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We will give an introduction into the quantum search algorithms on the Markov chains introduced
by Szegedy and recent modifications based on partially absorbing Markov chains due to Krovi et al.
Algorithmica 74, 851 (2016) It has been shown that a quantum search can find a set of marked vertices
quadratically faster (in units of the hitting time) for any reversible Markov chain. The proofs are based
on certain properties of the stationary state of the partially absorbing walk and rely on quantum phase
estimation techniques. We will offer an alternative view of the underlying mechanism of the quantum
search based on spectral properties of the quantum walk operator. By considering the complete graph
as an example, we identify the relevant two-level quantum subspace leading to a Grover-like rotation
in the underlying vector space.
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1. Introduction

Grover’s search finds m marked items in an un-
structured data-base of N items in O(

√
N) steps

and thus quadratically faster than any classical
search [1]. The algorithm was later extended to
searching marked items on regular networks [2] and
on random graphs above the percolation thresh-
old [3]. The mechanism behind the search is the
same in all these cases [4]: the marked vertices act
as a low-rank perturbation and the system is fine-
tuned such that a state localised at the marked
vertices is forming an avoided crossing with an ex-
tended state uniformly covering the whole graph.
The two participating eigenstates of the perturbed
system become a mixture of the unperturbed states
with a gap of order O(1/

√
N). The Grover rota-

tion can now be performed in this effectively two-
dimensional sub-space if the ground state of the un-
perturbed system is separated from the rest of the
spectrum by again at leastO(1/

√
N). The search al-

gorithm can also been used in a transmitter-receiver
configuration without any routing information guid-
ing the signal [3, 4].

A different class of search algorithms introduced
by Szegedy in 2004 [5] has received a lot of attention
recently. It is based on a quantisation mechanism for
ergodic and reversible Markov chains with absorb-
ing marked vertices. Szegedy’s quantum walk can
detect the presence of absorbing vertices and this

leads to a solution of the detection problem, i.e.,
the problem of deciding, whether marked vertices
are present, quadratically faster than the so-called
classical hitting time.

Extending the notion from fully absorbing to par-
tially absorbing vertices, Krovi et al. [6] introduced
an interpolated quantum walk operator and pro-
posed an algorithm based on the phase estimation
technique [7, 8]. They achieved a quadratic speed-up
— again with respect to the classical hitting time —
for finding a marked vertex. However, their achieve-
ment is limited to graphs with exactly one marked
vertex. Later, in a series of papers [9–11], quantum
walk search algorithms based on the quantum fast-
forwarding technique (QFF) [10, 12] were suggested
and proven to be able to find a marked vertex in any
reversible Markov chain with any number of marked
vertices quadratically faster than the classical hit-
ting time. The basic idea of the algorithms can be
roughly described as follow: the QFF connects the
quantum mechanical probability of finding a ver-
tex at a time of order

√
t with the probability that

the classical random walk starting from a set of un-
marked vertices goes through any of the marked
vertices at time t and then returns to the unmarked
vertices at time 2t. The proof is, however, quite in-
volved and gives little intuition into the underlying
mechanism. We also would like to mention a re-
lated proof based on an electric network analogy
presented in [13].
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We will introduce here a different approach to-
wards understanding the mechanisms behind the
quantum search for interpolated quantum Markov
chains with any number of marked vertices. We
analyse the walk operator in terms of its spectral
decomposition. We will show results here only for
a special case, the complete graph with equal tran-
sition probability between all vertices apart from
self-loops. This system can be solved analytically
and gives insight into the search mechanism from
a spectral point of view. We think that the mech-
anism uncovered, revealing — like in the Grover
search — a rotation in a two-dimensional invariant
subspace, applies also in more general cases.

2. Quantum walk operator for a general
reversible Markov chain

In this section we will introduce the quantum
walk operator for an interpolated Markov chain
with m marked vertices following the treatment
in [6]. The walk is defined on a graph X with
a set of n vertices and a set of edges E. As usual
for quantum walk and quantum graph treatments,
see for example [14], we introduce a vertex and
edge space, HV and HE , respectively, and an as-
sociated basis, i.e., HV = span{|x〉, x ∈ X} and
HE = span{|xy〉, (xy) ∈ E, x, y ∈ X}. The classi-
cal Markov process is defined on HV whereas the
quantum walk and the associate quantum search
algorithm is defined on HE . We will first introduce
the classical walk and then, following [5] and [6],
construct the related unitary quantum walk opera-
tor on HE .

