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It is proven that Laplacians with standard vertex continuous on metric trees and with standard and
Dirichlet conditions on arbitrary metric graphs possess an infinite sequence of simple eigenvalues with
the eigenfunctions not equal to zero in any non-Dirichlet vertex.
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1. Introduction

The idea of this paper originates from an un-
published work titled “On fully supported eigen-
functions of quantum graphs”, 2021, by M. Plümer,
M. Täufer [1]. Differential operators on metric
graphs attract attention of both mathematicians
and physicists due to their unusual but rather el-
egant spectral properties [2–8]. One such property
is that the eigenfunctions may have support not co-
inciding with the whole graph, or may just vanish
at the vertices leading to problems when defining
nodal domains. Moreover, if one of the eigenfunc-
tions is vanishing at a vertex V0, then it is not
seen in the Titchmarsh–Weyl M -function associ-
ated with this vertex [4, 9]

MV0
(λ) = −

( ∞∑
n=1

|ψn(V0)|2

λn − λ

)−1
. (1)

Here, λn and ψn are the eigenvalues and orthonor-
malized eigenfunctions of the operator, respectively.
This note is inspired by the recent paper [1] de-
voted to generic eigenfunctions for metric graphs.
By generic eigenfunctions one means the eigenfunc-
tions that are different from zero at all vertices
and corresponds to simple eigenvalues. For such
eigenfunctions the nodal domains are always clearly
defined. It appears that the result can be proven
much easier using the language of multivariate sec-
ular polynomials describing the spectrum of metric
graphs.

2. Preliminaries

Let Γ be a metric graph formed by N compact
edges En = [x2n−1, x2n] of lengths ln = x2n−x2n−1
joined together in M vertices Vm understood
as partitions of the endpoints V = {xj}2Nj=1.
The points belonging to different equivalence

classes Vm are identified. In the Hilbert space
L2(Γ ) = ⊕Nn=1L2(En) consider the Laplacian
L = − d2

dx2 defined on the functions from the
Sobolev space u ∈ W 2

2 (Γ ) = ⊕Nn=1W
2
2 (En), which

at every vertex Vm satisfy either standard (conti-
nuity and Kirchhoff) conditions, i.e., u is continuous at Vm,∑

xj∈Vm

∂u(xj) = 0, (2)

or Dirichlet conditions
u(xj) = 0, xj ∈ Vm. (3)

The directed derivatives ∂u(xj) = −(−1)ju′(xj)
are taken in the direction pointing inside the
corresponding edge. We assume that all vertices
with Dirichlet conditions have degree one and we
call them Dirichlet vertices. All other vertices are
called standard. The Laplacian is a non-negative
self-adjoint operator with discrete spectrum. It
is uniquely determined by the metric graph Γ ,
provided the Dirichlet vertices are indicated. In
what follows we are going to refer to its spectrum
as graph’s spectrum.

Any solution to the eigenfunction equation on
the edge En can be written using one of the two
equivalent representations

ψ(x, λ) =

a2n−1 e− ik|x−x2n−1| + a2n e− ik|x−x2n| =

b2n−1 e ik|x−x2n−1| + b2n e ik|x−x2n|. (4)
Introducing the 2N -dimensional vectors,
a = {aj}2Nj=1 and b = {bj}2Nj=1, one gets two
linear relations b = Se(k)a, b = Sva with

Se(k) = diag

[(
0 e ikln

e ikln 0

)]N
n=1

(5)
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and Sv formed from the vertex scattering matri-
ces Sm, m = 1, 2, . . . ,M given by

Sm = Sst
dm = −Idm +

dm
2


1 1 . . . 1

1 1 . . . 1
...

...
. . . 1

1 1 . . . 1

 , (6)

and
Sm = SD = −1 (7)

for standard vertices of degree dm and for Dirich-
let vertices, respectively. The vertex scattering ma-
trix Sv has a block-diagonal structure if one per-
mutes the endpoints collecting together the points
belonging to each of the vertices. The first relation
comes directly from (4) and the second one is ob-
tained by substituting solutions (4) into vertex con-
ditions (2) and (3).

The positive spectrum λ = k2 can be described
as the zeroes of the secular function [4, 10, 11]

p(k) := det
(
Se(k)− Sv

)
, (8)

which is a trigonometric polynomial.
Following [5, 12] let us introduce the secular poly-

nomials in N complex variables z = (z1, z2, . . . , zN )
in the form of

PG(z) = det
(
E(z)− Sv

)
, (9)

E(z) = diag

[(
0 zn
zn 0

)]N
n=1

, (10)

so that we have
p(k) = P (e ikl), l = (l1, l2, . . . , ln). (11)

Note that the secular polynomial PG is determined
by the discrete graph G corresponding to Γ and by
the set of Dirichlet vertices, but is independent of
the metric structure of Γ . The spectrum of the met-
ric graph is given by the intersections of the curve
e ikl with the zero set ZG of the secular polynomial.
Thus,

ZG =
{
z ∈ TN ⊂ CN : P (z) = 0

}
, (12)

where T = {z ∈ C : |z| = 1} is the unit torus. We
shall also use real coordinates ϕ and zn = e iϕn ,
then the spectrum is given by intersections of the
line kl and the zero set

ZG =
{
ϕ ∈ TN : P (e iϕ) = 0

}
, (13)

with T = [0, 2π] being the real torus. The zero set
ZG in general is an (N − 1)-dimensional singular
surface on the torus.

3. Main theorem

Definition 1. An eigenvalue λn and the corre-
sponding eigenfunction are called generic if and only if

1. the eigenvalue is simple,

2. the corresponding eigenfunction does not vanish
in any of the vertices other than at the Dirichlet
vertices.

