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We apply the quotient graph theory described by Band, Berkolaiko, Joyner and Liu to particular graphs
symmetric with respect to S3 and C's symmetry groups. We find the quotient graphs for the three-edge
star quantum graph with Neumann boundary conditions at the loose ends and three types of coupling
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1. Introduction

Symmetry plays an important role in many
branches of physics and mathematics. It can be
found in many systems in physics, chemistry or bi-
ology, as crystals, molecules, living organisms, or
the structure of fundamental laws of nature. Its im-
portance lies in simplifying the tasks, even a very
difficult problem can be reduced, using its symme-
try, and solved significantly more easily.

The quantum graphs, first used for the descrip-
tion of aromatic molecules in the 1930’s [1] and
1950’s [2], then widely studied since the 1980’s, can
serve as a nice example of the importance of symme-
try. This model, reasonably simple from the math-
ematical point of view (set of ordinary differential
equations), shows many non-trivial properties and
therefore is used as a toy model, e.g. for describ-
ing quantum chaos [3, 4]. Quantum graphs, how-
ever, are not an artificial problem. The Schrédinger
equation on a network has applications in describing
nanotubes, photonic crystals etc. The mathematical
claims on the properties of this quantum problem,
do not need quantum theory to be experimentally
verified. Using similar forms of the Schrédinger and
telegraph equation, one can model quantum graphs
with the so-called microwave graphs — the behavior
of a quantum particle is replaced by the propagation
of microwaves in coaxial cables [5-9].

Symmetry allows decomposing complicated
graphs with many edges into simpler graphs for
which the term quotient graphs is used. This is
useful, e.g. for finding the secular equation for
the graph eigenvalues or the resonance condition
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for resolvent resonances. As we show in Sect. 3,
the secular equation is given by the determinant
of a square matrix with the number of rows and
columns being double the number of graph edges.
Hence, reducing the number of edges significantly
simplifies the computation.

The paper [10] summarized the theory (previ-
ously developed in [11, 12]) for constructing quo-
tient graphs using the symmetry groups of the
graph. Applications to both combinatorial and
quantum graphs are provided in the mentioned pa-
per. Using this construction, one may obtain the
quotient graphs, each corresponding to one par-
ticular irreducible representation of the symmetry
group. There are various utilizations of this theory,
it was used for simplifying the graph and comput-
ing the secular equation, e.g. in [13]. The theory
was also applied to the construction of quantum
graphs providing GSE (Gaussian Symplectic En-
semble) statistics in [14].

The present paper aims to introduce the quo-
tient graph theory developed in [10] in a compact
form and to show its applications in rather simple,
but still non-trivial examples. We focus on quantum
graphs quotients only, in particular, we chose equi-
lateral star graphs consisting of three edges. Alter-
nating the coupling condition at the central vertex,
we can change the symmetry group of the graph.
We show in detail the construction for the S3 group
(the symmetry group for standard and d-coupling),
including the construction of irreducible representa-
tions of this group. Introducing a preferred direction
in the graph using a special type of coupling first
used in [15], one may reduce the group symmetry
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to C3. Hence the irreducible representations change
and instead of two one-dimensional and one two-
dimensional representations, we obtain three one-
dimensional representations.

The paper is structured as follows. In the next
two sections we give necessary preliminaries needed
for stating the theorem of [10] — in Sect. 2,
we introduce the main notions of the group the-
ory, and Sect. 3 is devoted to quantum graphs.
In Sect. 4, we state the procedure from [10] al-
lowing us to obtain quotients for the quantum
graphs. In Sect. 5 we apply this theory to three-
edge graphs. We obtain the representations of the
S3 group and find the kernel space needed in the
procedure. Using it, we find in Sects. 5.3 and 5.4
the quotient graphs for standard and é-coupling.
Section 5.5 is devoted to the example of the graph
with preferred-orientation coupling which is sym-
metric under the C3 group. Finally, we conclude the
results in Sect. 6.

2. Preliminaries about group theory

In this section we revise necessary notions of
the group theory, which allow us to formulate
the quotient graph method. We focus mainly on
the representation theory for groups. The current
paper cannot give a full and detailed description of
the field, therefore, we refer the interested reader
e.g. to publications [16-18]. We start with the
definition of the group.

Definition 1.  Group (G,-) is a set G with a binary
operation " for which the following properties hold

(i) G is closed with respect to “-", i.e., a-b € G for
all a,b € G,

(i) the operation “-" is associative, i.e., (a-b)-c=
a-(b-c)foralla,b,ced,

(iii) there exists an identity element e for which
e-a=a-eforallacG,

(iv) for each a € G there exists the inverse element

alsuchthata™'-a=a-a ! =e.

Definition 2. Two elements a,b € G are in the
same conjugacy class if there is an element g € G
such thatb=g¢ ' -a-g.

