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In this article we continue to explore the possibilities offered by our discovery that one of the main
graph and network characteristic, the generalized Euler characteristic χG, can be determined from
a graph/network spectrum. We show that using the generalized Euler characteristic χG the number of
vertices with Dirichlet |VD| boundary conditions of a family of graphs/networks created on the basis of
the standard quantum graphs or microwave networks can be easily identified. We also present a new
application of the generalized Euler characteristic for checking the completeness of graphs/networks
spectra in the low energy range.
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1. Introduction

The concept of a graph was introduced by Leon-
hard Euler in XVIII century [1]. Exactly two hun-
dred years later, Linus Pauling published an ar-
ticle [2] in which he used graphs to describe the
motion of quantum particles in a physical network.
This approach is called quantum graph model and
is widely used to investigate many physical sys-
tems, e.g. mesoscopic quantum system [3, 4], quan-
tum wires [5] and optical wave guides [6]. Richard
P. Feynman [7] applied diagrams (graphs) as pic-
torial representation of the mathematical expres-
sions describing the behavior and interaction of sub-
atomic particles. Due to the extremely wide range
of applications the theory of quantum graphs has
been the subject of extensive research so far [8–14].
In particular, Kottos and Smilansky [9] showed that
quantum graphs can be used to study quantum
chaos, i.e., the phenomena found in quantum sys-
tems that are chaotic at the classical limit.

The metric graph Γ = (V,E) consists of vertices
v ∈ V connected by edges e ∈ E being intervals of
the length le on the real line R. The Laplace op-
erator L(Γ ) = − d2

dx2 acting in the Hilbert space
of square integrable functions is unambiguously de-
termined by the graph. The Laplace operator L(Γ )
is self-adjoint and has a discrete and non-negative
spectrum [12]. If all graph vertices V have standard
(called also natural, Kirchhoff, Neumann) boundary
conditions, i.e. functions are continuous at vertices

and the sums of their oriented derivatives at ver-
tices are zero, then the Laplacian has a simple zero
eigenvalue with the eigenfunction being a constant.
When even one vertex VD of the graph has the
Dirichlet boundary condition (functions is zero at
the vertex) then spectral multiplicity of the eigen-
value of 0 becomes zero instead of one, provided the
graph is connected.

The most important characteristic of metric
graphs Γ = (V,E) are the total length L =

∑
e∈E le

and the Euler characteristic χ = |V | − |E|, where
|V | and |E| denote the number of vertices and edges.
The later one is a purely topological quantity, but
as we have shown in [15–17] and [18], it can be also
obtained from the graph spectrum.

The microwave networks simulating quantum
graphs [19–25], which is possible thanks to the for-
mal analogy of the one-dimensional Schrödinger
equation describing quantum graphs and the teleg-
rapher’s equation for microwave networks [19, 22],
were used in experiments to obtain graph spec-
tra, while the pseudo orbits method developed
in [26] was applied in numerical calculation of
them. It should be emphasized that microwave
networks are the only ones that allow experi-
mental simulations of quantum systems with all
three types of symmetry within the framework of
the random matrix theory (RMT). These sym-
metries are: Gaussian orthogonal ensemble (GOE)
— systems with preserved time reversal symmetry
(TRS) [17, 19–21, 23, 27, 28], Gaussian symplectic
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ensemble (GSE) — systems with TRS and half-
spin [29], and Gaussian unitary ensemble (GUE)
— systems with broken TRS [19, 24, 30–33]. The
examples of the other model systems often used in
simulations of complex quantum systems with TRS
are flat microwave billiards [34–50] and atoms in
strong microwave fields [51–63].

2. Theoretical outline

As mentioned in Sect. 1, the most important
characteristics of a metric graph are the total
length

L =
∑
e∈E

le (1)

and the Euler characteristic
χ = |V | − |E|. (2)

The total length L gives the eigenvalues of
a graph λn via Weyl’s formula

λn =
(π
L

)2

n2 +O(n), (3)

whereO(n) is a function which in the limit n→ +∞
is bounded by a constant.

The Euler characteristic χ is related to the first
Betti number β describing the number of indepen-
dent cycles in the graph:

β = |E| − |V |+ 1 ≡ 1− χ. (4)
This number is equal to the number of edges that
must be removed from the connected graph in order
to turn it into a tree graph.

