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In most of the studies concerning nonlinear wave equations of Korteweg-de Vries type, the authors
focus on waves of elevation. Such waves have general form uu(x, t) = Af(x − vt), where A > 0. In
this paper we show that if uup(x, t) = Af(x − vt) is the solution of a given nonlinear equation, then
udown(x, t) = −Af(x− vt), i.e. the inverted wave is the solution of the same equation, but with the
changed sign of the parameter α. This property is common for Korteweg-de Vries equation, extended
Korteweg-de Vries equation, fifth-order Korteweg-de Vries equation, Gardner equation, and their gen-
eralizations for cases with an uneven bottom.
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1. Introduction

The first observations of soliton waves by Rus-
sel [1] and their interpretation by Boussinesq [2] led
to the Korteweg-de Vries equation (KdV) [3] in the
nineteenth century. Korteweg and de Vries have em-
phasized in [3] that solitary waves may involve both
a positive (elevation) and a negative (depression) lo-
calized perturbation, depending on the sign of dis-
persion. Waves of elevation, mostly observed in seas
and oceans, are naturally induced by phenomena
such as strong wind gusts, ocean currents and tides.
This is why most quantitative studies have reported
the elevation solitary waves. In the case of waves on
the surface of a fluid, elevation solitary waves can
only be observed in the long wavelength limit when
gravity is dominant. For thin fluid layers, when sur-
face tension is no longer negligible, capillary effects
have a drastic influence on extended waves and lo-
calized waves, such as KdV solitary waves, which
are predicted to become the depression waves rather
than elevation ones. Such depression solitary sur-
face waves have been first observed on thin layers
of mercury in [4]. Other known cases of depression
solutions are given from the Gardner equation, in
particular for internal waves [5, 6].

A growing number of observations and facts in
the literature (primarily satellite images) indicate
the presence of internal nonlinear waves near the
shelves. Under specific conditions (depth, salinity,
temperature), soliton giant depression waves with
amplitude up to several tens of meters and length
up to several hundreds of meters may form [5, 6].

Such waves can cause dramatic effects. The pa-
per [6] shows that such waves of negative amplitude
could be the most likely cause of several submarine
disasters. These facts were the motivation to discuss
the properties of solutions of nonlinear wave equa-
tions of KdV-type corresponding to the depression
waves.

The present study shows that four kinds of non-
linear wave equations, namely KdV, extended KdV,
fifth-order KdV, and Gardner equations, admit de-
pression solutions for the negative sign of nonlinear-
ity parameter α. Moreover, the same property holds
for all these equations, generalized for the uneven
bottom.

2. Flat bottom case

Let us begin with the simplest cases when the
bottom of the fluid container is flat. Since we will
also consider the cases with an uneven bottom later,
we use equations corresponding to the fixed refer-
ence frame. We will also show that all properties
discussed by us in this paper that are valid in a
fixed reference frame remain valid in a frame mov-
ing at a constant velocity.

2.1. Korteweg-de Vries equation

Korteweg-de Vries equation in the fixed frame
has the following form (subscripts stand for partial
derivatives)

ut + ux +
3

2
αuux +

β

6
uxxx = 0. (1)
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Recall that the KdV equation applies for long sur-
face waves with small amplitude, because it was de-
rived assuming that the two parameters

α =
A

H
and β =

(
H

L

)2

(2)

are small and of the same order (A denotes the
wave amplitude, H — the basin depth, and L —
the wavelength).