Definition 3. Let (G, *) and (H,-) be two groups.
The map ¢ : G — H is called a homomorphism from
the group G to H if it satisfies

p(a*b) =p(a) - o(b). (1)
If a homomorphism is bijective, we call it isomorphism.
Isomorphism ¢ : G — G is called automorphism.

Note that “x” is the group operation in the group
G and “” is the group operation in the group H.
The homomorphism, therefore, preserves the group
operation. In the following text, we will consider
finite groups (groups with a finite number of ele-
ments).
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Definition 4. Let V be a vector space. The
representation of the group (G,*) on V is a map
p: G — GL(V) such that

plaxb) = p(a) - p(b) (2)
for all a,b € G. Here GL(V) is the general linear
group of the vector space V, i.e., the group of all
automorphisms on V. The dimension of the vector
space V is called the dimension of the representation
or its degree. The space V is called the carrier space
of the representation.

Let us briefly comment on the previous defini-
tion. The elements of the linear group GL(V') can
be viewed as square matrices, the corresponding
group operation is matrix multiplication. This
allows us to obtain an equivalent group to (G, %),
where the elements of the new group are square
d X d matrices and the group operation is the
matrix multiplication. Here, d is the dimension of
the representation.

Definition 5. Let (G,*) be a group and p — its
representation. A linear subspace W C V is called
G-invariant if p(a) - w € W for all @ € G and
all w € W. Here, “" is the matrix multiplication
between the matrix p(a) and the finite-dimensional
column vector w. If V' contains a subspace W C V
with the previously mentioned property, we call the
representation p reducible. Otherwise, it is called
irreducible.

The meaning of the previous definition is that if
we find a subspace for which all the matrices p(a),
a € G map this vector subspace to itself, we
have a reducible representation. In other words,
there exists a similarity transformation of all the
matrices p(a) which maps them into matrices of
the block type

DWW DWW’
(7). @

Moreover, if the block DWW’ — 0, the representa-
tion is called decomposable, as the next definition
states.

Definition 6. The representation p is called
decomposable if there is a basis in which the ma-
trices p(a) are of block diagonal form. Then the
subspace W C V is called the reducing subspace.

Each decomposable representation can therefore
be written as a direct sum of two (or more)
irreducible representations, each of them given by
the matrices in blocks.

Definition 7. Let V be a finite dimensional vec-
tor space over a field T, (G, *) — a group and p be
a representation of (G, ) on V. Then the function
Xp : G — T defined as

Xp(a) = Tr (p(a)) (4)
for each a € G is called a character of the repre-
sentation p. Here, the symbol Tr denotes the trace
of a matrix. By x,(a) we mean the character of the
element a in the representation p.
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Proposition 1. The characters of the group
elements in the same conjugacy class are the same.

Proof. Clearly, using the properties of the trace,

we have
Tr(g7"a-g)=Tr(a)

which proves the claim. [J

®)

Definition 8. Let |G| be the number of elements
of the group G. For characters x,,, X,, of two repre-
sentations py, po we define the inner product as

Z XPl

aeG

<Xp1 s ng sz (6)

IGI

We state the following proposition, the proof can
be found, e.g. in [16].

Proposition 2. The following properties of the in-
ner product hold.

(i) The representation p is irreducible if and only if
its character x, satisfies (x,, x,) = 1.

(ii) Let V}, j = 1,...k be the vector spaces as-
sociated with the irreducible representations p;
and V be the vector space associated with the
reducible representation 7 of the group (G, ).
Let V VP g V2% @ @ VE (the sign
=~ denotes isomorphism, @ denotes the direct
sum, and Vl@o‘1 means «; copies of the vector
space V7). Then the multiplicity a; of the irre-
ducible representation p; in 7 is given by

aJ = <X7‘r7 ij>' (7)

Definition 9. Let (G, *) be a group with the iden-
tity element e and let S be a set. Then the (left) action
of G on S is the operation o : G x S — S satisfying
the following three axioms

(i) gose SforallseSandgeG,
(i) eos=sforall s e S,

(i) g1 o (g2 08) = (g1 * g2) o s for all s € S and
91,92 € G.

In the following text, we will, with small abuse
of notation, denote the group action by the same
symbol “*” as the group multiplication.

3. Preliminaries about quantum graphs

We briefly introduce the usual description of
quantum graphs. For more details, we refer the
reader to the publications [19, 20].

Let us consider a metric graph consisting of |V
vertices and || edges e; of finite lengths I;, j =
1,...,]&| that connect two vertices. The vertex set
is denoted by V and the edge set by £. We consider
the Hilbert space # = @, L?(e;). In this Hilbert
space we define a second order dlfferential operator
H acting as H = d —— with a domain consisting of
the functions with edge components in the Sobolev
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space W2’2(ej) satisfying the coupling conditions at
each vertex X, € V with the degree (valency) ds.
Thus,

AWy + BVl =0, (8)
where A; and By are ds X ds; matrices satisfying
Ag - Bl = B, - Al (1 denotes the hermitian conju-
gation) and the joined rectangular matrix (Ag, Bj)
has maximal rank. The vector ¥, is the vector of
the limiting values of functions at the vertex X
from the edges incident to this vertex and ¥/ is a
similarly defined vector of outgoing derivatives.

