
ACTA PHYSICA POLONICA A No. 6 Vol. 140 (2021)

Proceedings of the 10th Workshop on Quantum Chaos and Localisation Phenomena (CHAOS 21)

Eigenfunction Non-Orthogonality in
Open Wave Chaotic Systems:

Non-Perturbative RMT Results for
Single-Channel Scattering

Y.V. Fyodorova,b,∗ and M. Osmana

aKing’s College London, Department of Mathematics, London WC2R 2LS, United Kingdom
bL.D. Landau Institute for Theoretical Physics, Semenova 1a, 142432 Chernogolovka, Russia

Doi: 10.12693/APhysPolA.140.487 ∗e-mail: yan.fyodorov@kcl.ac.uk

We present explicit distributions of diagonal non-orthogonality overlaps (also known as the Petermann
factors) characterizing eigenmodes in a wave-chaotic cavity open via a single decay channel. We show
that such factors should determine the shape of deep dips in the wave reflection experiments. The explicit
distributions of the Petermann factors valid for an arbitrary strength of coupling to the scattering
channel are obtained within the random matrix theory framework. The regime of weak-coupling allows
further simplifications.
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1. Introduction

Non-Hermitian wave physics/engineering has re-
cently emerged as an exciting new field with both
fundamental and application-oriented insights [1, 2].
Among other questions in this area, the proposal
of constructing the so-called coherent perfect ab-
sorbers (CPA) [3] has attracted a lot of attention
recently [4]. Along these lines, in recent experiments
the microwave technology has been used to build the
first random “anti-laser” (at its lasing threshold), by
demonstrating its ability to absorb suitably engi-
neered incoming radiation fields with close to per-
fect efficiency [5], paving the way for the construc-
tion of CPAs based on disordered cavities. In an-
other recent experiment, a CPA has been realised
with a two-port microwave graph system, both with
and without time-reversal symmetry [6], and yet in
another way with chaotic cavity with programmable
meta-surface inclusions [7].

Although construction of CPA’s is a new develop-
ment, related phenomena have been discussed actu-
ally long ago. To this end one may invoke an early
influential experiment by Doron, Smilansky and
Frenkel [8], who studied the frequency-dependent
reflection coefficient R(ω) = |S(ω)|2 of an electro-
magnetic wave sent via a single-mode waveguide to
a cavity shaped in the form of a chaotic billiard.
Here S(ω) stands for the associated scattering ma-
trix at frequency ω, which for the single-channel
setup is a single complex number. If no gain or
loss is possible in the system, the scattering ma-
trix must be unimodular due to flux conservation

S(ω) = e iδ(ω), where real δ(ω) is known as the
scattering phase shift. If this were true under exper-
imental conditions, the reflection coefficient would
be trivial R(ω) = 1. One of the main experimen-
tal observations made in [8] was that the reflection
coefficient R(ω) showed considerable variation with
frequency ω, with many pronounced dips to low val-
ues R(E) . 0.1 at some frequencies, reminiscent of
an “imperfect” version of modern CPA. Such a be-
haviour has been attributed to the presence of uni-
form losses in resonator walls which can be taken
into account phenomenologically by adding a small
imaginary increment to the real frequency ω → ω+
iε with ε > 0. Recall that the frequency derivative
of the scattering phase shift is an important scatter-
ing characteristics τW called the Wigner time delay
τW = dδ

dω [9]. Assuming that absorption is weak,
i.e., ε � ∆, with ∆ standing for the mean spac-
ing between eigenfrequencies in the closed cavity in
a given frequency range, one may expand the scat-
tering matrix in ε yielding a relation between R(ω)
and theWigner time-delay |S(ω+iε)|2 ≈ e−2ετW (ω).
Though such an approximation was found to be
in overall good agreement between measured reflec-
tion and anticipated statistics of the Wigner time-
delays, it is clear that it must break down in the
vicinity of the deepest dips. This motivates to have
a closer look at R(ω) in the above setting. Our aim
is to shed some light on the relation between the
shape of the deepest dips and the property of eigen-
function non-orthogonality known to occur in scat-
tering systems. This relation enables us to provide
a detailed statistical description of such shapes in
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systems with chaotic wave scattering. The analy-
sis sketched below is a short outline of our recent
paper [10], where necessary technical detail can be
found.