KdV equation (1) has analytic n-soliton solutions
and two kinds of periodic solutions, cnoidal and su-
perposition ones. Single soliton and periodic solu-
tions have the form of “travelling waves”, that is, the
waves with a fixed profile, moving with a constant
speed. Such waves are described by the following
function

u(x, t) = Af
[
B(x− vt)

]
+D. (3)

For a single soliton solution one has (denoting ξ =
x− vt)

f(ξ) = sech(Bξ)2, (4)
where

B =

√
3α

4β
A,

v = 1 +
α

2
A,

D = 0, (5)
and sech(ξ) = 1/ cosh(ξ) denotes the hyperbolic
secant. For cnoidal solutions to KdV, one has
(see [7])

f(ξ) = cn2(ξ,m), (6)
where

B =

√
3α

4β

A

m
,

v = 1 +
α

2

A

m

(
2−m− 3

E(m)

K(m)

)
,

D = −A
m

(
E(m)

K(m)
+m− 1

)
. (7)

Here, cn(ξ) is the Jacobi elliptic function, E(m) is
the complete elliptic integral, K(m) is the complete
elliptic integral of the first kind, and m is the so-
called elliptic parameter. The constant D provides
the volume conservation (the volume of the elevated
part of the fluid is equal to the volume of its lowered
part).

Only since 2013 (see [8]) superposition solutions
are known in the form

u(x, t) = Af(ξ) +D =
A

2

[
dn2(Bξ,m)

±
√
m cn(Bξ,m) dn(Bξ,m)

]
+D, (8)

where dn(Bξ,m) is also one of the Jacobi el-
liptic functions. The superposition solution pro-
files (8) are similar to the profiles of cnoidal so-
lutions for the same m, but the velocity v = 1 +
1
8αA

(
5−m− 6E(m)

K(m)

)
is slightly different [9–11].

The KdV equation is often considered in a mov-
ing frame. For instance, applying a transformation
x̂ = x− t, t̂ = t to (1), one obtains

ut +
3

2
αuux +

β

6
uxxx = 0, (9)

where signs ˆ are already omitted. The form of solu-
tions (3) compared to (9) and the coefficients given
by (4)–(7) remain the same, only v̂ = v − 1. So,
the transformation to a moving frame x̂ = x − t,
t̂ = t removes the term ux from (1). The same term
is removed when such transformation is applied to
the extended KdV, fifth-order KdV and Gardner
equations.

The literature usually considers solutions to (1)
with A > 0. Do functions with A < 0 also satisfy
the KdV equation? Suppose that (3) satisfies (1).
Therefore,

Aft +Afx +
3

2
αA2ffx +

β

6
Afxxx = 0. (10)

Inversion u → −u entails A → −A and, by defini-
tion α, α → −α, but leaves B and v unchanged.
Thus, if u given by (3) with A > 0 satisfies (1)
with α > 0, then u′ = −u satisfies (1) with
α < 0. This is because substituting u′ = −Af into
ut + ux +

3
2 (−α)uux +

1
6βuxxx merely changes the

sign of (10), i.e.,

−Aft −Afx −
3

2
αA2ffx −

β

6
Afxxx =

−
(
Aft +Afx +

3

2
αA2ffx +

β

6
Afxxx

)
= 0.

(11)
The same property holds for periodic solutions,
both cnoidal (4) and superposition ones (6). Note
that since these periodic solutions have the form
u = Af(ξ)+D, inversion A→ −A entails D → −D
and therefore u→ −u.

The n-soliton solutions are given in terms of non-
linear superpositions, see e.g. [12], where solutions
with n = 2, 3 are presented in a moving frame. For
n = 2, it is still relatively easy to trace the conse-
quences of changing the sign of the solution. Let us
denote by A2 > A1 > 0 the amplitudes of the higher
and lower solitons. In the fixed frame, we introduce
the notations

Θi(x, t) =

√
3α

4β
Ai

[
x− t

(
1 +

α

2
Ai

)]
. (12)

Then, 2-soliton solutions of (1) have the following
form [11]

u(x, t) = (A2 −A1)

× A1 sech
2(Θ1(x, t)) +A2 csch

2(Θ2(x, t))[√
A1 tanh(Θ1(x, t))−

√
A2 coth(Θ2(x, t))

]2 .
(13)