In our previous articles [17, 18], we derived formu-
las for the Euler characteristic for graphs with only
standard boundary conditions (SBC) at the vertices
and with mixed, standard and Dirichlet boundary
conditions (DBC) at vertices. In the case of stan-
dard boundary conditions

χ = 2+8π2
∑

kn∈Σ(Lst(Γ))
kn 6=0

sin(knt )(
kn
t

) [
(2π)

2 −
(
kn
t

)2]
∣∣∣∣∣∣
t≥t0

,

(5)
where Σ(Lst(Γ )) denotes the spectrum of the Lapla-
cian Lst(Γ ) with standard vertex conditions taken
in the square root scale, i.e., the numbers kn are the
square roots of the eigenenergies λn, and t is a scal-
ing parameter [15–17] with t0 = 1/(2lmin), where
lmin is the length of the shortest edge of the graph.

For graphs and networks with Dirichlet boundary
conditions

χG := χ− |VD| =

8π2
∑

kn∈Σ(Lst,D(Γ))

sin(knt )(
kn
t

) [
(2π)

2 −
(
kn
t

)2]
∣∣∣∣∣∣
t≥t0

.

(6)
Here, Σ(Lst,D(Γ )) denotes the spectrum of the
Laplacian Lst,D(Γ ) with standard and the Dirichlet
vertex conditions. In (6), we assume that |VD| 6= 0.

These two formulas can be written in a single el-
egant form
E(|VD|) = 2δ(0,|VD|)

+8π2
∑

kn∈Σ(L(Γ))
kn 6=0

sin(knt )(
kn
t

) [
(2π)

2 −
(
kn
t

)2]
∣∣∣∣∣
t≥t0

,

(7)
where δ(i,j) is the Kronecker delta. Depending on
the boundary conditions, Σ(L(Γ )) denotes either
the spectrum of the Laplacian Lst(Γ ) or Lst,D(Γ ).

The new formula for the generalized Euler char-
acteristic E(|VD|) includes also the case |VD| = 0
and for the limited cases |VD| = 0 and |VD| 6= 0,
E(|VD| = 0) = χ and E(|VD| 6= 0) = χG,
respectively.

Formally, obtaining the quantities L from Weyl’s
formula and E(|VD|) from (7), requires the knowl-
edge of the whole sequence of eigenvalues [15, 16].
We proved in [17, 18] and confirmed in [64, 65] that
the Euler characteristic can be evaluated using only
limited number K = Kmin of the lowest eigenvalues
(resonances)

K ≥ |V |+ 2Lt
(

1− exp
(
− επ
Lt

))− 1
2

, (8)

where |V | is the total number of graph vertices, ε is
the accuracy of determining the Euler characteristic
from (7). To obtain the smallest possible number of
resonances Kmin, for a given accuracy ε, we assign
to t its smallest allowed value t = t0. Since the Eu-
ler characteristic is an integer, the accuracy of its
determination should be taken ε < 1/2. In our cal-
culations of Kmin we will assume ε = 1/4. Then, the
approximated formula for E(|VD|) becomes
E(|VD|, t) = 2δ(0,|VD|)

+8π2
Kmin∑
n=1

sin(knt )(
kn
t

) [
(2π)

2 −
(
kn
t

)2] , (9)

and should reach a plateau within the limits
± 1

4 of the value of Euler characteristic E(|VD|)
for t0 ≤ t ≤ tmax (see Figs. 1 and 2), where
tmax ' 3

√
4t0 [18].

3. Experimental setup and methodology
of measurements

To measure spectra of microwave networks neces-
sary to calculate their Euler characteristic, we used
the set-up that is standard for such experiments
(see, e.g. [66]). It consists of the Agilent E8364B vec-
tor network analyzer (VNA) and the HP 85133-616
high class flexible microwave cable that connects
the VNA with the measured network and is equiv-
alent to attaching an infinite lead to the quantum
graph [27]. The schemes of the considered graph and
the microwave network are shown in insets in Figs. 1
and 2. The VNA was calibrated using the Agilent
4691-60004 electronic calibration module to elim-
inate impact of network external elements on the
measurement results.
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Fig. 1. The generalized Euler characteristic
Edet(|VD|) calculated for the graphs Γ = (12, 28, 4),
Γ = (12, 28, 2), and Γ = (12, 28, 0), are denoted
by red, green, and black solid lines, respectively.
The numerical calculations are compared to the
theoretical predictions marked by dashed lines.
The parameter t0 = 10 m−1, used in (8) is marked
by orange full circles. The scheme of the graph is
shown in the inset.

