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We report on experimental investigation of the power spectrum of discrete and finite series of levels
in quantum billiards with chaotic classical dynamics and, respectively, with preserved and partially
violated time-reversal (T ) invariance. In the experiment a flat microwave resonator with the shape of
a two-dimensional quarter bow-tie billiard was used. The partial T -invariance violation was induced by
two embedded ferrites that were magnetized by an external magnetic field. Due to the openness and
internal dissipation of the resonator and ferrites, one typically has to cope with incomplete sequences
of resonance frequencies. We employ missing-level statistics to investigate the fluctuation properties in
the spectra in terms of statistical measures such as the nearest-neighbor spacing distribution and the
power spectrum. We confirm experimentally that the power spectrum can be directly used to evaluate
the number of missing levels for both types of systems.
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1. Introduction

It has been conjectured that the fluctuation prop-
erties in the eigenvalue spectra of quantum systems,
which are fully chaotic in the classical limit, are
universal and described by random matrix theory
(RMT) [1–4]. In this widely accepted and exper-
imentally verified conjecture, the spectral proper-
ties of the associated Hamiltonian coincide with
those of the Gaussian ensemble of random ma-
trices belonging to the corresponding universal-
ity class, i.e., either orthogonal, unitary or the
symplectic one. Examples for systems whose spec-
tral properties are described by the Gaussian or-
thogonal ensemble (GOE, β = 1) with preserved
T -invariance are flat microwave billiards [5–21],
molecular spectra [22], atoms in strong microwave
fields [23–35], quantum wells [36], and microwave
networks [37–44]. The spectral properties of ran-
dom matrices from the Gaussian unitary ensemble
(GUE, β = 2) have been observed in systems with
T -invariance violation (TIV), e.g., in nuclear reac-
tions [45, 46], atoms in constant external magnetic
fields [47], graphene quantum dots [48], Rydberg
excitons [49], microwave billiards [50, 51] and net-
works [52–56]. Furthermore, the spectral properties
of systems with partial TIV can be described by

RMT [21, 57–62]. In microwave billiards TIV is in-
duced with magnetized ferrites, where the degree
of time irreversibility can be adjusted, for example,
by controlling the magnitude of the applied mag-
netic field and can be quantified by the parameter ξ
which changes from ξ = 0 to ξ = +∞ when the
system undergoes a transition from T -invariance to
complete TIV. However, the transition from GOE
to GUE already occurs for values of this parameter
of the order ξ ' 1 [60, 62–64]. Recently, we found
that the achievable size of TIV also depends on the
openness η of a chaotic system, i.e., the number of
the scattering channels M and the internal absorp-
tion γ. Its impact on the elastic enhancement factor
FM (η, γ, ξ) was investigated for 2 ≤ M ≤ 9 scat-
tering channels in a microwave billiard containing
magnetized ferrite [63, 64].

It was shown in [53, 65] that open quantum sys-
tems with violated T -invariance symmetry can be
conveniently studied using spectral correlation func-
tions. In this type of studies it is indispensable
to construct the cumulative level density N(νi) =
Nsmooth(νi) + Nfluc(νi) of the identified resonance
frequencies νi, which is separated into a smooth
part Nsmooth(νi) and a fluctuating part Nfluc(νi).
In order to analyze the statistical properties of
chaotic systems, the energy levels need to be
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unfolded such that the level density is uniform —
the mean level spacing is constant, which is achieved
by the replacement εi = Nsmooth(νi), implying that
the mean spacing equals unity, i.e., 〈εi+1 − εi〉 = 1.
Especially in the case of the power spectrum analy-
sis, the deviation of the q-th nearest-neighbor spac-
ing from its mean value q is considered [53, 65].
The deviation is denoted as δq = εq+1 − ε1 − q.
Typically, the completeness of the spectra is in-
dispensable in the statistical analysis of the spec-
tral properties of quantum and wave systems. How-
ever, this is rarely accomplishable in experiments.
Examples for such an unusual situation are high-
precision experiments performed with flat super-
conducting microwave resonators at liquid-helium
temperature [21, 60]. However, for wave systems in-
vestigated at room temperature, due to absorption
and openness, the appearance of incomplete spec-
tra which implies deviations of their spectral statis-
tics from the random-matrix theory predictions, is
common. To overcome these difficulties, one has to
properly deal with missing levels, which is possible
by employing the missing levels statistics [53, 62]
introduced in [66].

The objective of this article is to analyze the
power spectrum statistics [53, 65] of real open sys-
tems with internal absorption that leads to incom-
pleteness of the spectra. We use a flat microwave
resonator with the shape of a quarter bow-tie to
simulate a quantum billiard with preserved and par-
tially violated T -invariance. In the analysis we will
consider both the strength of TIV expressed by the
parameter ξ [62, 64] and the fraction of the observed
levels ϕ.