The coupling on the whole graph can be de-
scribed by the 2|€] x 2|€| matrices A and B
that can be obtained from block matrices con-
sisting of A, and By, respectively, after a trans-
formation that interchanges rows and columns.
The coupling conditions (8) can be written in one
equation

AV + BV =0.
Here, the vectors are

9)

= (F1(0), f1(10), £200), folla), - Freraen) s
(10)
W/:(f{(O), _f{(ll)a fé(0)7 _f2/(l2)7 ceey _f|l5\(Z|£|))Ta

(11)
where f; are the components of the wavefunction
on the edges of the graph.

The operator defined in the above manner is the
Hamiltonian of a quantum particle on the graph in
the set of units with % = 1 which moves freely
on the graph edges and interacts only at the ver-
tices. The properties of the matrices Ay and Bj
ensure that the Hamiltonian is self-adjoint. Simi-
larly, the matrices A and B satisfy A- Bt = B - Af
and the maximal-rank condition. There is an al-
ternative description of the coupling conditions us-
ing a unitary matrix U (unitarity means the con-
dition U - Ut = U'U = I, where I is an identity
matrix). Since (9) can be multiplied by a regular
square matrix from the left without changing the
coupling condition, one can choose A = C(U — I),
B = iC(U + I) with C being a regular 2|&| x 2|€|
square matrix. Unitarity of U results in satisfying
the conditions on A and B and the Hamiltonian is
therefore self-adjoint.

From the mathematical point of view, a quan-
tum graph is a set of ordinary differential equations
(ODE) coupled by vertex conditions. When find-
ing the spectrum of the graph, one has to solve the
cigenvalue equation —f/' () = k? f;(x) at each edge
of the graph. It follows from the ODE theory that
the solutions f; can be found in the form f;(z) =
ajsin (kz)+b; cos (kz). Thus the energies k? can be
found when one substitutes the above form of the
wavefunctions into the coupling condition (9), and
constructs the secular equation given by vanishing
the determinant of the matrix multiplying the vec-
tor of coefficients (a1, b1, ..., a|g|,b|g‘)T.
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4. Quotient graph theory

The procedure for obtaining the quotient graphs
from the original quantum graph was described
in [10]. We briefly describe its main concepts. For
the proof and more insight, we refer to the men-
tioned publication.

First, we introduce the Kronecker product.

Definition 10. The Kronecker product of two
matrices C' (m x n matrix) and D (p x ¢ matrix) is
a mp X ng matrix given by

C11D 012D ClnD
co1 D co2D conD

C®D:= _ _ , (12)
cm1D cmaD ... cpnD

where ¢;;, ¢ = 1,...,m, j = 1,...,n are the

entries of the matrix C. In the above equation
there are denoted the p x ¢ blocks of the resulting
matrix.

Secondly, we introduce the notion of a =-
symmetric graph. Let us consider a quantum graph
I' with finitely many finite edges e;. Let (G, *) be
the symmetry group of the graph I' which maps
each edge e; to another edge g * e;, where “%”
now denotes the group action on a set. The edge
g * e; may or may not be the same one, however,
we assume that G does not map any edge to its
reverse. In that case, we would introduce a vertex
with the standard condition in the middle of this
edge and thus divide it into two.

Definition 11. Let 7 : G — GL(CI®l) be a rep-
resentation of a group (G,*) such that for each
g € G the matrix 7(g) is a permutation matrix. The

graph I' is m-symmetric if the following two conditions
hold:

(i) For each g € G and each j =1,...,|&| and the
index i given by e; = gx*e;, the condition [; = I;
holds.

(ii) The coupling condition (9) for the coupling ma-
trices A and B is satisfied iff this coupling con-
dition is satisfied for each g € G for the cou-
pling matrices A-7(g) and B-7(g) (dot denotes
matrix multiplication), where #(g) = 7(g) ® I»
(here I denotes the 2 x 2 identity matrix).

The previous definition allows us to define the
action m(g) on the vector of edge components of
the function f € W22(I') as

f€1 fg—l*el
f62 f ~lxeg

| =] (13)
fem fgfl*e\s\

The following definition of the kernel space will
be useful for defining the quotient graph.
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Definition 12. Let I' be a graph with the sym-
metry given by the symmetry group (G, x). Let 7w be
the permutation representation defined by (13) and
let p be an irreducible representation of G with the
dimension r. Then the kernel space associated with p
is defined as

Ke(p,m):= ) Ker[I, @ w(g) — p(g)" @ L gy].

geG (14)
Here, Ker denotes the kernel of the space in the
parentheses, I, and Ig the r x 7 and [£] x [£]
identity matrices, respectively, and T the transpose
of a matrix.

