted in Fig. 3. The total mag-
netization MT exhibits two compensation points in
the range −2.99 ≤ ∆/|JAB | ≤ −2.91, while there
are no compensation points for ∆/|JAB | ≥ −2.90.

Figure 4 displays the phase diagram in the
(∆/|JAB |, T/|JAB |) plane, when K = 0, plotted
after determining the critical and compensation

Fig. 3. The thermal variations of the total magne-
tization per siteMT on a smaller scale in the vicinity
of the compensation points for some selected values
of ∆/|JAB | when K = 0.

Fig. 4. The phase diagram of the system in the
(∆/|JAB |, T/|JAB |) plane when K = 0.

temperatures for several values of ∆/|JAB |. Look-
ing at this phase diagram, it is shown that
there is a second-order phase transition separat-
ing the ferrimagnetic ordered phase O1 ≡ (mA =
3/2,mB = −1) from the paramagnetic disordered
phase D ≡ (mA = 0,mB = 0) and starting from
(∆/|JAB | = −3.0, T = 0). Moreover, when ∆/|JAB |
increases, the critical temperature increases up to
a constant value for large values of the crystal
field. In the ferrimagnetic phase domain for −3.0 <
∆/|JAB | ≤ −2.905 we see a curve of compensation
points, such that for each ∆/|JAB | belongs to this
range there are two compensation points.

Our results obtained in this study can be com-
pared with those found for Ising systems with mixed
spins (1, 3/2) using MCS [31, 32]. Nakamura and
Tucker have examined the magnetic properties of
an Ising ferromagnetic system with these mixed
spins on a cubic lattice [31]. They have found
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first-order transitions but did not find compensa-
tion points since they took into account the fer-
romagnetic case (JAB > 0). Also, Žukovič and
Bobák have investigated a mixed spin-1 and spin-
3/2 Ising ferrimagnet on a square lattice [32], and
they have reported the presence of multicompen-
sation behaviour, as we did — our phase diagram
confirms this plotted in the last study.

We should also mention that other approaches
studying BC systems with equal crystal field for the
sites of spin-1 and spin-3/2 validate our results. For
instance, the formulation of random crystal field on
the Bethe lattice [33] and the MFA [34, 35] exhibit
a multicompensation behaviour. However, the ex-
act recursion equations on the Bethe lattice [36],
the cluster variational theory within pair approxi-
mation [37] and the MFA [34, 35] show the first-
order transition lines within the ferrimagnetic or-
dered region. Moreover, in most of these works [34–
37], the system presents tricritical points and tran-
sitions (order–disorder) of first-order, which is in-
consistent with us.

3.2. BEG phase diagrams

In this subsection, we introduce the non-zero bi-
quadratic interaction (K 6= 0) into the system
and examine its influence on the magnetic proper-
ties and the phase diagram of the model, as well
as the effect of the crystal field in the presence
of K 6= 0.

In Figs. 5 and 6 we present, respectively, the sub-
lattice magnetizations and the total magnetization
as a function of temperature for chosen values of
K/|JAB | = 0.0, −0.1, −0.3, −0.4, −0.6, −0.9 and
−0.99 when ∆/|JAB | = −1.5. In Fig. 5, one sees
that for all the presented values of K/|JAB | the
magnetizations mA and mB vary continuously (mA

decreases and mB increases) from their saturation
values at T = 0, to vanish beyond TC . The satu-
ration values of (mA and mB) are respectively (1.5
and −1.0) for K/|JAB | = 0.0, and −0.1, and (0.5
and −1.0) for K/|JAB | = −0.3, −0.4, −0.6. We re-
port that mB has saturation values between −1.0
and −0.5 for −1.0 < K/|JAB | 6 −0.9. This means
that there is only a second-order phase transition,
as well as the existence of two ferrimagnetic or-
dered phases, namely O1 ≡ (mA = 3/2,mB = −1)
and O2 ≡ (mA = 1/2,mB = −1). The absence of
a first-order transition between these two coexisting
ordered phases has been verified.

With regard to the total magnetization curves
plotted in Fig. 6, it is observed that for two val-
ues of K/|JAB | = 0.0 and −0.1, MT decreases con-
tinuously from its initial value 0.25 at T = 0 to
zero at TC , while for the other values of K/|JAB |,
MT grows from the saturation value between 0.0
and −0.25 until it vanishes beyond TC . However,
for K/|JAB | = −0.3, −0.4, −0.9 and −0.99, MT

shows a single compensation temperature, while for
K/|JAB | = −0.6, this temperature is absent.

Fig. 5. The thermal variations of the sublattice
magnetizations per site mA and mB for some se-
lected values of K/|JAB | when ∆/|JAB | = −1.5.

Fig. 6. The thermal variations of the total mag-
netization per site MT for some selected values of
K/|JAB | when ∆/|JAB | = −1.5.

In Fig. 7, a phase diagram is plotted in the
(K/|JAB |, T/|JAB |) plane for ∆/|JAB | = −1.5.
First, one notices that the model exhibits two ferri-
magnetic ordered phases (O1 and O2) and a para-
magnetic disordered (D) phase. Second, there is
a second-order phase transition that separates the
ordered phases from the disordered phase. Third,
two compensation lines appear in the (O2) region,
i.e., the first is situated in the interval −0.99 ≤
K/|JAB | ≤ −0.79 and limited by two extremities
where it meets the critical second-order line, and the
other is in the interval −0.43 ≤ K/|JAB | ≤ −0.25
with two isolated endpoints far from the second-
order line. As a comparison, similar phase diagrams
have been obtained in [15, 16, 38] for BEG systems
with other mixed spins using the exact recursion
equations on the Bethe lattice for values of ∆/|JAB |
close to our value ∆/|JAB | = −1.5. The disagree-
ment with the two papers [16, 38], however, is that
they show only one compensation line in the ordered
domain.