2. Experimental setup

A schematic view of the microwave cavity is
shown in Fig. 1. It simulates a two-dimensional
quantum billiard of corresponding shape [63, 64].
The cavity with an area A = 1828.5 ± 5.0 cm2

and a perimeter L = 202.3 ± 2.0 cm was made
of two plates of polished aluminum type EN 5754.
The cavity body was milled out of the bottom
plate. The cut-off frequency equals νmax = c/2h '
12.49 GHz, where c is the speed of light in vacuum,
and h = 1.2 cm is the height of the cavity. Below
νmax only the transverse magnetic modes are ex-
cited inside the cavity so that the Helmholtz equa-
tion describing the microwave cavity is mathemat-
ically equivalent to two dimensional Schrödinger
equation for a free particle in a quantum billiard
of corresponding shape and both are governed by
the same eigenvalue equation. The inner surface
of the cavity was covered with a 20 µm layer of
silver to reduce the internal absorption. A metal-
lic perturber P with perimeter L ' 26 cm and
area A ' 9 cm2 was placed inside the cavity and
moved along the walls using a small cylindrical
magnet in order to create different realizations of
the cavity.

Fig. 1. Experimental setup for the measurement
of the two-port scattering matrix Ŝ of the mi-
crowave billiard. The vector network analyzer Ag-
ilent E8364B was connected through flexible mi-
crowave cables to two antennas that were attached
to the cavity at the positions marked by 1 and 2. In
order to induce T -invariance violation two ferrites
were placed inside the cavity between pairs of exter-
nal magnets above and below the cavity at the po-
sitions marked by F1 and F2. Different realizations
of the billiard were realized by moving a metallic
perturber P inside the cavity alongside its walls.

In order to induce partial TIV two cylindrical
NiZn ferrites with a diameter d = 33 mm and
height h = 6 mm and the saturation magnetiza-
tion 2600 Oe (manufactured by SAMWHA, South
Korea) were positioned inside the cavity at the lo-
cations marked by F1 and F2 in Fig. 1. They were
placed between two pairs of NdFeB magnets of di-
ameter d = 33 mm and height h = 30 mm of the
type N42 with coercivity 11850 Oe (943 kA/m) be-
low the bottom wall and above the top wall of the
cavity, respectively. The homogenous magnetic field
of the strength B ' 495 mT induces macroscopic
magnetization M of the ferrites across their cross-
sections. The precession of magnetization around
B with the Larmor frequency ωo = γB, where
γ = 32.2 GHz/T denotes the gyromagnetic ratio,
leads to the appearance of a ferromagnetic reso-
nances at νfr = 15.9 GHz.

In our analysis of the fluctuation properties of
the unfolded resonances we consider only M = 2
scattering channels since, as shown in [63], they
lead to the strongest achievable TIV. The larger
the number of scattering channels for a given mi-
crowave frequency, the weaker is TIV [63]. Fur-
thermore, the openness and internal absorption for
M > 2 channels lead to stronger overlapping of res-
onances, rendering impossible the identification the
corresponding resonance frequencies. To measure
the two-port scattering matrix Ŝ(ν) two antennas
with length 5.8 mm and pin diameter 0.9 mm were
attached to the resonator at the positions marked
by 1 and 2 in Fig. 1 and connected to an Agilent
E8364B Vector Network Analyzer (VNA). They act
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as scattering equivalent channels coupled to VNA.
For systems with preserved T -invariance the scat-
tering matrix Ŝ is symmetric, i.e., transmission
from antenna 2 to antenna 1 equals transmission
from antenna 1 to antenna S12(ν) = S21(ν). The
closer, the microwave frequency is to νfr in the sys-
tem with magnetized ferritse, the stronger is TIV,
thereby leading to differing matrix elements S12(ν)
and S21(ν).

Examples of transmission spectra from antenna 1
to antenna 2 and vice versa are shown in Fig. 2. The
moduli of the scattering matrix elements |S12(ν)|
(black full line) and |S21(ν)| (orange dotted line)
are measured in the frequency range 8–9 GHz.
The ferrite properties are strongly frequency de-
pendent and in this frequency the strongest TIV
with ξ = 0.49 is attained. Transmission spectra
are displayed for the microwave billiard with pre-
served T -invariance (ξ = 0) in Fig. 2a. In this case
we expect reciprocity of the scattering matrix Ŝ(ν),
that is |S12(ν)| = |S21(ν)| which is clearly demon-
strated. In Fig. 2b, the spectra of the microwave
billiard with partially violated time-reversal invari-
ance are shown. In this case reciprocity does not
hold, so that the scattering matrix Ŝ(ν) is not sym-
metric |S12(ν)| 6= |S21(ν)|, which is confirmed.