The following, slightly technical, definition
introduces matrices needed in quotient graph
construction.

Definition 13. We define the orbits O; := {e; €
P e = gx*e; forsome g € G}. Let e; be the
standard basis of vectors in CI€l (do not confuse
with the edges e;). We define the space X; as
the span of {e; : e; € O;}. We define the set
D = {ej,---,¢€jp | the set of edges so that each
ej, is one representative for each orbit O;, hence
|D| is the number of orbits. Let V, denote the
carrier space of p. Then we define the subspaces
Kg(p,m) = Ka(p,m) N[V, ® Xy, i=1,..., |D|.
Let d; := dimK}(p,m). Let ©; be the matrices
consisting of columns of vectors in the orthonormal
basis of K4(p,m) for i = 1,...,|D|. Finally, we
define the matrices 6 := (6y,6,,...,0)p|) and

élz 6@]2

Finally, we arrive at the definition of a quotient
graph and at the main theorem.

Definition 14. Let I' be a finite quantum graph
with |€| edges and the coupling conditions (9) given
by the matrices A and B, which has the symmetry
given by the group (G,«). Then the quotient graph
Hamiltonian H, corresponding to irreducible rep-
resentation p contained in the representation 7 of
(G, *) of dimension r is defined in the following way.
It is given by the operator acting as negative second
derivative on a graph I, consisting of the edges
{ei’j} with i € D, jg=1,... ,d; of the Iength l; (the
edge length of the former edge e;). The domain of
the Hamiltonian on I', are functions in the Sobolev
space W22(I',) satisfying the coupling conditions
given by the matrices

A, = of[I, ® Ao,
and

B, = O'[I, ® B|©, (16)
where f denotes the hermitian conjugation and
A:=(A+iB)7'A, B:=(A+iB)"'B.

(15)

Theorem (Band, Berkolaiko, Joyner, Liu) The
original Hamiltonian H on the graph I' is unitarily
equivalent to the direct sum over all irreducible repre-
sentations of G contained in 7,
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H=@H". (17)
P

Here, r(p) is the dimension of the representation p

and H?T(p) denotes r(p) copies of the quotient graph
operator H,,.

The second part of the theorem says that one has
to take r copies of the quotient graph corresponding
to the representation p.

5. The three-edge graph

We will apply the method introduced in the previ-
ous section to a particular graph. We consider a star
graph consisting of three edges of the same length [
with the same boundary conditions at the loose ends
and a symmetric coupling condition at the central
vertex. Later, we will introduce the coupling con-
ditions. We will consider Neumann boundary con-
ditions at the loose ends and three versions of the
coupling condition at the central vertex. However,
the first two quantum graphs are symmetric under
the group S3 — the group of permutations of three
elements, the third one has C5 symmetry.

5.1. Representations of the group S3

Let us start by describing the group Ss. It consists
of six elements: the identity element is the permu-
tation that keeps all the edges, there are three per-
mutations interchanging two edges and two which
cyclically interchange all three edges. We will em-
ploy the notation [ijk] for a permutation g for which
g(1) =1, g(2) = j, g(3) = k. In Table I, we list all
the permutations (group elements of the considered
group (G, x*)) and their inverse elements. There are
three conjugacy classes, consisting of one, three, and
two elements. In Table I, these conjugacy classes are
separated by a double vertical line.

We give the form of the representation m defined
by (13). The representation 7 at each element is
a 3 x 3 permutation matrix. One can notice that for
an element [ijk], ones are in the first column and
i-th row, second column and j-th row and in the
third column and the k-th row, the other entries of
the matrix are zero. The representation 7 is for the
group Ss usually called the defining representation.
Therefore,

100 010
m123)=lo 10|, =w)=|100],
001 001
001 100
([321) =0 10|, =(132)=]00 1],
100 010
001 01
m([231)=]100]|, =([B12)=]00
010 10
(18)
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TABLE 1

Elements of the group S3 and their inverses.

g [123] || [213] | [321] | [132] || [231] | [312]
g1 || [123] || [213] | [321] | [132] || [312] | [231]
Characters of the representations. TABLE II
sroup [123] || [213] | [321] | [132] || [231] | [312]
element

defining 3 1 1 1 0 0
represent.

trivial

1 1 1 1 1 1

represent.

sl YN[ T T S | I T A
represent.

h 1

orthogona. 9 0 0 0 1 .
represent.

We leave for the reader to check that this really is
a representation, i.e., that w(g1 *g2) = 7(g1) - 7(g2),
where star denotes the group operation in the group
G (composition of permutations) and dot denotes
matrix multiplication.