2. Dips shape analysis and
eigenfunction non-orthogonality

The proper framework for such an analysis is the
so called effective Hamiltonian formalism for wave-
chaotic scattering [11–15]. The single-channel scat-
tering matrix S(ω + iε) of a system with spatially-
uniform losses ε in this approach can be represented
as

S(ω + iε) =

N∏
n=1

ω + iε− z∗n
ω + iε− zn

, (1)

where the positions zn = En − iΓn, n = 1, . . . , N ,
of the S-matrix poles in the lower half of the com-
plex frequency plane are considered to be com-
plex eigenvalues of the N × N non-selfadjoint ma-
trix Heff = HN − iw ⊗ w† known as the effective
Hamiltonian, with the self-adjoint part HN = H†N
modelling the Hamiltonian/wave operator of the
closed cavity resonator decoupled from the input
antenna. The coupling between the cavity and the
antenna channel is then characterised by the vector
w = (w1, . . . , wN ) of coupling amplitudes.

Using the representation (1) it is easy to see that
deepest dips in the reflection coefficient R(ω) =
|Sε(ω)|2, like shown in Fig. 1, happen when ab-
sorption ε matches some imaginary parts Γn (also
known as “widths”) of the resonance poles, i.e., when
δn = ε−Γn � ε. For a dip occurring in the vicinity
of the energy/frequency ω = En, for the frequency
satisfying |ω−En| � ∆, its shape is well described
by the following profile

R(ω) = Kn
(ω − En)2 + δ2

n

(ω − En)2 + 4ε2
, (2)

where

Kn =

N∏
k 6=n

|zk − zn|2

|z∗k − zn|2
. (3)

In particular, the locally minimal value Rmin of the
reflection signal and the curvature at the minimum
C := d2

dω2R(ω)|ω=En are given by

Rmin = Kn
δ2
n

4ε2
, and C =

Kn

2ε2
, (4)

showing that the statistics of the dip shapes over
different reflection minima are controlled by the
statistics of the resonance widths Γn and that of
the factors Kn. Whereas the information about Γn
is available theoretically [16–19] and is in a good
agreement with experiments [20, 21], the factor Kn

looks less familiar, and its meaning is not immedi-
ately obvious.

To this end let us first recall that the effective
non-Hermitian Hamiltonian Heff = HN − iw ⊗w†

is non-normal (i.e., does not commute with its ad-
joint H†eff = HN + iw ⊗ w†) hence has a set

Fig. 1. The reflection coefficient generated accord-
ing to (1) for N = 200, absorption ε = 0.001 � ∆
and effective coupling constant g = 1.25 after taking
the positions of resonances zn = En − iΓn numeri-
cally generated as eigenvalues of the corresponding
RMT effective Hamiltonian Heff .

of “right” ri and “left” li eigenvectors with stan-
dard bi-orthogonality properties (l∗i rj) = δij .
The corresponding non-orthogonality overlap ma-
trix Omn = (l∗mln)(r

∗
nrm) shows up in various phys-

ical observables of quantum chaotic systems, most
notably in excess noise in open laser resonators,
see [22] and references therein, in which context
the diagonal overlaps Onn are known as the Pe-
termann factors. Other manifestations of the eigen-
vector/eigenfunction non-orthogonality in chaotic
scattering can be found in sensitivity of the reso-
nance widths to small perturbations [23, 24] and
in transmission statistics [25, 26]. Our work [10]
adds to this context by observing that the factors
Kn =

∏N
k 6=n

|zk−zn|2
|z∗k−zn|2

introduced in (3) turn out
to be simply reciprocals of the Petermann factors
Kn = O−1

nn , hence the shapes of CPA-like minima
in the single-channel case reflect the eigenfunction
non-orthogonality.

Although statistics of the Petermann factors was
addressed in a few papers on chaotic wave scatter-
ing [22, 27], non-perturbative results remain scarce,
especially in the most interesting case of systems
with preserved time reversal invariance. It turns out
that in the case of the single-channel reflection the
full distribution of diagonal overlaps/Pettermann
factors can be found using the effective Hamilto-
nian framework combined with the random matrix
theory (RMT) for modelling the properties of the
associated self-adjoint part HN . We report these re-
sults below, referring to our paper [10] for a detailed
derivation and further discussion.

3. Distribution of Petermann factors in
single-channel chaotic reflection

Define the probability density of the non-
orthogonality factor t = Onn − 1 corresponding to
resonances in the vicinity of a point z = X − iY ,
Y > 0, as
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P(t; z) =

〈
1

N

N∑
i=1

δ(Onn − 1− t)δ(z − zn)

〉
.