2.1. Absorbing Markov chain

We start with the interpolated Markov chain as
introduced in [6], where a set ofm vertices is marked
by making these vertices partially absorbing. Start-
ing from a general transition matrix P 0 onX, we de-
fine

P (s) = (1− s)P 0 + sP ′, 0 ≤ s ≤ 1, (1)
where the elements of P (s), Pxy(s) denote the tran-
sition probability from a vertex x to a vertex y and
P ′ is the absorbing walk as defined below. In matrix
notation, we may write (1) in the block form

P (s) =

(
P 0
UU P 0

UM

(1− s)P 0
MU (1− s)P 0

MM + sI

)
,

(2)
where U and M denote the set of unmarked and
marked vertices, P 0

UU and P 0
MM are square matrices

of dimension (n − m) and m, respectively. We re-
cover the original walk at s = 0, whereas the marked
vertices become fully absorbing at s = 1.

In the following we will restrict the original
Markov chain P 0 to be ergodic and reversible. The
latter condition implies the detailed balance relation

πxP
0
xy = πyP

0
yx, (3)

where πx, πy are the x, y components of the sta-
tionary distribution 〈π|, the left eigenvector of P 0

corresponding to the unique eigenvalue 1. It can
be shown that the absorbing walk P (s) also ful-
fills the ergodicity and reversibility condition for
0 ≤ s < 1 with associated stationary distribu-
tion 〈π(s)|, which is know analytically [6].

Next we introduce the symmetric discriminant
matrix D(s), i.e.,

Dxy(s) =
√
Pxy(s)Pyx(s) (4)

with eigenvalues λj(s) and associated eigenvec-
tors |wj〉 for j = 1, . . . , n. The reversibility con-
dition (2) ensures that the matrices P (s) and D(s)
are related by a similarity transformation. It follows
that their eigenvalues λj(s) coincide and in partic-
ular are real. We will use the ordering convention
1 = λn(s) ≥ λn−1(s) ≥ · · · ≥ λ1(s).

2.2. Quantum walk

We will next discuss a quantum walk associated
with the classical Markov process P (s). Following
Szegedy [5], we define a state |Ψx(s)〉 in the edge
space HE related to each vertex x ∈ V , i.e.,

|Ψx(s)〉 =
∑
y

√
Pxy(s)|yx〉, (5)

where |xy〉 ∈ HE denotes |x〉 ⊗ |y〉. We have〈
Ψx(s)

∣∣Ψx′(s)
〉
= δxx′ . (6)

To construct the unitary time evolution operator,
i.e., the quantum walk operator on the edges, we
first introduce the shift operator S and the coin flip
operator C(s) defined as

S|yx〉 = |xy〉,

C(s) = 2
∑
x

∣∣Ψx(s)〉〈Ψx(s)∣∣− I, (7)

where I is the identity operator in HE . Operators S
and C(s) are both unitary [6]. The time evolution
operator is then defined as

U(s) = SC(s). (8)
To understand the mechanism behind the search as
laid out for the complete graph in Sect. 3, it is im-
portant to gather information about the spectrum
of U and its connection to the spectrum of D. It is
known that the operator U(s) has an invariant sub-
space of dimension (2n − 1) [5, 6]. This subspace
is spanned by the vectors {|vj±(s)〉, |vn(s)} in HE ,
where

|vj±(s)〉 ≡
1√
2

(∣∣vj(s)〉− (± i)
∣∣v⊥j (s)〉) (9)

with j = 1, . . . , n− 1 and

|vj(s)〉 =
∑
x

∣∣Ψx(s)〉wxj(s), (10)

is related to the eigenvectors |wj(s)〉 of D(s),
j = 1, . . . n. Furthermore |v⊥j (s)〉 is a normalized
vector perpendicular to |vj〉, to be specified in more
detail in Appendix. These vectors satisfy the or-
thogonality conditions
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〈vj±(s)|vj′±(s)〉 = δjj′ , 〈vj±(s)|vj′∓(s)〉 = 0,

〈vn(s)|vj±(s)〉 = 0, 〈vn(s)|vn(s)〉 = 1,
(11)

see the Appendix.
The vectors |vj±(s)〉 and |vn(s)〉 form a part of

the eigenbasis of U(s), we have
U(s)|vn(s)〉 = |vn(s)〉, (12)

U(s)|vj±(s)〉 = e± iθj(s)|vj±(s)〉, (13)
where the eigenphases θj(s) are related to the eigen-
values of the discriminant matrix D(s) by the rela-
tion

λj(s) = cos
(
θj(s)

)
, (14)

see Appendix for more details. We note in passing
that all other eigenvalues of U(s) are ±1.