The next step will be finding the irreducible rep-
resentations of the group S3. Although the proce-
dure can be found in the literature (e.g. [16]), for
the reader’s convenience we state it here as well.
Any group has the so-called trivial representation,
which is a one-dimensional representation assigning
to all the elements number 1. One can easily prove
that the one-dimensional representation assigning
1 to all even permutations and —1 to all odd per-
mutations is also a representation of the group Sjs.
We will call it the signum representation. The most
difficult task will be to find the third irreducible
representation, the orthogonal representation, later
we will find that it is a two-dimensional one.

First, we give the table of characters of the repre-
sentations (see Table II). For the defining represen-
tation, the characters are obtained as the traces of
the matrices in (18). For the one-dimensional repre-
sentations (the trivial and signum representations)
the characters are identical with the 1 x 1 matri-
ces of the representations. Notice that according to
Proposition 1 the characters of the elements in the
same conjugacy class are the same. In the following
paragraphs, we comment on how the characters of
the elements of the orthogonal representation are
obtained and therefore how the last row of Table II
is found.

Let us now show that the trivial and signum rep-
resentations are irreducible and that the defining
representation is not. We will use Proposition 2. The
inner products are
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1
(Xdet: Xaet) = 2 (1°3-3+3:1:14+2:0-0) =2,

(19)
1
(Xerivs Xtxiv) = 6(1~1-1+3~1~1+2-1.1) =1,
(20)
1
<Xsign7Xsign> = 6(]— 1143 (_1) : (_1)
+2-1-1) =1. (21)

The inner products for the trivial and signum repre-
sentations are equal to 1, therefore these representa-
tions are irreducible and the defining representation
is not.

Now we find the multiplicities of the trivial and
signum representations in the defining representa-
tion, respectively,

1
(Xdefs Xtriv) = =(1-3-1+3-1-14+2-0-1) =1,
(22

6
)
and
1
<Xdef7 Xsign> = 6(1 -3-1+3-1- (—1)
+2-0-1) =0. (23)

We can see that the multiplicity of the trivial repre-
sentation in the defining representation is 1, while
the signum representation is not contained in the
defining representation. Hence, we define the or-
thogonal representation as the complement of the
trivial representation in the defining representation
and we have Yorth = Xdef— Xtriv- Lhis equation gives
the last row in Table II. One can simply verify that
the orthogonal representation is irreducible. Namely

1
<Xorth7X0rth> = *(122+300

6

+2-(-1)-(-1)) = 1. (24)

We proceed by finding the matrices of the or-
thogonal representation. The procedure was de-
sceribed, e.g. in 21, 22|. Since the trivial represen-
tation is contained in the defining representation
with multiplicity one, we write the defining repre-
sentation on a certain basis of the orthogonal com-
plement of the subspace corresponding to the triv-
ial representation. We use the following basis of
the R3 space

1
fi=eirt+extes=11]1,
1
-1 -1
fo=ea—er=| 1], fa=es—e1=1|0
0 1
(25)

Let us show the construction for the group
element [321], which interchanges the first and the
third edge.
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m([321]) f1 = 7([321]) (€1 + €2 + €3) =

001 1
010f[1]=|1]=etextes=F
100 1
(26)
7([321]) f2 = 7([321]) (€2 — €1) =
001 -1 0
10 1 = 1 =
100/ \o 1
62_33262—61—(63_61):]-‘2_1:3.
(27)
7([321]) f3 = 7([321]) (e3 — e1) =
0 -1 1
010|lo|=[0]=ei—es=—Ffs
100/ \1 -1
(28)

If we write the action of this group element in
the basis f1, f2, f3, we obtain the matrix

10 0
01 0 (29)
0 -1 —1

Since the subspace corresponding to the trivial
representation is the span of f;, the restriction to
the orthogonal space span{ fs, f3} gives

porth([321]) = ( Lo ) .

o (30)

Similarly, we can obtain the other matrices of the
two-dimensional orthogonal representation, i.e.,
)

pmmmw—<é$7pmmmw—<f'f

Poren ([321]) = (11 01>, Portn([132]) = (? é)
porth([231]) = <_11 _01> ?
Portn([312]) = (_01 _11> : (31)

5.2. Application of the quotient graph theory

In this subsection, we obtain the kernel space
Kq(p,m) and the corresponding matrices © and ©
corresponding to irreducible representations of the
group S3. This part of the quotient graph theory
does not depend on the coupling conditions, only
on the symmetry group.
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Let us start with the orthogonal representation.
We obtain the kernel space according to (14).
Since the representation is two-dimensional, we will
use r = 2. The number of edges of the graph is
|€| = 3. We will show the construction of the kernel
for the group element [321] in detail and then list
the results for other elements. Namely,

I @ w([321]) — pl([321)) © I =

Lo 001 L 100_
oil@lorol={, _[Jeloro]=
100 001

001000 100-10 0
010000 0100 -1 0
100000 001 0 0 —1|
000001 |ooo-10 o]
000010 000 0 -1 0
000100 000 0 0 —1

10 1 100
000010
1 0-1001 (32)
000 101
000020
000 101

We find that Ker (I @ 7([321]) — pl.,;,([321]) ® I3)
is composed of the vectors (ai,as,...,as)T that
satisfy

as =0, a4=—ag, —a;+az+ags=0.