50



Monte Carlo Investigation of Blume–Emery–Griffiths Model. . .

Fig. 7. The phase diagram of the system in the
(K/|JAB |, T/|JAB |) plane when ∆/|JAB | = −1.5.

Fig. 8. The thermal variations of the sublattice
magnetizations per site mA and mB for selected
values of ∆/|JAB | when K/|JAB | = −0.35.

By comparing our results with those found in two
papers [10, 24], which investigated the same BEG
model with mixed spins (1, 3/2) by the MFA and
RG method, we can notice that the appearance of
compensation temperatures for negative values of
K in [10] is in accordance with our phase diagram
obtained in Fig. 7. The MCS does not give com-
pensation points for K > 0, although there are al-
ways critical points; the compensation domain is
limited to K < 0, where two compensation points
were observed using MFA [10] and only one point
by MCS. Certainly, the MCS results are more cred-
ible than those of the MFA, where the dimension
is omitted and only the symmetry is taken into ac-
count via the number of first nearest neighbours.
Furthermore, the absence of first-order transitions
is in agreement with the predictions of the renor-
malization (for K/|JAB | < −0.5) [10], while they
are always present for K < 0 by MFA [10] and for
K > 0 by RG [24].

Fig. 9. The thermal variations of the total magne-
tization per site MT for selected values of ∆/|JAB |
when K/|JAB | = −0.35.

Fig. 10. The phase diagram of the system in the
(∆/|JAB |, T/|JAB |) plane when K/|JAB | = −0.35.

Let us analyze the influence of the presence of
K 6= 0 on the critical behaviour observed in the BC
model (K = 0) for ∆/|JAB | = −1.5, where the sys-
tem presents only TC describing the second-order
transition. The first finding is the appearance of
a new ordered phase O2 ≡ (mA = 1/2,mB = −1)
for values of K < 0. Also, by increasing K > 0,
TC increases up to saturation for large values of K,
but for K < 0 the compensation points Tcomp ap-
pear for some values and the critical temperature
decreases with the decrease of K until the disap-
pearance at K = −1.0. However, we note the ab-
sence of first-order transition lines in the ordered
region whatever K 6= 0.

Now, the effect of the crystal field on the magnetic
properties of the system for K 6= 0 is investigated
in Figs. 8–10. Foremost, the thermal variations of
the sublattice and the total magnetizations are pre-
sented in Figs. 8 and 9, respectively, for a fixed
value of K/|JAB | = −0.35 and several selected
values of ∆/|JAB | = 2.0, 1.2, 0.0, −1.0, −1.5, −2.0,
−2.3 and −2.47. The first observation from these
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two figures is that when ∆/|JAB | > −0.8 as for
∆/|JAB | = 2.0, 1.2 and 0.0, the saturation values of
mA,mB andMT at T = 0 are respectively 1.5, −1.0
and 0.25, and so the stable ordered phase in this re-
gion is O1 ≡ (mA = 3/2,mB = −1). In turn, when
−2.2 < ∆/|JAB | < −0.8 as for ∆/|JAB | = −1.0,
−1.5 and−2.0, the saturation values ofmA,mB and
MT at T = 0 are respectively 0.5, −1.0 and −0.25,
and so the stable ordered phase in this region is
O2 ≡ (mA = 1/2,mB = −1). It should be noted
that for −2.47 6 ∆/|JAB | ≤ −2.3, the saturation
value of mB is relatively greater than −1. The sec-
ond observation is that all the curves ofmA,mB and
MT vary continuously from their saturation values
at T = 0 until they vanish beyond TC , thus the
system only shows the second-order transition here.
Finally, it is necessary to point out the existence
of compensation temperatures in Fig. 9 for certain
values of ∆/|JAB |, especially for ∆/|JAB | = −1.0,
−1.5, −2.3 and −2.47.

Figure 10 exhibits the phase diagram in the
(∆/|JAB |, T/|JAB |) plane for K/|JAB | = −0.35.
One can observe that there are two ordered phases
(O1 and O2) at low temperatures separated from
the disordered phase (D) by a second-order tran-
sition line. We also highlight the existence of
two compensation lines in the (O2) region as in
Fig. 7, located precisely in the two ranges −2.47 ≤
∆/|JAB | ≤ −2.20 and −1.79 ≤ ∆/|JAB | ≤ −0.90.
In addition, the system does not give any first-order
transition line in the ordered domain. This phase
diagram resembles those found for BEG mixed-spin
systems using exact recursion relations on the Bethe
lattice in [16, 17]. One also notices the presence of
the compensation behaviour for certain values of
∆/|JAB | whenK 6= 0 in the BEG model with mixed
spins (1, 3/2) by MFA [10] and MCS [23] as we have
already shown.

4. Conclusion

In summary, the ferrimagnetic mixed spin-1 and
spin-3/2 Blume–Emery–Griffiths model is studied
using Monte Carlo simulation. Firstly, we have plot-
ted the phase diagram of the Blume–Capel (zero bi-
quadratic interaction K = 0) where we have found
the second-order phase transition and multicom-
pensation behaviour. Secondly, we have introduced
the K 6= 0 values into the model and we have stud-
ied the influence of this on the magnetic properties
of the system. The plotted phase diagrams show the
existence of a new ferrimagnetic ordered phase (O2)
for K < 0, where two compensation lines appear in
this region. Our results are consistent with those
obtained in other literature studies.
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