(5)
Then, aiming to describe the universal properties of
wave-chaotic systems with preserved time-reversal
invariance one can follow the standard route [28]
and replace the self-adjoint part HN in the effec-
tive Hamiltonian with a large random real sym-
metric matrix H ∈ GOE, where GOE stands for
the Gaussian orthogonal ensemble normalized for
N � 1 to have the semicircular eigenvalue den-
sity ρ = 1

2π

√
4− E2, ensuring the mean eigenvalue

spacing of the order ∆ ∼ N−1. The coupling ampli-
tudes wi, i = 1, . . . , N are then normalized in such
a way that γ =

∑
i w

2
i tends to a finite limit as

N → ∞. As is well-known, see e.g. [11, 12, 28],
as N � 1 statistics of all scattering characteristics
varying at frequency/energy scales of the order of ∆
turns out to be universal and depending only on the
“renormalized” coupling strength g = 1

2πρ

(
γ + 1

γ

)
but not on the particular choice of wi. One con-
venient choice is w =

√
γw̃, with components w̃i

being independent, mean zero Gaussian variables,
with covariance 〈w̃iw̃j〉 = N−1δij [11] where the
angular brackets always denote averaging over rele-
vant distributions. Equivalently, one may choose w̃
to be any fixed of unit length [28], e.g. simply w̃ = e
with eT = (1, 0, . . . , 0). The final results in the limit
N →∞ will be the same for these two choices.

One of the main findings of the paper [10]
is that the limiting distribution Py(t) :=
limN→∞

1
πρNP(t; z = E − iy/πρN) can be found

explicitly and is given by

Py(t) =
1

2

e−gy√
t5(1 + t)

×Ly

(
e−gy(1+ 2

t )I0

(
2y
√
(g2 − 1)(1 + t)

t

))
,

(6)
where Ly is the following differential operator

Ly = 2 sinh (2y)−
(
cosh (2y)− sinh (2y)

2y

)
×
(
3

y
+ 2

d

dy

)
(7)

and I0(x) stands for the modified Bessel function.
Note that integration of the above expression

over t gives the probability density of the scaled
resonance widths y = πΓn/∆ for any value of the
coupling parameter g in the following form

ρ(y) =
1

4
√
2
e−gyLy

∞∫
1

da e−gya
(a− 1)√
a+ 1

×I0
(
y
√
(g2 − 1)(a2 − 1)

)
, (8)

which is much simpler expression than the three-
fold integral representation for ρ(y) reported earlier
in [18], though can be shown to be fully equivalent
to it.

The parameter g ≥ 1 determines the effective
quality of coupling between the channel and the
chaotic cavity, its minimal possible value g = 1
corresponds to the case of the so-called “perfect
coupling” condition. The latter condition physically
corresponds to absence of the so-called fast “di-
rect reflection” processes, so that all the incom-
ing flux penetrates the medium and participates
in the formation of long-living resonances. Un-
der these conditions there are many broad (“over-
lapping”) resonances with Γ � ∆. In contrast,
the value g � 1 corresponds to the regime of
weak coupling, when the typical widths of the res-
onance can be shown to satisfy Γn ∼ ∆/g � ∆,
or equivalently y ∼ g−1 � 1. In this regime we
can use the large-argument asymptotic form of
the modified Bessel function I0(z) ≈ ez/

√
2πz to

notice that the integral in (8) is dominated by
large values a ∼ g/y � 1. We also can write,
to the leading order, Ly ≈ − 8

3y
2 d

dy . After in-
troducing the appropriate rescaling ỹ := gy and
evaluating the resulting integral one arrives at
the density

ρPT (ỹ) =
1√
πỹ

e−ỹ (9)

which is the well-known Porter–Thomas distribu-
tion characterising the regime of weak coupling,
see [19] and discussion therein. Similarly, one can
study what the small coupling regime entails for
the distribution of the non-orthogonality factor t.
Close inspection shows that for g � 1 the typical
values are t ∼ g−2 � 1. We find it convenient to de-
fine the scaled variable τ = tg/y, which is typically
of the order of unity. Accurately implementing all
rescalings and taking g → ∞ in (6), one finds that
the joint density of τ and ỹ in this limit factorizes,
respectively, as
Pỹ(τ) = ρPT (ỹ)P(τ), (10)

and

P(τ) = e−1/τ

3τ2

(
1 +

2

τ

)
. (11)