Fig. 2. The generalized Euler characteristic
E(|VD|) as a function of the parameter t for
microwave networks Γ (5, 7, |VD| = 0). The red
dash-dot and solid line denote experimental results
for Kmin = 32 and K = 66 resonances. The blue
solid line represents numerical calculations for
K = 66 resonances. The orange full circle marks
t0 = 1.51 m−1, used in (8). The horizontal solid
line represents the theoretical value of the Euler
characteristic and the dashed lines show ε = ±1/4
error limits. The scheme of the network with a lead
connecting it to VNA is shown in the inset.

Microwave networks simulating quantum graphs
are constructed with microwave coaxial cables and
junctions that correspond to the edges and ver-
tices of the graphs. The microwave cables con-
sist of an outer conductor with an inner radius
r2 = 0.15 cm and an inner conductor of a ra-
dius r1 = 0.05 cm surrounded by the dielec-
tric material (teflon). The cut-off frequency of the
TE11 mode below which only the fundamental

TEM can propagate in the cable [67, 68] is
υcut = c

π(r1+r2)
√
ε

= 33 GHz, where the dielectric
constant of teflon ε = 2.06 was measured in our lab.
The physical dimension of microwave networks is re-
lated to their optical length, i.e., is the dimension of
the simulated quantum graphs by the relationship
lopt =

√
εlph.

The Agilent E8364B vector network analyzer pro-
vides the ability to perform one-port and two-port
measurements of the scattering matrix S(ν). How-
ever, one-port measurements are preferable, if possi-
ble, because it means a smaller opening of the tested
system to the environment, and thus a smaller
width of the observed resonances. This, by reduc-
ing the overlap of resonances, facilitates the iden-
tification of the complete set of the eigenvalues,
which is crucial in all experiments on the energy
level correlations. The scattering matrix in the case
of one-port measurements is defined as S11(ν) =√
R(ν)e iθ(ν), whereR(ν) is the reflection coefficient

and θ(ν) is the phase of a signal.

4. Results

First, we present the results that are a continua-
tion of the findings presented in [17, 18] on “hear-
ing” the network/graph boundary conditions solely
on the basis of its spectrum. Next, we show a new
application of the generalized Euler characteristic to
check the completeness of networks/graphs spectra
in the range of low energies.

4.1. Hearing the boundary conditions of graphs
emerging from standard quantum graphs

The fully connected (complete) quantum graphs
are characterized by the strict relation between the
number of their edges |E| and vertices |V |, i.e.,

|E| = 1

2
|V |
(
|V | − 1

)
. (10)

Moreover, by definition, the Dirichlet boundary
conditions are excluded in these graphs. In [17], we
showed that for such graphs it is enough to evaluate
the Euler characteristic from a graph spectrum to
learn whether it is a complete graph and how many
vertices/edges it has. This is possible because

|V | = 3 +
√

9− 8χ

2
(11)

gives an integer for the complete graphs.
Here, we will analyze a detaching transformation

which leads from a standard original graph to the
one which may posses, in general, the Neumann [18]
and Dirichlet boundary conditions. A standard
quantum graph possesses only vertices with the
standard boundary conditions. The following nota-
tion will be used for a short description of graphs:
Γ (|V |, |E|, |VD|), where |VD| is the number of ver-
tices with the Dirichlet boundary condition, and |V |
and |E| denote the total number of vertices and
edges, respectively.
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First, let us consider a transformation in which at
least one edge Ndet of the graph is detached from
one of its vertices. We assume that the new graph re-
mains connected. Then, the number of graph edges
is preserved and Ndet ≥ 1, new one-degree vertices
appear in the graph. The number of new vertices,
including the Neumann |VN | and the Dirichlet ones
|VD|, reads
|VN |+ |VD| = Ndet. (12)

The generalized Euler characteristic Edet(|VD|) of
the new graph is given by
Edet(|VD|) = Eo(0) +Ndet − |VD|, (13)

where Eo(0) is the Euler characteristic of the orig-
inal graph and Ndet − |VD| = |VN |. Note that in
this case the number of vertices of the new graph
is increased by Ndet but the number of its edges is
preserved. Therefore, the number of the Dirichlet
vertices |VD| can be found from
|VD| = Eo(0)− Edet(|VD|) +Ndet (14)

or equivalently
|VN | = Edet(|VD|)− Eo(0). (15)

Both (14) and (15) show that knowing the gener-
alized Euler characteristic Edet(|VD|) and Eo(0) of
the original graph, one can determine the number
of graph vertices with the Dirichlet boundary con-
ditions as well as with the Neumann boundary con-
ditions (NBC).