Theorem 1. (Theorems 1 and 2 from [1]). Let
L(Γ ) be the Laplace operator on a finite compact met-
ric graph Γ with standard and Dirichlet vertex condi-
tions. Then there exists an infinite sequence of generic
eigenfunctions attaining positive values at the vertices,
provided that either

• the graph is a tree,
or

• the set of Dirichlet vertices is non-empty.

Proof. It is well-known that the order of pos-
itive zeroes of the secular function p(k) coincides
with the multiplicity of the corresponding eigenval-
ues [2, 4]. Hence to satisfy the first genericness con-
dition (in Definition 1), it is sufficient that the line
kl crosses ZG at a regular point.

Assume first that the graph has a Dirichlet ver-
tex, then the line kl, k > 0, for any choice of the
vector l crosses first the zero set ZG at a regular
point ϕ1 = ϕ1(l). The eigenvalue λ1 = (k1)2 is
determined by k1l = ϕ1. The ground state is al-
ways simple (for connected graphs) [14] and the
corresponding eigenfunction can be chosen strictly
positive, that is positive everywhere except at the
Dirichlet vertices. Moreover its dependence on the
edge lengths is described by Hadamard-type for-
mula (see e.g. Eq. (3.13) in [14] following [15–17]

dλ1
dln

= −
(
ψ′1(x)

2 + λ1ψ1(x)
2
)∣∣∣
x∈En

(14)

connecting the derivative of the ground state en-
ergy λ1 as the length of the edge En changes to
Prüfer’s amplitude [1] of the eigenfunction ψ1 on
the edge. The derivatives above are zero if and only
if ψ′1(x) = 0 and λ1 = 0, that is if the ground state is
a constant function, which is not the case if Dirich-
let vertices are present. It follows that ∇P (z1) 6= 0,
z1 = e iϕ

1

, and this inequality holds in a neigh-
bourhood of z1. Independently of whether the edge
lengths are rationally dependent or not the cross-
ing points between kl and ZG contain an infinite
sequence ϕj tending to ϕ1:

• if the edge lengths are pairwise rationally de-
pendent, then the line kl passes ϕ1 infinitely
many times;

• if the edge lengths are not pairwise rationally
dependent, then the intersection points do not
coincide with ϕ1, but approaches it as j →∞.

As ϕj
j→∞−−−→ ϕ1, the corresponding vector

a = a(ϕj) solving[
E(e ikϕ

j

)− Sv

]
a = 0 (15)

converges to a(ϕ1). Similarly

b(ϕj) = Sv a(ϕ
j)

j→∞−−−→ Sv a(ϕ
1) = b(ϕ1). (16)

It follows that
ψλj (xi) = ai(ϕ

j) + bi(ϕ
j)

j→∞−−−→ ψλ1(xi) 6= 0,

(17)
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Fig. 1. The circle graph.

where λj = (kj)2 denotes the eigenvalue associated
with the crossing point ϕj = kjl and provided xj
does not belong to a Dirichlet vertex. It follows that,
may be taking a subsequence, all eigenvalues λj
are not only simple, but the corresponding eigen-
functions are different from zero at non-Dirichlet
vertices.

It remains to consider the case where Γ is a tree
with only standard vertex conditions. In the proof
above it was sufficient to have one generic eigenvalue
such that the associated crossing point is a regular
point in the zero set ZG. One possible candidate is
the ground state λ1 = 0 and the eigenfunction iden-
tically equal to 1. The corresponding Prüfer ampli-
tude is zero and we cannot conclude that the point
ϕ = 0 is a regular point in ZG. Consider the cor-
responding equilateral tree T with all edge lengths
equal to ln = l. The spectrum is then periodic with
period 2π

l . Consider the eigenfunction associated
with the eigenvalue

(
2π
l

)2, its multiplicity is equal
to 1 [18].† This function attains 1 at all vertices
(the same value as the ground state eigenfunction)
and the corresponding eigenvalue is non-zero, hence
Prüfer amplitudes are different from zero. It follows
that the point ϕ = (2π, 2π, . . . , 2π) and hence the
point ϕ = 0 is a regular point in ZG. It remains to
repeat the arguments used in the first part of the
proof, i.e., for any choice of the edge lengths there
is a sequence ϕj of intersection points between kl
and ZG approaching ϕ1 = 0. The corresponding
eigenvalues are simple and the eigenfunction values
at each vertex approach 1. Taking a subsequence,
if necessary, we get an infinite sequence of generic
eigenvalues. �

4. Conclusions

In our opinion the new proof explains the rea-
son why conditions in the theorem are needed.
Our proof is based on the existence of a single
generic eigenfunction. The ground state eigenfunc-
tion is a good candidate since we know that it

†1The multiplicity of the eigenvalue
(
2π
l

)2 for equilateral
graphs in general is equal to 1+β1, where β1 is the first Betti
number — the number of cycles in a graph. In the case of
trees β1 = 0.

is always generic. The proof goes well for graphs
with Dirichlet points, but for graphs with standard
conditions one needs to prove that the hypersur-
face ZG is regular in a neighbourhood of 0. If the
graph has cycles, then the point 0 is not regular
∇PG(1) = 0. It might happen that PG is a square
of the first degree polynomial like in the case of
the cycle graph P (z1) = (z1 − 1)2, then the set ZG

is a smooth surface, but all non-zero eigenvalues
are double.

In fact the circle graph (see Fig. 1) provides
a counterexample as it is impossible to find an infi-
nite sequence of simple eigenvalues.

The theorem has another interesting implication.
Under conditions of Theorem 1 there always ex-
ists an infinite sequence of simple eigenvalues with
an even/odd number of nodal domains, provided
the Euler characteristic χ = M − N is even/odd,
respectively.
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