Next we consider the time evolution of an initial
state related to the stationary distribution defined
as
|ψ(t = 0)〉 =

∑
x

|Ψx(s)〉
√
πx, (15)

where |
√
π〉 is the eigenvector of D(s = 0)

with λn = 1 and we have the natural association
〈x|
√
π〉 = √πx with πx being the x component of

the stationary distribution 〈π| of P 0. Using (10) and
the relation (4), we can expand |Ψx(s)〉 in terms of
the eigenstates of the relevant part of the spectrum
of U(s), i.e.,
|Ψx(s)〉 = wxn(s)

∣∣vn(s)〉
+

n−1∑
j=1

1√
2
wxj(s)

(∣∣vj+(s)〉+ ∣∣vj−(s)〉). (16)

The time evolution of |ψ(0)〉 is then given as
U t(s)|ψ(0)〉 = an|vn(s)〉

+

n−1∑
j=1

aj(s)

[
cos(θj(s)t)

∣∣vj(s)〉
+sin(θj(s)t)

∣∣v⊥j (s)〉], (17)

where aj(s) = 〈wj(s)|
√
π〉 for j = 1, . . . , n.

The probability of finding the marked vertices at
time t is then written as

PM (t, s) =
∑
x∈M

∑
y

∣∣∣〈y, x|U t(s)|ψ(0)〉∣∣∣2. (18)

Note that all quantities in PM (t, s) can be ex-
pressed in terms of information obtainable from the
D(s) matrix. Hence, it is important to understand
the spectral properties of D(s) in order to anal-
yse PM (t, s) and thus the efficiency of any poten-
tial search algorithm. In the following, we will do
this explicitly for the complete graph for which both
the spectrum of D(s) and the mechanisms behind
a quantum search can be worked out analytically.

3. Uniform Markov chains on a complete
graph with m marked vertices

3.1. The setup and the spectrum of D(s)

We will now consider the special case of a quan-
tum search on a complete graph where every vertex
is connected to every other vertex. We focus here on
an unperturbed Markov process P 0 with n vertices,
where we chose the transition probabilities between
vertices to be uniform. The corresponding transi-
tion matrix has the form

P 0 = pI +
1− p
n− 1

(J − I) =

np− 1

n− 1
I +

1− p
n− 1

J, (19)

where J is the all-ones matrix, I is the identity ma-
trix, and p is a real number such that 0 ≤ p ≤ 1.
Note that the complete graph without self-loops
corresponds to the special case p = 0.

Let us assume that there are m marked vertices.
The eigenvalues and eigenvectors of the discrimi-
nant matrix D(s) of the interpolated Markov chain
P (s) derived from (19) as defined in (1) can be given
explicitly. After some calculation, we obtain the fol-
lowing eigenvalues and eigenvectors,

index j eigenvalue λj eigenvector
∣∣wj〉

1, . . . , n−m− 1 np−1
n−1

∣∣zn−m,0m〉
n−m np−1

n−1 + 1−p
n−1 (n−m)s α

∣∣−√ m
n−m1n−m,

√
n−m
m

√
1− s1m

〉
n−m+ 1, . . . , n− 1 (1− s)np−1

n−1 + s
∣∣0n−m, zm〉

n 1 α
∣∣√1− s1n−m,1m〉

(20)

Here, 1k and 0k denote a k-dimensional vector with
entries being either all one or all zero, respectively.
Furthermore, zk denotes a k − 1 dimensional set of
normalized k-dimensional vectors with

∑k
i=1 zi = 0.