We know that the function u(x, t) given by (13)
for A2 > A1 > 0 satisfies the KdV equation in
which α > 0. Let us check how the solution (13) will
look like if we change the signs of the amplitudes of
the two solitons and the sign of α, i.e., substitute
Ai → −Ai and α→ −α. Since these changes do not
alter the arguments of Θi, we obtain
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u′(x, t) =
(−A2 +A1)

[
−A1 sech

2 (Θ1(x, t))−A2 csch
2 (Θ2(x, t))

][√
−A1 tanh (Θ1(x, t))−

√
−A2 coth (Θ2(x, t))

]2 =

(A2 −A1)
[
A1 sech

2 (Θ1(x, t)) +A2 csch
2 (Θ2(x, t))

]
(i)2

[√
A1 tanh (Θ1(x, t))−

√
A2 coth (Θ2(x, t))

]2 = −u(x, t). (14)

Indeed, the function (14) represents a 2-soliton solution inverted with respect to (13). It satisfies (1) in
which α→ −α < 0. This can be verified by direct calculus, since

0 = −
(
ut + ux +

3

2
αuux +

β

6
uxxx

)
= u′t + u′x +

3

2
(−α)u′u′x +

β

6
u′xxx. (15)

The explicit form of 3-soliton solution is more complicated [11, 12]. Let us assume A3 > A2 > A1 > 0
and denote

X1(x, t) := −
2(A1 −A2)

[
A1 sech

2 (Θ1(x, t)) +A2 csch
2 (Θ2(x, t))

][√
2A1 tanh (Θ1(x, t))−

√
2A2 coth (Θ2(x, t))

]2 , (16)

X2(x, t) :=
2(−A1 +A3)

[
−A1 sech

2 (Θ1(x, t)) +A3 sech
2 (Θ3(x, t))

][
−
√
2A1 tanh (Θ1(x, t)) +

√
2A3 tanh (Θ3(x, t))

]2 , (17)

X3(x, t) :=
2(A1 −A2)√

2A1 tanh (Θ1(x, t))−
√
2A2 coth (Θ2(x, t))

, (18)

X4(x, t) :=
2(−A1 +A3)

−
√
2A1 tanh (Θ1(x, t)) +

√
2A3 tanh (Θ3(x, t))

. (19)

Then 3-soliton solution is expressed with (16)–(19)
as

u(x, t) = A1 sech
2 [Θ1(x, t)]

−2(A2 −A3)
X1(x,t)+X2(x,t)(
X3(x,t)−X4(x,t)

)2 . (20)

With the same arguments, we see that the inver-
sion Ai → −Ai, where i = 1, 2, 3, implies u′ → −u
in (20). Therefore, the inverted 3-soliton solution
fulfilles the KdV equation with α′ = α.

Analogously, similar arguments hold for n-soliton
solutions and for KdV equation in a moving
frame (9).

2.2. Extended KdV equation (KdV2)

The extended KdV equation (KdV2), first de-
rived by Marchant and Smyth [13], has in the fixed
reference frame the following form
ut + ux +

3
2αuux +

β
6uxxx −

3
8α

2u2ux

+αβ
(
23
24uxuxx +

5
12uuxxx

)
+ 19β2

360 uxxxxx = 0.

(21)
Both equations, KdV (1) and KdV2 (21), are de-
rived from the model of an ideal fluid (incompress-
ible and inviscid) with an irrotational motion under
the assumption that α = O(β), that is, the parame-
ters α, β are small and of the same order. Applying
the perturbation technique, one obtains the KdV
equation when the approach is limited to the first
order in small parameters and the extended KdV
equation (KdV2) when the derivations are extended
to the second order.

Contrary to the KdV equation, (21) is non-
integrable. Despite this fact, it has analytic single-
soliton solutions [14], as well as periodic cnoidal

solutions [7] and superposition solutions [9, 10].
However, the multi-soliton solutions to (21) do not
exist [15].