(33)
If we write down the conditions for the above kernels
for the other group elements, we find that the space

KG(portn, ™) consists of the vectors (a1, az, . .., ag)T
satisfying
a] = —ag = a4 = —0ae, az = O, a5 = 0.
(34)

Therefore, the kernel space is the span of the vector
(1,-1,0,1,0—1)T. To obtain the matrix 6, we have
to normalize this vector. Thus,

T
Ooreh = (% ~lolo %) , (35)
éorth = 6orth X I2 =
10
0 3
1 _% 01
Z, 0 -3
-3 0 0
0 10 0 0
® = (36)
3 (0 1) 3 0
0 0o 1
-1 0 0
0 0
_% 0
0 -
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Now we continue with the trivial representation
for which » = 1. Let us again show the construction
for the group element [321], where

I @ ([321)) - o, ([321]) @ Iy =

001 100 -10 1
lefo1o0|-1@|010[=[0 00
100 001 10 -1
(37)

So, Ker(I; ® 7([321]) — p&,.([321]) ® I3) consists
of vectors (a1,as,as)’ satisfying a; — as 0.
From the other group elements we obtain equa-
tions a; = as and ag = ag, thus resulting into equa-
tion a1 = as = ag which describes the vectors in
K¢ (piriv, m). This kernel space thus is the span of
the vector (1,1,1)*. After normalization we obtain

T
Qtriv: (% % %) ) (38)
étriv = Qtriv ® 12 =
1
50
& L 7
3
10 —-= 0
7 ®<01>= = (39)
1 V3
V3 1 9
v3 1
0 7

By a similar procedure, it can be proven that
the kernel space for the signum representation is
empty. This is connected to the fact that the
signum representation is not contained in the defin-
ing representation.

5.3. Standard condition at the central vertex

Let us first consider a quantum star graph con-
sisting of three edges of the length [ (see Fig. 1). We
parametrize the edges by the intervals (0,1) with
x = 0 at the loose ends and = = [ at the central
vertex. We assume Neumann boundary conditions
at the loose ends and standard coupling at the cen-
tral vertex.

f1(0) = £3(0) = f3(0) = 0,
1) = f2(l) = f3(1),

—f1(1) = f3(1) = f3(1) = 0.
(40)
The matrices A and B corresponding to these cou-
pling conditions are

000 O O O 100000
000 O O O 001000
A:OOOOOO ’B:OOOOIO
010 -10 0 0000O0O
010 0 0 -1 0000O00O0
000 O O O 010101
(41)
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(©)

N

Fig. 1.

Hence we obtain

000000
0 2 0-30-1

-39 53 U3
00 0O0O0O
0-+0-30 2
-i 0 0 0 0 0
0o -+ 0 -0 -1

s_|0 q —i q 0 0i (43)

0 -+ 0 -3+ 0 -1
0 0 0 0 —i 0
0o -+ 0 -0 -1

Using Definition 14 we obtain for the orthogonal
representation

. P 00
Porth — Qcirth(l2 ® A) @Orth - (0 1) , (44)

A

R ~ . -1 0
By = QcJ)rrth(IQ ® B) Oortn = < 0 0) , (45)

and for the trivial representation

- P 00
Aptriv = JrivA triv. = <0 0) ) (46)

. - —-i 0
Bptriv - tJrrivB triv. = (0 _1> . (47)

The graph I, is for the trivial representation the
segment (0, 1), for the orthogonal representation we
obtain two copies of this segment. The coupling con-
ditions of the graphs I', are given by condition (9)
with

(10 (10
k”‘(fm) ¢ (f’(l)>’ )

where f denotes the wavefunction on the segment.
For the orthogonal representation, the coupling con-
dition (9) with the coupling matrices A, ., and
B,,... gives f'(0) = 0 and f(l) = 0, i.e., the Neu-
mann boundary condition at one end and Dirichlet
at the other. There are two copies of this graph

Figures of the three-edge graphs considered in Sects. 5.3, 5.4, and 5.5.

since the dimension of the representation is two.
The coupling matrices for the trivial representation
follow from the coupling condition (9) with the ma-
trices A,,,, and B, . We obtain f'(0) = 0 and
f'(1) = 0, which corresponds to Neumann bound-
ary conditions at both ends of the segment. Since
the kernel space for the signum representation is
trivial, the graph I', is in this case empty.