The normalization constant α is given as

α =
1√
n

1√
1− s (1− pM )

. (21)
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Here pM = m/n, which is the probability to pick
a marked element from the stationary distribu-
tion [6]. We will see in the next section that only
two states facilitate the actual search, i.e., the
states |wn〉 and |wn−m〉, respectively. We find in
particular that the stationary distribution at s = 0
is uniformly distributed, i.e.,

|
√
π〉 = 1√

n
|1n〉. (22)

3.2. Quantum search as a rotation
in a 2D subspace of quantum walk operator

We will now address the mechanism behind
a quantum search in the absorbing vertex formalism
for this particular example. We will show that —
like for Grover’s search — the search can be under-
stood as a rotation in an effectively two-dimensional
invariant subspace of the quantum walk operator at
a specific interpolation parameter s0. This is akin to
the avoided crossing approach discussed in [4, 15],
however, we will show below, that here the mech-
anism is not facilitated by an avoided crossing. In-
deed, just considering the spectrum (20), it is easy
to see that there are no avoided crossings present as
all eigenvalues vary linearly with the parameter s.

We start by defining the initial and target state,
respectively,

|vini〉 =
∑
x

|Ψx〉
√
πx =

1√
n

∑
x

|Ψx〉, (23)

and

|vfin〉 =
1√
m

∑
x∈M
|Ψx〉. (24)

We find immediately using (20) that
〈vj |vini〉 = 〈vj |vfin〉 = 0 for all j 6= n, n−m.

(25)
Both the initial and the target state are in the
subspace spanned by |vn〉 and |vn−m〉. Note that
|vn−m〉 is not an eigenvector of U , only the individ-
ual states |v(n−m)±〉 are.

In order to find the optimal s parameter as well
as the search time t, we write |vn(s)〉 and |vn−m(s)〉
in terms of the initial and final states. Thus,
|vn(s)〉 = c1|vini(s)〉+ c2|vfin(s)〉, (26)

|vn−m(s)〉 = c3|vini(s)〉+ c4|vfin(s)〉. (27)
where the ci’s are obtained as

c1 =
1√

1− pM
sin(φ),

c2 =
1√

1− pM

[√
1− pM cos(φ)−√pM sin(φ)

]
,

c3 =
1√

1− pM
cos(φ),

c4 =
−1√

1− pM

[√
1− pM sin(φ) +

√
pM cos(φ)

]
,

(28)

where
cos(φ) =

√
pM√

1−s(1−pM )
,

sin(φ) =

√
(1−s)(1−pM )√
1−s(1−pM )

.
(29)

The optimal s parameter is obtained by demand-
ing that the two vectors |vn(s)〉 and |vn−m(s)〉 are
maximally mixed with the initial and final states
up to a change in sign, i.e.,

c1 = c2 and c3 = −c4. (30)
A straightforward calculation shows that both
conditions are in fact equivalent, i.e., we obtain the
optimal s0 by solving

sin(φ) =
√
1− pM cos(φ)−√pM sin(φ), (31)

which leads to

s0 = 1−
( √

pM

1 +
√
pM

)2

. (32)

At the optimal s0 with associated angle
φ0 = φ(s0), we thus obtain∣∣vini

〉
= cos(φ0)

∣∣vn(s0)
〉
+ sin(φ0)

∣∣vn−m(s0)
〉
,

(33)∣∣vfin

〉
= cos(φ0)

∣∣vn(s0)
〉
− sin(φ0)

∣∣vn−m(s0)
〉
.

(34)
Note that the coefficients of |vini〉 and |vfin〉 at s = s0

agree up to a sign change.
Since the vectors |vj(s)〉 are related to the eigen-

vectors of D(s), |wj(s)〉, by (10), the invariant sub-
space can be represented in the plane spanned by
the two vectors |wn(0〉) and |wn−m(0〉). The initial
and final states in the reduced vertex space can be
written as
|wini〉 = |wn(0)〉, |wfin〉 = |wn(1)〉, (35)

The states (35) can be represented by |wn(0)〉,
|wn(1)〉, and |wn(s)〉 as in Fig. 1. The angles be-
tween |wn(1)〉, |wn(s)〉 and |wn(0)〉, |wn(s)〉 stay the
same when changing s and are equal at the opti-
mal s = s0. The angle δ in Fig. 1 is then given as
tan δ =

√
pM

1−pM .