The analytic single-soliton and periodic solutions
of KdV2 have the same functional form as the anal-
ogous solutions of KdV but the corresponding co-
efficients B, v are slightly different, and the coef-
ficient A is determined by the parameters of the
equation, i.e., by α, β. It is because KdV2 im-
poses one more condition on the coefficients A,
B, v determining the solution, than KdV [7, 9–
11, 14]. For KdV, the set of the coefficients has
one degree of freedom, which, for fixed α, β, allows
the existence of solitons of different heights, and
thus allows for multi-soliton solutions. For KdV2
with fixed α, β, there exists a soliton with only
one possible height, so multi-soliton solutions do
not exist [15].

If the function u(x, t) satisfies KdV2, it is easy to
see that the inverted function u′ = −u satisfies (21)
with the sign of α changed α′ = −α because
u′t + u′x +

3
2α
′u′u′x +

β
6u
′
xxx − 3

8α
′2u′2u′x

+α′β
(
23
24u
′
xu
′
xx+

5
12u
′u′xxx

)
+ 19β2

360 u
′
xxxxx =

−ut − ux − 3
2αuux −

β
6uxxx +

3
8α

2u2ux

−αβ
(
23
24uxuxx+

5
12uuxxx

)
− 19β2

360 uxxxxx =

−
(
ut + ux +

3
2αuux +

β
6uxxx −

3
8α

2u2ux

+αβ
(
23
24uxuxx+

5
12uuxxx

)
+ 19β2

360 uxxxxx
)
= 0.

(22)
This conclusion remains valid also in a moving
frame of reference.
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2.3. Fifth-order KdV equation

Note that KdV and KdV2 were derived com-
pletely neglecting the pressure exerted by the
surface tension of the deformed liquid surface.
The terms derived from the surface tension
include a coefficient called the Bond number
τ = T/(%gH2) > 0, where T is the surface tension
coefficient of the liquid, % is its density, g is the stan-
dard acceleration of free fall and H is the depth of
the reservoir. For water, at a depth of H ≥ 1 m,
we have T ≤ 10−7, so the effect of surface tension
can be completely neglected. For thin liquid layers,
in turn, when H is on the order of millimeters, the
terms derived from the surface tension become sig-
nificant [16].

Taking into account the terms originating from
surface tension in the Euler equations, assuming
α = O(β2), and applying perturbation approach
up to second order in small parameters, one derives
so-called fifth-order KdV equation (see [17, 18])

ut + ux +
3

2
αuux +

(1− 3τ)β

6
uxxx

+
(19− 30τ − 45τ2)β2

360
uxxxxx = 0. (23)

It is well known, see, e.g. [19, 20], that the fifth-
order KdV equation has a form of soliton solution

u(x, t) = Asech4[B(x− vt)]. (24)
Here it is also easy to see that if u satisfies (23) then
the function u′ = −u satisfies (23) with α′ = −α.

2.4. Gardner equation

Assuming β = O(α2), the so-called Gardner
equation [18] is derived from Euler’s equations with
second order accuracy in small parameters. It is
given as

ut + ux +
3

2
αuux −

3

8
α2u2ux +

(1− 3τ)β

6
uxxx = 0.

(25)
It is a well-known fact that for the Gardner equa-
tion (25) there exists one-parameter family of ana-
lytic solutions in the form [5, 21]

u(x, t) =
A

1 +B cosh
[
1
∆ (x− vt)

] . (26)

The functions (26) also represent solitons with fixed
profiles, moving at a constant speed. Their shapes
can be very different, from bell-shaped solitons to
table-top ones, depending on values of equation pa-
rameters [5, 21].