The numerical calculation were performed for the
complete graph Γ (8, 28, 0) with Eo(0) = χ = −20.
The results are presented in Fig. 1. The total op-
tical length of the graph is L = 3.916 m and the
length of its shortest edge is lmin = 0.05 m, giv-
ing Kmin = 563, which was estimated using (8).
The generalized Euler characteristic Edet(|VD|) was
calculated using (9). The graph Γ (8, 28, 0) was the
original for the following new graphs realizations, in
which four, one plus three edges have been detached
from two vertices:

(i) Ndet = 4 and all new four vertices have DBC,

(ii) Ndet = 4 and only 2 new vertices have DBC,

(ii) Ndet = 4 and all new vertices have NBC.

Then, according to (13), we have

Edet(|VD|) =



−20 + (4− 4) =

−20 + 0 = −20, for (i),

−20 + (4− 2) =

−20 + 2 = −18, for (ii),

−20 + (4− 0) =

−20 + 4 = −16, for (iii)
(16)

graph realization.
In Fig. 1, red, green and black solid lines

denote Edet(|VD|) for the graphs Γ = (12, 28, 4),
Γ = (12, 28, 2), and Γ = (12, 28, 0), respectively.

The plateaux start at t ' 10 m−1, which is very
close to t0 = 10 m−1, marked in Fig. 1 by orange
full circles, and are visible up to at least t = 20 m−1.
The numerical calculations are compared to the
theoretical predictions marked in Fig. 1 by dashed
lines. The agreement between them for 10 ≤ t ≤
20 m−1 is very good, however small deviations from
them can be observed above tmax ' 1.6t0. In the
inset a scheme of the original graph is shown.

4.2. Missing levels and Euler characteristic

Microwave experiments on quantum chaos in
which microwave objects, networks and cavities,
simulate quantum graphs and billiards, yield the
spectra of the studied systems. Quantum chaos
manifests itself in statistical properties of the spec-
tra. The completeness of the spectra is crucial
for obtaining reliable results. Unfortunately, exper-
imentally this happens rather seldom. Any method
leading to the detection of the missing eigenval-
ues is highly desirable. There are several such
methods, e.g. using Weyl’s formula [69] and the
power spectrum [32, 70, 71]. The Euler characteris-
tic determined from the spectra, (5)–(7), and (9),
turned out to be extremely sensitive to the loss
of the lowest energy levels (resonances) in these
spectra. By low energy levels we mean the levels
with the numbers much smaller than Kmin. Espe-
cially, for small values of Kmin this method, in con-
trast to the other ones, allows for quick determi-
nation of the frequency range in which a resonance
is lost.

In order to present the dependence of the Eu-
ler characteristic on the position of the lost res-
onances we examined experimentally and numeri-
cally a microwave network simulating a quantum
graph Γ (5, 7, |VD| = 0). The network of the total
optical length L = 3.382 m consists of five ver-
tices and seven edges of lengths l1,2 = 0.355 m,
l1,3 = 0.436 m, l1,4 = 0.573 m, l2,3 = 0.391 m,
lmin
2,4 = 0.331 m (t0 = 1.51 m−1), l3,4 = 0.341 m,
l4,5 = 0.955 m. The lower indexes are the num-
bers of vertices connected by the edge. The edge
l4,5 is the so called “tail” edge which can possess
a single Neumann or Dirichlet vertex. In the lat-
ter case |VD| = 1. The average number of reso-
nances ∆N in the frequency range ∆ν = 1 GHz
is ∆N = 2∆νL/c ' 23. The minimal number of
resonances necessary to get the Euler characteris-
tic with accuracy ε = ±1/4 is Kmin ' 32, which
corresponds to the frequency ν ' 1.418 GHz.

We will consider only the network Γ (5, 7, 0) with
the “tail” edge having the vertex with NBC because
the missing levels effect does not depend on the
graph boundary conditions. The generalized Euler
characteristic E(|VD|) for this graph, |VD| = 0, is
E(0) = −2. Its experimental spectrum in the fre-
quency range 0–1 GHz is shown in Fig. 3.

The dependence of the generalized Euler charac-
teristic E(|VD|) on the parameter t together with
the scheme of the network simulating the quantum
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Fig. 3. The experimental spectrum obtained in
a one-port measurement of the microwave network
simulating quantum graph Γ (5, 7, |VD| = 0) in the
frequency window 0–1 GHz.