5.4. §-condition at the central vertex

In the second example, we consider the same
graph as in Sect. 5.3, only the coupling condition
at the central vertex is replaced by the so-called
d-condition of the strength oo € R (see Fig. 1b).

f1(0) = f5(0) = f3(0) =0,
i) = f2(0) = fs(D),

—fi(0) = f2(1) = f5(D) = afr (D).
(49)
The corresponding coupling matrices read as
follows

0O 0 0 0 0 O
0O 0 0 0 0 O
0O 0 00 0 O

A= , (50)
01 0-10 0
01 0 0 0 -1
0O —aa0 0 0 O
100000
001000

1

B— 0000 0 . (51)
0000O00O0
0000O00O0
010101

Hence we obtain
O 0 0 O 0 O
a—2i i i

0 a—3i 0 a—3i 0 a—3i

~ O 0 0 0 0 o0

A= i a—2i i J (52)
0 a—3i 0 a—3i 0 a—3i
O 0 0 O 0 o0
0 a:?)i 0 a:31 0 gig:
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—-i 0 0 0 0 0

-1 —1 -1

0 a—31i a—3i 0 a—31i

~ 0 0 —-1i 0 0 0
B= o b Sl 3

0 a—31i a—}%i 0 a—éi

0 0 0 0 —i 0

0 a:%’:i a:%ii 0 a:%’:i

From Definition 14 we obtain for the orthogonal
representation

. . 00
Aporth = @;rt}1(12 ® A) Qorth = ( ) ’ (54)

01

. - -i0
Bporth = Qgrth(l2 ® B) Qorth B <0 0) ’ (55)

and for the trivial representation

- P 0 O
Aﬂtriv = tJrriVA triv. = (O o > ’ (56)

. - —-i 0
Bpiw = tTrivB triv. = (0 -3 ) : (57)

a—31i

Similarly to the previous example, the orthogo-
nal representation gives two copies of the quotient
graph with a Neumann boundary condition at one
end and a Dirichlet at the other. The trivial rep-
resentation leads to the segment with a Neumann
boundary condition at one end and Robin bound-
ary condition with the coupling parameter /3,

ag(l) =3(~g' ) =0 = —g'(1)=39()
(58)
at the other end. The signum representation gives,
as in the previous section, the empty graph.

5.5. Preferred-orientation coupling
at the central vertex

In the last example, we consider the coupling
condition of preferred orientation at the central ver-
tex, earlier studied in [13, 14, 23, 24]. This coupling
condition, motivated by application to modeling
quantum Hall effect was first used in [13]. For the
particular energy £ = 1 the wave coming from one
edge is fully transmitted to the neighbouring edge,
the wave coming from this edge is fully transmitted
to the next edge etc. cyclically (see Fig. 1c). It was
found that the transport properties of the preferred
orientation coupling depend on the parity of the
vertex (i.e., whether the vertex degree is even or
odd). The vertex coupling matrices are A, = U, — I
and B, = i(U, + I) with

010
U=1001]. (59)
100

The boundary conditions at the loose ends will
again be Neumann. The coupling matrices of the
whole graph are

000000
000000

A—|0 0 0000} (60)
0-10 100
00 0-101
0100 0-1
100000
001000

1

p_|000010 (61)
0i0i00
00010 i
0i000 i

We have
000000
02 0-3200

- 000000

A=l 001 02| (62)

2 Y T2

000000
0-300 0 %
-i0 0 0 0 0
0 -3 0 -2 0 0

|0 0 i oio oi (63)
0 0 0 —-io0 -4
00 0 0 —i 0
0 -2 0 0 0 —%

However, one cannot use the same symmetry
group as in the previous two examples. The graph
is no longer symmetric with respect to the sym-
metry group S3 since e.g. interchanging two edges
would change the direction of the wave for £ = 1.
From the former group S3 only the elements [123]
(identity), [231] and [312] (cyclic permutations) do
not change the symmetry of the graph (note that
all these permutations are even). The symmetry of
the graph is, therefore, C5. It has three elements,
the identity, the rotation (denoted by a) by the an-
gle 27/3 and its inverse element a~!, i.e., the rota-
tion by the angle —27/3. The group has three one-
dimensional irreducible representations, its charac-
ter table is given in Table III.

We proceed similarly as with the group S5 —
we find the representation 7w and the three irre-
ducible representations that are identical to the
above characters. Then we apply the procedure

TABLE III
Character table of the group Cs. Here, w = e2im/3,
o= e2im/3
1 a a”?
X1 1 1 1
X2 1 w w
X3 1 w w
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from Sect. 5.2 to find the matrices © and O. Fi-
nally, we obtain coupling matrices of the quotient
graphs A, and B,. We list the results.