A few remarks are appropriate here. First, as was
already mentioned, the paper [22] addressed the
distribution of the non-orthogonality factors in the
limit of weak coupling by employing a perturbation
theory in parameter γ � 1. So it would be natu-
ral to compare (10) and (11) to the results of that
paper. However, the emphasis in [22] has been put
on the non-orthogonality of the most narrow rather
than typical resonances. For this reason the distri-
butions presented there are somewhat different in
form from (10) and (11). It is, however, straightfor-
ward to inspect what the perturbation theory devel-
oped in (10) and (11) entails for resonances of typi-
cal widths in the weak coupling regime. Not surpris-
ingly, one then arrives exactly at expressions (10)
and (11).

Second remark is that exactly the same expres-
sion P(τ) = 1

3τ2 e
− 1
τ

(
1 + 2

τ

)
recently appeared in

studies of the so-called fidelity susceptibility in [29].
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Employing the same perturbation theory as in [22]
one indeed finds a direct relation between the two
quantities. By the same perturbative reasoning one
should expect that the same distribution must
control perturbative non-orthogonality factors for
real eigenvalues in small antisymmetric full-rank
random Gaussian deformations of GOE matrices.
In that latter model the non-orthogonality factor
distribution has been studied recently for real Gaus-
sian deformations, fully non-perturbatively [30].
One can easily check that the results in the weak
non-Hermiticity regime, Eq. (17) of [30], indeed con-
verge, after appropriate rescaling, to P(τ), when the
non-Hermiticity parameter A→ 0, keeping t/A = τ
fixed.

Our nonperturbative methods can be also used
to treat the systems with broken time-reversal sym-
metry, which in this framework is obtained by re-
placing the self-adjoint part HN in the effective
Hamiltonian with a random Hermitian matrix H ∈
GUE, with GUE standing for the Gaussian unitary
ensemble

Py(t) =
16

t3
e−2gyL̃y

×
[
e−2gy(1+ 2

t )I0

(
4y

t

√
(g2 − 1)(1 + t)

)]
,

(12)
where now L̃y is a differential operator acting on
functions f(y) as

L̃yf(y) =

[
1 +

(
sinh (2y)

2y

)2

+
1

2y

(
1− sinh (4y)

4y

)
d

dy
+

1

4

((
sinh 2y

2y

)2

− 1

)
d2

dy2

]
y2f(y). (13)

The following remarks on the comparison be-
tween (12) and (6) are due. The most prominent
feature in both cases is the same heavy-tail be-
haviour P(2)

y (t) ∼ t−3 for t � 1 rendering all mo-
ments

〈
Olnn

〉
, l ≥ 2 divergent. This tail behaviour is

exactly the same as found earlier in other complex-
valued non-normal random matrices [31–33] and
seems to be the most universal feature of random
diagonal overlaps/Petermann factors. Interestingly,
in the weak-coupling regime g � 1 the differ-
ence between the cases of broken and preserved
time-reversal invariance becomes much more pro-
nounced. One can repeat the same calculation which
lead to (10) and (11) starting from (12) and to
obtain instead

P(τ) = e−
1
τ

3
√
πτ5/2

(
3

4
+

1

τ
+

1

τ2

)
, (14)

showing that in the weak-coupling case the tail be-
haviour does reflect the presence or absence of the
time-reversal symmetry.

4. Summary

We identified a direct relation between the shape
of the deepest dips in the frequency-dependent re-
flection coefficient and the Petermann factors char-
acterizing non-orthogonality of eigenmodes in the
case of a single channel scattering. Using the ran-
dom matrix theory we then found the full non-
perturbative distribution of the Petermann factors
for the case of chaotic scattering, both for pre-
served and broken time-reversal invariance. As a by-
product, we arrived at a new and much simpler for-
mula describing distribution of resonance widths in
a single-channel scattering in time-reversal system.

With suitable adjustments, our method should be
applicable to the rank-one family of subunitary de-
formations of the Haar-distributed unitary random

CUE matrices. The corresponding model intro-
duced in [34, 35] naturally appears in the context
of time-periodic scattering. The statistics of non-
orthogonality factors are then expected to be ex-
actly the same as given by (12), with the perfect
coupling case g = 1 corresponding in that context
to the so-called truncated CUE [36].
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