Fig. 4. The generalized Euler characteristic
E(|VD|) obtained from the experimental spectra of
the Γ (5, 7, 0) network as a function of the position
(number) of the lost resonance. Solid red lines with
full circles and with diamonds represent E(|VD|)
obtained using in (9) Kmin = 32 and K = 66
resonances, respectively. The horizontal solid line
denotes χ = |V | − |E| = −2, the horizontal thick
dashed lines specify χ values within the accuracy
limit ε = ±1/4, while the thin dashed lines specify
the maximum errors ε = ±1/2 that allow for the
correct determination of E(|VD|).

graph Γ (5, 7, |VD| = 0) is shown in Fig. 2. The
experimental results for Kmin = 32 resonances is
shown by the red dash-dot line, whereas the exper-
imental and numerical results for 66 resonances are
shown as solid red line and blue dash line, respec-
tively. The horizontal solid line represents the theo-
retical value of the Euler characteristic χ = |V |−|E|
and the dashed lines show the ε = ±1/4 error lim-
its. The orange full circle marks t0 = 1.51 m−1,
used in (8), where the beginning of the plateau is ex-
pected. The agreement with the theory and between
the experimental and numerical results is excellent.

Fig. 5. The generalized Euler characteristic
E(|VD|) obtained numerically for the graph
Γ (8, 28, 0) as a function of the position (number)
of the lost resonance. Solid blue lines with full
circles represent E(|VD|) obtained using in (9)
Kmin = 563 resonances. The horizontal solid line
denotes χ = |V | − |E| = −20, the horizontal thick
dashed lines specify the E(|VD|) value within the
accuracy limit ε = ±1/4, while the thin dashed
lines specify the maximum error ε = ±1/2 that
allows for the correct determination of E(|VD|).

Figures 4 and 5 show changes of the generalized
Euler characteristic E(|VD|) as a function of the po-
sition (number) of the lost resonance. In Fig. 4,
we present the experimental results for the net-
work Γ (5, 7, 0). Solid red lines with full circles and
with diamonds represent E(|VD|) obtained in (9)
with, respectively, Kmin = 32 and K = 66 res-
onances. The horizontal solid line denotes χ =
|V |−|E| = −2 (see (2)), the horizontal thick dashed
lines specify the E(|VD|) values within the accuracy
limit ε = ±1/4, while the thin dashed lines spec-
ify the maximum error ε = ±1/2 that still allows
the correct determination of E(|VD|). The zero point
on the x axis corresponds to the E(|VD|) value cal-
culated for the complete spectrum (no loss of res-
onances). The point 1 on the x axis corresponds
to the E(|VD|) value obtained when the first reso-
nance was lost. The next points correspond to the
E(|VD|) values obtained for the lost resonances with
the consecutive numbers in the energy spectrum.
In Fig. 5, we show the numerical results for the com-
plete graph Γ (8, 28, 0). The generalized Euler char-
acteristic E(|VD|) was calculated using Kmin = 563
resonances in (9). The horizontal solid line denotes
χ = |V | − |E| = −20. The remaining markings are
the same as in Fig. 4.

As we see, the changes are dramatic. For both
graphs the loss of the lowest energy levels leads to
E(|VD|) values which differ from its expected value
by more than |1/2|. Although the quantitative re-
sults differ, the changes of E(|VD|) are of the same
nature. It should be noticed that for both graphs
the values of the maximum deviations from the ex-
pected values of E(|VD|) are quite similar. In fact,
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one should expect such a behavior since in the cal-
culation of E(|VD|) using (9) a single term with the
same number n is removed. For example, for the
graphs Γ (5, 7, 0) and Γ (8, 28, 0) for n = 1, the val-
ues of k1/t0 are 1.12 and 0.98 leading to the de-
parture from E(|VD|) by 1.68 and 1.74, respectively.
Moreover, as it is clearly seen in Fig. 4, increasing
the number of resonances in (9), K � Kmin, does
not change this situation. Also the boundary condi-
tions do not influence this dependence.

Thus, the possibility of obtaining the generalized
Euler characteristic E(|VD|) of a graph/network in
two independent ways, from the pure topological
feature of the graph/network and from its spectrum,
makes it a perfect indicator of lost low energy levels.

5. Summary

There is no doubt that the possibility of calcu-
lating the generalized Euler characteristic E(|VD|)
on the basis of the graph/network spectrum and
comparing it with the Euler characteristic χ de-
fined by its pure topological properties opens a new
window in the experimental investigation of the mi-
crowave networks and quantum graphs simulated
by them. In this article we show that using the gen-
eralized Euler characteristic E(|VD|) it is possible
to determine the number of vertices with Dirich-
let and Neumann boundary conditions, even in the
complex graphs. This is an extension of our previ-
ous findings published in [18]. We also show that
the generalized Euler characteristic E(|VD|) evalu-
ated from the spectra of the graphs can serve as
an excellent indicator of missing resonances in the
low energy range.
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