The representation  is

100 001
a)=|010|, wa=|[100],
001 010
010
e =[001 (64)
100
The irreducible representations are
pl(l) = 1a Pl(a') = 17 p1(a_1) = 17
p2(1) =1, po(a) = e2im/3, pa(a~l) = e2in/3,
pg(l) = 1’ p3(@) — e—2i7'r/37 p3(a—1) — eQiTr/3.
(65)

All the graphs I', are segments of the length [. Be-
low, we obtain their boundary conditions. For the
first irreducible representation, we get

1
v 01
_1 0 -7
el —2 0
61 = _% ; 91 = (\)/3 1 )
_1 V3
V3 1 9
V3 1
0 -7
-i 0

(66)

00
B, = .
P1 <0 0) ? P1 (0 1>

This corresponds to the Neumann boundary condi-
tion at both ends of the interval.

The second and third representations yield

(w= e2iﬂ'/3’ o= 672177/3)
1
~J5 01
_% 07 V3
3 _@
_ | = O, — V3
92 - V3| 92 - 0 @ |
W V3
V3 ,% 0
3
w
0 =35
0 O —i 0
A == _ B = _
P1 (0 1Ew> ’ pP1 (O _i(l-gu)> )
1
-5 01
,% 0 -7
3 _w
_ | L 0., — V3
83 - ( \(?: ) @3 — 0 7% )
_ W ~ 3
V3 _@® 9
N
0 =35
0 0 —i 0
A, = (00 5, :< | ) )
3 (0 —12 ) 3 0 —il 5 )
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These coupling matrices correspond to the
Neumann boundary condition at one end of the
segment and Robin condition with the coefficient
++/3 at the other. For the second representation,
we have

9'(0) =0,
, (68)
—g' () = +1529(1) = V3g(0)
and for the third
g'(0) =0,
(69)
—g'(1) = $1729(1) = —V3g(1).

6. Conclusions

We have illustrated the usage of the quotient
graph method on three-edge star graphs. For the
graph with the Neumann boundary condition at
the loose ends and standard coupling at the cen-
tral vertex, we obtained three segments of lengths [,
one with a Neumann boundary condition at both
ends, two with Neumann boundary condition at
one end, and a Dirichlet at the other end. For the
graph with the Neumann boundary condition at the
loose ends and d-condition at the central vertex, we
again obtained two copies of the segment of length [
with Neumann and Dirichlet conditions at the op-
posite ends. The third quotient graph is a segment
of length [ with a Neumann boundary condition at
one end, and a Robin condition (with the coupling
parameter «/3) at the other end. The example with
the preferred-orientation coupling is symmetric un-
der the C'5 symmetry group and its quotient graphs
are the segments of length [/, one with Neumann con-
dition at both ends, the two other with Neumann
condition at one end and Robin (with the parame-
ter i\/g) at the other end.

We should stress that the above results can be
obtained also without the machinery of [10]. The
trivial representation corresponds to the symmet-
ric subspace of the domain of the Hamiltonian and
the orthogonal representation (or, in the case of
preferred-orientation coupling, the representations
X2 and x3) correspond to the two-dimensional sub-
space of antisymmetric functions. However, the cur-
rent note can serve as a simple but non-trivial ex-
ample of the quotient graph theory for quantum
graphs, and together with the original paper [10],
can teach the reader the procedures necessary for
dealing with more complicated problems.

Finally, let wus illustrate how the relation
H=Q, Hsar(p) can be obtained in the case of
the graph with standard coupling at the central
vertex. Let the wavefunction components of the
three-edge graph be f1, f2, f3. The domain of the
Hamiltonian on the three-edge graph can be decom-
posed into the symmetric subspace (represented by
hayin(2) = = (F1(2) + fo(a) + fo(a) with = € (0,1)
and corresponding to the trivial representation)
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and the two-dimensional anti-symmetric subspace
(represented by hant1(z) = %(fl(x) — fa(x)) and
han2(z) = 5(fi(x) = fs(z)) with = € (0,0),
corresponding to the orthogonal representation).
The coupling conditions on the three-edge graph

(see (40)) yield
higym (0) = 7(f1< ) + f2(0) + £3(0)) = 0,
Bym(l) = 7(f1< )+ B0 + F50) =0,
ia (0) = 7(f1< )~ 13(0)) =
Pawr (1) = 7(f1< )~ 12(1) =0,
int2(0) = ﬁ(ﬁ(m ~ f3(0)) =
s (1) = 5 (A1) = Fs0) =

(70)
Therefore, we show that the symmetric subspace
corresponds to the segment with Neumann bound-
ary conditions at both ends and the antisymmetric
subspace to two copies of the segment with Neu-
mann condition at one end and Dirichlet at the
other. The Hamiltonian on the former three-edge
graph is unitarily equivalent to the orthogonal sum
of the three mentioned operators.
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