Fig. 1. Geometrical interpretation of the maximal
mixing. The angles between |wn(1)〉 and |wn(s)〉
and |wn(0)〉 and |wn(s)〉 coincide at the optimal
s = s0. The angle δ is given as tan δ =

√
pM

1−pM
.
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Next, let us determine the searching time ts from
the initial state |vini(s)〉 to the final state |vfin(s)〉
at the optimal s0. The time evolution of the initial
state |vini〉 can be written as

U t|vini(s0)〉 = ac
∣∣vn(s0)

〉
+as

(
cos(θn−mt)

∣∣vn−m(s0)
〉

+sin(θn−mt)
∣∣v⊥n−m(s0)

〉)
, (36)

where ac = cos(φ)(s0) and as = sin(φ)(s0) and
θn−m = θn−m(s0). By requiring cos(θn−mt) = −1,
equivalently sin(θn−mt) = 0,, at the search time

ts =
π

θn−m(s0)
, (37)

we obtain
U ts(s0)|vini〉 = ac|vn(s0)〉

−as|vn−m(s0)〉 = |vfin〉. (38)

For large n, when taking θn−m(s0) ≈√
2 (1− λn−m(s0)) and

λn−m(s) ≈ 1− 2n

n− 1
(1− p)pM , (39)

we find that the search time ts can be approxi-
mately written as

ts ≈
π

2

√
1

(1− p)

√
n

m
. (40)

The search time for a quantum search on a com-
plete graph is thus proportional to

√
n. At the

optimal value s0, the probability to find at least
one marked vertices is given by

PM (ts, s0) =
∑
x∈M

∑
y

∣∣〈y, x|vfin〉
∣∣2 = 1. (41)

Thus, at t = ts and s = s0, we find all marked
vertices of the complete graph simultaneously.

Note that, for large n, the classical hitting time
is proportional to n, i.e.,

HT (P,M) =
n− 1

(1− p)m
n→∞
≈ 1

(1− p)
n

m
. (42)

This shows that a quantum search is quadratically
faster than a classical search as expected.

4. Conclusions

The spectral analysis presented here for the com-
plete graph leads to a comprehensive understanding
of the quantum walk operator: the operator acts as
a rotation in each of the n− 1 two-dimensional in-
variant subspaces spanned by pairs of eigenstates.
The time-evolution of the initial state can be ex-
pressed in terms of the eigenstates of the discrim-
inant matrix, which implies that the search algo-
rithm can be understood in terms of these invariant
subspaces alone.

We investigate the influence of these eigenspaces
on the quantum search mechanism in detail for the
complete graph problem; here, we show, that only
two eigenspaces are relevant for the quantum search

starting from the initial stationary distribution. The
interpolation parameter s can be interpreted as a ro-
tation angle of the two relevant eigenvectors in the
two-dimensional space spanned by the vectors cor-
responding to the initial and the final states. The
optimal value of s can be determined from the con-
dition of maximal mixing of the initial and final vec-
tors with the two relevant eigenvectors. The optimal
search time is then proportional to the inverse of the
gap between the eigenphases of these eigenvectors.
It is of the order

√
n/m in the quantum case while

the classical hitting time is of the order n/m.
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Appendix: Construction of the invariant
subspace of U(s)

In this appendix, some relations to be used in de-
riving the eigen-system of the walk operator U(s)
are found. We will omit the parameter s for sim-
plicity.

We will give more details regarding the eigenvec-
tors and eigenvalues of the operator U and their
connection to the spectrum of D. To do so, we start
with some relations also given in [6]. Using that
|Ψx〉 =

∑
x

√
Pxy|y, x〉 and

∑
y Pxy = 1, one can

show that
〈Ψx|Ψy〉 = δxy, (43)

〈Ψx|S|Ψy〉 = Dxy. (44)
Using (44) together with S2 = 1, and by expressing
|vj〉 as |vj〉 =

∑
x |Ψx〉wxj , one can show that

〈vi|S|vj〉 = λjδij , (45)
where λj is the corresponding eigenvalue of D. By
using C = 2

∑
x |Ψx〉〈Ψx| − I and (44), we obtain

C|vj〉 = |vj〉, (46)

CS|vj〉 = 2λj |vj〉 − S|vj〉. (47)
Now, let us construct the normalized vector |v⊥j 〉

perpendicular to |vj〉. Due to (45), the vector S|vj〉
has a component of size λj in the |vj〉 direction, so
we can write formally

S|vj〉 = λj |vj〉+ bj |v⊥j 〉. (48)
From 〈vi|S2|vj〉 = δij , we obtain

bj =
√
1− λ2

j . (49)

Therefore, the vector |v⊥j 〉 is given by

|v⊥j 〉 =
1√

1− λ2
j

(
λj |vj〉 − S|vj〉

)
, (50)

for j < n. In the case j = n, |vn〉 itself is an eigen-
vector of U . Note that λn = 1. The actions of the
operators C and S on |vj〉 and |v⊥j 〉 are given by
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S|v⊥j 〉 =
√
1− λ2

j |vj〉 − λj |v
⊥
j 〉 (51)

C|v⊥j 〉 = −|v⊥j 〉 (52)
for j < n.