In order to quantify the size of TIV, we
use the cross-correlation coefficient Ccross =
Ccross(η, γ, ξ) [62]

Ccross =
<[〈Sfl12(ν)S

fl∗
21 (ν)〉]√

〈|(Sfl12(ν)|2〉〈|(S
fl
21(ν)|2〉

, (1)

where Sfl12(ν) = S12(ν)−〈S12(ν)〉 denotes the fluctu-
ating part of the scattering matrix element S12(ν).
For systems with completely violated T -invariance
the cross-correlation coefficient vanishes Ccross = 0,
because S12(ν) and S∗21(ν) are uncorrelated, and
Ccross = 1 for T -invariant systems.

3. Statistical fluctuations
of the energy levels

The transition between the orthogonal and uni-
tary symmetry classes, GOE and GUE, induced
by applying an external magnetic field B was ver-
ified on the basis of the long-range correlation
function — the power spectrum 〈s(k̃)〉 [53]. The
quantity 〈s(k̃)〉 is more sensitive to missing lev-
els than the nearest-neighbor spacing distribution
(NNSD) [53, 62]. Indeed, we will show that it can
be used to determine the fraction of the observed
levels ϕ in the experiment.

The power spectrum 〈s(k̃)〉 of a discrete and finite
series δq = εq+1 − ε1 − q for a sequence of N levels
is given by S(k) = |δ̃k|2, where δ̃k is the Fourier
transform of δq of the form

δ̃k =
1√
N

N−1∑
q=0

δq exp

(
−2iπkq

N

)
. (2)

Fig. 2. Examples of transmission spectra. (a)
Moduli of the scattering matrix elements |S12(ν)|
(black full line) from antenna 2 to antenna 1 and
vice versa, |S21(ν)| (orange dotted line), in the fre-
quency range 8–9 GHz for the microwave billiard
with preserved T -invariance (ξ = 0). (b) The same
for the microwave billiard with partially violated
time-reversal invariance (ξ = 0.49).

It was shown in [68, 69] that for k̃ = k/N � 1
the power spectrum exhibits a power law depen-
dence 〈S(k̃)〉 ∝ k̃−α. For chaotic systems α = 1,
independently of whether time-reversal invariance
is preserved or not, and α = 2 for regular systems.
Considering the fraction of identified levels ϕ and
the strength ξ of TIV, the power spectrum 〈s(k̃)〉 is
expressed by〈

s(k̃)
〉
=

1

4 sin2
(
πk̃
) − ϕ2

12
.

+
ϕ

4π2

[
Kξ
(
ϕk̃
)
− 1

k̃2
+
Kξ
(
ϕ(1− k̃)

)
− 1

(1− k̃)2

]
.

(3)
Here, 0 ≤ k̃ ≤ 1 and Kξ(τ) is the spectral form
factor which is known analytically for T -invariant
systems and for the case of complete TIV. For the
GOE, Kξ=0(τ) = 2τ − τ log(1 + 2τ) for τ ≤ 1,
while for the GUE,Kξ→∞(τ) = τ . For systems with
partially violated time-reversal invariance (ξ 6= 0)
the spectral form factor Kξ(τ) has been obtained
from the analytical result for the two-point cluster
function [57, 62].

For the system with partially violated T -inva-
riance, we analyzed the frequency range 8–9 GHz
in which maximal TIV is achieved. We took into
account 30 randomly selected realizations of the
cavity with, respectively, 90 eigenvalues. Thereby
an ensemble of 2700 resonance frequencies was ob-
tained. For the cavity with preserved time-reversal
T -invariance (ξ = 0), measurements were done in
the frequency range ν = 8–10 GHz. We took into
account 15 randomly selected realizations of the
cavity, having respectively N = 180 eigenvalues
in each sequence, which gave also 2700 resonance
frequencies.
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Fig. 3. Short- and long-range correlations of the unfolded eigenfrequencies. Panels (a, b) The nearest-neighbor
spacing distribution (circles) and the power spectrum 〈s(k̃)〉 (squares) for the microwave billiard with preserved
T -invariance (ξ = 0) and a fraction of observed levels ϕ = 0.81±0.03. The experimental results in panels (a, b)
are compared to those of the eigenvalues of RMT from the GOE (violet dash-dotted line) and to the theoretical
predictions for ϕ = 0.81 (violet full line). Panels (c, d) The nearest neighbor spacing distribution (circles) and
the power spectrum 〈s(k̃)〉 (squares) for the microwave billiard with partially violated time-reversal invariance
(ξ = 0.49±0.02) and ϕ = 0.81±0.03. The experimental results in panels (c, d) are compared to the theoretical
ones obtained for the systems with partially violated time-reversal T -invariance (ξ = 0.49) with the same
fraction of observed levels ϕ = 0.81 (violet full line). Additionally, the experimental results are compared
to the missing level statistics for GOE (ϕ = 0.81, ξ = 0, gray broken line) and GUE (ϕ = 0.81, ξ = 1,
black broken line), respectively, as well as to the theoretical predictions for ϕ = 1.0 and ξ = 0.49 (violet
dash-dotted line). The inset in Panel (d) shows the power spectrum in a narrower range of the parameter
k̃ : −1.5 ≤ log10(k̃) ≤ −1.04.