Since three conditions are imposed on the coeffi-
cients A, B, v, ∆ in (25), so three of these coeffi-
cients can be expressed as functions of one. Choos-
ing ∆ as an independent parameter, one obtains the
relations (denoting (1− 3τ)β/6 = β′)

A =
4β′

α∆2
, B = ±

√
1− β′

∆2
,

v = 1 +
β′

∆2
. (27)

As the parameters B and v do not depend on α,
so the inverted function u′ = −u requires α′ = −α
with B, v, ∆ unchanged. In this case, it can also
be seen that if u satisfies (25), then u′ = −u also
satisfies (25) with α′ = −α.

3. Uneven bottom

Back in 2014, in the work [14], we started the
systematic study on the extension of the KdV and
KdV2 equations to the more general case in which
the bottom of the tank is described by a continu-
ous bounded function h(x). To this end, we have
introduced a new small parameter δ = ah

H , where
ah denotes the amplitude of the bottom profile.

However, it is only in [16] that we have fully re-
alized this goal. In fact, we have shown that the
new term in these nonlinear wave equations is uni-
versal, i.e., it is the same for all four equations:
KdV, KdV2, fifth-order KdV, and Gardner. The
same constraint holds in all these cases. Namely, the
system of Boussinesq equations can be reduced to
a single wave equation only if the bottom function
satisfies the condition hxx = 0 (h(x) is a piecewise
linear function). In such cases, the generalized KdV,
KdV2, fifth-order KdV and Gardner equations take
the form

EQ− 1

4
δ
(
2hux + hxu

)
= 0, (28)

where EQ stands for left hand side of (1), (21), (23)
or (25).

Note that (28) is non-integrable. Based on the
analysis in Sect. 2, we know that if u satisfies the
equation EQ = 0, then u′ = −u satisfies EQ′ = 0
in which α′ = −α, because then every term of the
equation will change sign. It can be seen that chang-
ing u → −u will also change the sign of the en-
tire term − 1

4δ(2hux+hxu), if δ remains unchanged.
Thus, if the function u(x, t) is a solution to one of
the generalized equations (28) (i.e., the KdV, KdV2,
5th-order KdV, or Gardner equations), then the in-
verted function −u(x, t) is the solution of the cor-
responding one of these equations, in which α is
replaced by −α.

4. Conclusions

The inverted solutions of the Korteveg-de Vries
(KdV), extended KdV (KdV2), fifth-order KdV,
and Gardner equations satisfy these equations with
a negative nonlinearity parameter α. The same
property holds for the KdV, extended KdV, fifth-
order KdV, and Gardner equations generalized for
uneven bottom in [16].

Solutions of nonlinear wave equations of the KdV
and Gardner type with negative amplitudes can
have significant physical applications. The analy-
sis of giant depression-type internal waves that can
form in deep seas at the boundary of areas with dif-
ferent water densities and salinity carried out in [6],
indicates that these phenomena can be the cause of
submarine disasters.

448



References

[1] J.S. Russel, Report on Waves in: Four-
teenth meeting of the British Association
for the Advancement of Science, Report
311, 1844.

[2] J.V. Boussinesq, “Théorie générale des
mouvements qui sont propagés dans un
canal rectangulaire horizontal.” C.R. Acad.
Sci. 73 256 (1871).

[3] D.J. Korteweg, H. de Vries, Philos. Mag.
39 422 (1895).

[4] E. Falcon, C. Laroche, S. Fauve, Phys. Rev.
Lett. 89 204501 (2002).

[5] L. Ostrovsky, E Pelinovsky, V. Shrira,
Y. Stepanyants, Chaos 25 097620 (2015).

[6] Y. Stepanyants, arXiv:2107.00828, 2021.
[7] E. Infeld, A. Karczewska, G. Rowlands,

P. Rozmej, Acta Phys Pol. A 133 1191
(2018)..

[8] A Khare, A. Saxena, J. Math. Phys. 55
032701 (2013).

[9] P. Rozmej, A. Karczewska, Adv. Math.
Phys. 2018 5095482 (2018).