Next, let us construct the eigenspace of U = SC
using a geometrical point of view. From (46)
and (47), we see that

U |vj〉 = S|vj〉, (53)

US|vj〉 = 2λjS|vj〉 − |vj〉, (54)
which implies that the subspace spanned by
{|vj〉, S|vj〉} is invariant under U = SC. For a given
j the invariant subspace is a two-dimensional plane,
so there is a vector perpendicular to |vj〉, which is
the vector |v⊥j 〉 as derived above.

Now, let us consider the action of C and S on
a vector |ṽj〉 written as |ṽj〉 = a|vj〉 + b|v⊥j 〉 in
this plane, where a and b are constants. Using (46)
and (51), we can see that the action of C on |ṽj〉 is
given by

C
∣∣ṽj〉 = a

∣∣vj〉− b∣∣v⊥j 〉, (55)
which is just the reflection about the |vj〉 axis as
in Fig. 2. In matrix notation, the action of C can
be written as

RC =

[
1 0

0 −1

]
. (56)

The action of S on |ṽj〉, using (48) and (51), is given
by

S|ṽj〉 = a
(
cos(θj)|vj〉+ sin(θj)|v⊥j 〉

)
+b
(
sin(θj)|vj〉 − cos(θj)|v⊥j 〉

)
=(

cos(θj)a+ sin θjb
)
|vj〉

+
(
sin(θj)a− sin(θj)b

)
|v⊥j 〉 (57)

with λj = cos(θj). Note that the eigenvalues λj are
real with |λj | ≤ 1 by virtue of the transition matrix
P representing a reversible Markov chain.

Fig. 2. Geometrical interpretation of the action of
C and S in the plane spanned by |vj〉 and |v⊥j 〉. The
action of C is the reflection about the |vj〉 axis. The
action of S is the reflection about a line (dashed line
in green) through the origin, where the line makes
an angle θj/2 with the |vj〉 axis. Note that the angle
of S|vj〉 with respect to |vj〉 is θj .

In matrix notation, the action of S can be written
as [

a′

b′

]
=

[
cos(θj) sin(θj)

sin(θj) − cos(θj)

]
=

[
a

b

]
≡ RS(θj)

[
a

b

]
(58)

representing a reflection about the line through the
origin making an angle θj/2 with the |vj〉 axis as
shown in Fig. 2.

Therefore, the action of the SC on a vector in the
plane spanned by |vj〉 and |v⊥j 〉 represents a prod-
uct of two reflection matrices, that is,

SC → RS(θj)RC =[
cos(θj) sin(θj)

sin(θj) − cos(θj)

][
1 0

0 −1

]
=

[
cos(θj) − sin(θj)

sin(θj) cos(θj)

]
≡ R(θj) (59)

which is just the rotation about the origin by an an-
gle θj . Hence, the action of the quantum walk op-
erator U = SC on a vector in the plane |vj〉 − |v⊥j 〉
can be represented as a rotation composed of two
reflection operations RS(θj) and RC . It is the same
action as in Grover’s algorithm [1] (see Fig. 2).

The eigenvectors and eigenvalues in each of the j
sub-spaces can now be obtained from the eigenvec-
tors and eigenvalues of the rotation matrix R(θj),
i.e.,

Eigenvector:
1√
2

[
1

± i

]
Eigenvalue: e∓ iθj ,

(60)
In terms of the |vj〉, |v⊥j 〉 basis, the eigenvectors of U
then have the form

|vj±〉 =
1√
2

(
|vj〉 − (± i)|v⊥j 〉

)
(61)

with corresponding eigenvalues e± iθj . For j = n,
we can easily show that |vn〉 itself is the eigenvector
with eigenvalue 1. There are two eigenstates corre-
sponding to the index j < n, but for j = n, there
is only one state. Therefore, the dimension of the
invariant subspace of U is 2n− 1.
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