In Fig. 3, we compare the experimental re-
sults for short- and long-range correlations of the
unfolded eigenvalues for the systems with pre-
served and violated T -invariance. In Fig. 3a and b
the nearest-neighbor spacing distribution (circles)
and the power spectrum 〈s(k̃)〉 (squares) are de-
picted for the microwave billiard with preserved
T -invariance (ξ = 0) for a fraction ϕ = 0.81± 0.03
of observed levels ϕ = 0.81± 0.03. The experimen-
tal results are compared to the ones obtained for
GOE in the framework of RMT (violet full lines)
and to the theoretical predictions for ϕ = 0.81 (vi-
olet broken lines). In both cases, the experimental
results are in good agreement with the theoretical
ones. In Fig. 3c and d the nearest neighbor spacing
distribution (circles) and the power spectrum 〈s(k̃)〉
(squares) for the microwave billiard with partially
violated time-reversal invariance (ξ = 0.49 ± 0.02)
and ϕ = 0.81±0.03 are exhibited. The experimental
results are compared to the theoretical ones [62] for
ξ = 0.49 and the same fraction of observed levels
ϕ = 0.81 (violet full lines), to the RMT results for

GOE (ξ = 0) with ϕ = 0.81 (gray broken lines),
the GUE (ξ = 1) with ϕ = 0.81 (black broken
lines) and to the theoretical predictions for ξ = 0.49
and ϕ = 1 (violet dash-dotted lines). Again, the ex-
perimental results are in good agreement with the
theoretical ones.

One should point out that the case of partially vi-
olated T invariance is more involved than the case of
preserved T invariance because the spectral proper-
ties depend om the fraction of observed levels ϕ and
on the strength of TIV quantified by ξ. However, the
comparison of Fig. 3b and Fig. 3d clearly demon-
trates that for small values of log10(k̃) < −1.4 the
power spectrum is almost indistinguishable for the
GOE and GUE, that is, it depends only marginally
on ξ, but on the contrary it is extremely sensi-
tive to the fraction of observed levels ϕ. The in-
set in Fig. 3d shows the details of the power spec-
trum in a narrower range of the parameter k̃ for
−1.5 ≤ log10(k̃) ≤ −1.04. It clearly demonstrates
strong sensitivity of 〈s(k̃)〉 on ϕ and a large devia-
tion of 〈s(k̃)〉 for ϕ = 0.81 and ξ = 0.49 (violet full
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line) from the one with ϕ = 1 and ξ = 0.49 (violet
dash-dotted line). The weak dependence of 〈s(k̃)〉
on ξ for ϕ < 1makes it an exceptionally useful spec-
tral tool for the experimental identification of the
fraction of missing levels (1−ϕ) for, actually, all fun-
damental symmetry classes as well as the ones with
broken symmetries. Figure 3a and c show that the
nearest-neighbor spacing distribution, on the con-
trary, depends rather weakly on both parameters
ξ and ϕ. Actually, in order to determine the value
of ξ from the spectral properties, one would need to
consider the number variance which, however, relies
on an ensemble of high statistical relevance [62].

4. Conclusion

We investigated the fluctuations of the resonances
in a fully chaotic quarter bow-tie microwave bil-
liard simulating quantum billiards with preserved
time-reversal invariance and the ones with partial
T -invariance violation. The nearest-neighbor spac-
ing distribution and the power spectra were consid-
ered as statistical measures for the spectral prop-
erties of both systems for ν = 8–10 GHz and
ν = 8–9 GHz, respectively. The ferromagnetic res-
onances were induced due to the presence of mag-
netized ferrites inside the resonators. In our anal-
ysis for M = 2 open equivalent channels, we take
into account the strength of TIV in terms of ξ in
combination with the incompleteness of the spectra
expressed by the ratio of the observed levels ϕ. We
found out that the power spectrum 〈s(k̃)〉 indicates
precisely the fraction of observed levels ϕ. Further-
more, the theoretical RMT analysis, which took into
account both parameters ϕ and ξ, reproduced very
well the experimental results. It was demonstrated
that the power spectrum can be used as a useful
spectral tool for finding experimentally the fraction
of the missing levels for systems belonging to the
orthogonal and unitary universality class and for
the systems undergoing the transition from GOE
to GUE.
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