[10] P. Rozmej, A. Karczewska, E. Infeld, Non-
linear Dyn. 91 1085 (2018).

[11] A. Karczewska, P. Rozmej, Shallow water
waves — extended Korteweg-de Vries equa-
tions, Oficyna Wydawnicza Uniwersytetu
Zielonogórskiego, Zielona Góra 2018.

[12] K. Brauer, “The Korteweg-de Vries Equa-
tion: History, Exact Solutions, and Graph-
ical Representation”, University of Os-
nabrück, 2000.

[13] T.R. Marchant, N.F. Smyth, J. Fluid
Mech. 221 263 (1990).

[14] A. Karczewska, P. Rozmej, E. Infeld, Phys.
Rev. E 90 012907 (2014).

[15] A. Karczewska, P. Rozmej, Acta Phys. Pol.
A 136 910 (2019).

[16] A. Karczewska, P. Rozmej, Commun.
Nonl. Sci. Numer. Simulat. 82 105073
(2020).

[17] J.K. Hunter, J. Scheurle, Physica D 32 253
(1988).

[18] G.I. Burde, A. Sergyeyev, J. Phys. A Math.
Theor. 46 075501 (2013).

[19] B. Dey, A. Khare, C.N. Kumar, Phys. Lett.
A 223 449 (1996).

[20] T.J. Bridges, G. Derks, G. Gottwald, Phys-
ica D 172 190 (2001).

[21] R. Grimshaw, E. Pelinovsky, T. Talipova,
Physica D 132 40 (1999).

449

http://dx.doi.org/10.1103/PhysRevLett.89.204501
http://dx.doi.org/10.1103/PhysRevLett.89.204501
http://dx.doi.org/10.1063/1.4927448
http://arXiv.org/abs/2107.00828
http://dx.doi.org/10.12693/APhysPolA.133.1191
http://dx.doi.org/10.12693/APhysPolA.133.1191
http://dx.doi.org/10.1063/1.4866781
http://dx.doi.org/10.1063/1.4866781
http://dx.doi.org/10.1155/2018/5095482
http://dx.doi.org/10.1155/2018/5095482
http://dx.doi.org/10.1007/s11071-017-3931-1
http://dx.doi.org/10.1007/s11071-017-3931-1
http://www.researchgate.net/publication/2806104_The_Korteweg-de_Vries_Equation_History_exact_Solutions_and_graphical_Representation
http://www.researchgate.net/publication/2806104_The_Korteweg-de_Vries_Equation_History_exact_Solutions_and_graphical_Representation
http://www.researchgate.net/publication/2806104_The_Korteweg-de_Vries_Equation_History_exact_Solutions_and_graphical_Representation
http://dx.doi.org/10.1017/S0022112090003561
http://dx.doi.org/10.1017/S0022112090003561
http://dx.doi.org/10.1103/PhysRevE.90.012907
http://dx.doi.org/10.1103/PhysRevE.90.012907
http://dx.doi.org/10.12693/APhysPolA.136.910
http://dx.doi.org/10.12693/APhysPolA.136.910
http://dx.doi.org/10.1016/j.cnsns.2019.105073
http://dx.doi.org/10.1016/j.cnsns.2019.105073
http://dx.doi.org/10.1016/j.cnsns.2019.105073
http://dx.doi.org/10.1016/0167-2789(88)90054-1
http://dx.doi.org/10.1016/0167-2789(88)90054-1
http://dx.doi.org/10.1088/1751-8113/46/7/075501
http://dx.doi.org/10.1088/1751-8113/46/7/075501
http://dx.doi.org/10.1016/S0375-9601(96)00772-4
http://dx.doi.org/10.1016/S0375-9601(96)00772-4
http://dx.doi.org/10.1016/S0167-2789(02)00655-3
http://dx.doi.org/10.1016/S0167-2789(02)00655-3
http://dx.doi.org/10.1016/S0167-2789(99)00045-7

