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In the limits of weak and strong excitation, we solve analytically the Riccati-type differential equation for
a two-level system in the field of two different lasers and then use these solutions to find easy to handle
formulae for the induced electric-dipole moment of the system. We apply these formulae to describe
the effects of strong excitation in both the higher harmonics generation and multiphoton frequency
mixing, namely the diminishing of the generation of harmonics of a given laser when an additional laser
is turned on and the diminishing of the radiation at mixed frequencies with increasing strength of lasers
under the condition of multiphoton excitation.
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1. Introduction

One of the theoretical methods of nonlinear op-
tics and multiphoton physics of two-level systems
exploits the Riccati-type differential equation as its
basis [1, 2]. It is a time-dependent nonlinear dif-
ferential equation for the ratio of the population
amplitudes in the system exposed to electromag-
netic field. This single Riccati equation replaces the
standard pair of coupled differential equations for
the population amplitudes [3]. Recently, we have
solved analytically this Riccati equation along ap-
proximate lines for a single-laser field [1, 4, 5] and
used the solutions to study, e.g., field-dependent
corrections to refractive index [5], bunch-type dipole
spectrum of harmonics generated [4], and ioniza-
tion effects in these harmonics [1]. However, due to
the single-beam assumption, these solutions did not
cover the phenomenon of frequency mixing of dif-
ferent laser beams. In the practice of spectroscopic
measurements, e.g., this phenomenon is of great im-
portance since by mixing different frequencies one
obtains a new radiation of a frequency better suited
to a given transition frequency.

In the present paper, we remove this deficiency
giving general solutions of the Riccati-type equa-
tion for a many-colour field produced by several
different-frequency lasers. Two limiting cases will
be considered for which approximate analytical so-
lutions are accessible. The first case is that of weak
excitation of a two-level system and the other con-
cerns its strong excitation. The former case is re-

alized when the standard field-dependent Rabi fre-
quency is much smaller than the frequency of sep-
aration between the levels in the system while in
the latter case the above inequality is reversed. The
general solutions found in these two excitation lim-
its are then adapted to the representative case of the
two-colour (two-laser) field and the appropriate for-
mulae for the dipole moment induced by such a field
will be derived. From these formulae we will finally
conclude about the effect of strength of the two-
colour field in the spectrum of the radiation emitted
by the induced dipole moment.

2. Fundamentals

Let ~∆ be the separation energy between two
states of the opposite parity, the lower state |1〉 and
the upper state |2〉. The assumed opposite parity
means that this paper does not concern the so-called
asymmetric two-level systems with broken inversion
symmetry [6]. When exposed to an electromagnetic
field, a two-state system is described by the super-
position Ψ(t) = C1(t) |1〉+C2(t) |2〉 exp(− i∆t) with
the state population amplitudes, C1 (t) and C2 (t),
governed by the set of differential equations [3]

iĊ1 = −Q(t)C2, (1)
and

iĊ2 = −Q∗ (t)C1, (2)
where the dots over C1 (t) and C2 (t) stand for the
time derivatives, and Q (t) is determined by the ma-
trix element of the interaction Hamiltonian between
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the system and the electromagnetic field. In the
present paper, the electromagnetic field is assumed
to come from the combination of a number of differ-
ent laser beams. A given laser beam is treated clas-
sically (see [7, 8] for the approaches with quantized
field) and characterized by its frequency ωj , elec-
tric field amplitude ε0j and smooth laser-pulse en-
velope 0 ≤ fj (t) ≤ 1, where j = 1, 2, 3, . . . numbers
the beams. For all beams, we take the linear polar-
ization εj (t) = ε0jfj (t) cos (ωjt) and the electric-
dipole approximation, but no rotating-wave approx-
imation, resulting in

Q (t) =
∑
j

Qj (t) = e− i∆t
∑
j

Ωjfj (t) cos (ωjt),

(3)
where Ωj = µ21 · ε0j/~ is the standard Rabi fre-
quency for the j beam and µ21 = 〈2| er |1〉 — the
dipole matrix element.

In this paper, we replace the ordinary set of (1)
and (2) by a single equation of motion for the
variable R (t) = C2 (t) /C1 (t). The equation for
R (t) is the known [1, 2] quadratically nonlinear
Riccati-type differential equation

iṘ = Q (t)R2 −Q∗(t). (4)
In the limits of weak and strong excitation, we

will solve the last equation analytically in order to
derive the formulae for the induced electric-dipole
moment of the system, d (t), defined as
d (t) = 〈Ψ(t) |er|Ψ(t)〉 = 2µ21Re

(
C1C

∗
2 e

i∆t
)
=

2µ21

Re
(
Re− i∆t

)
1 + |R|2

. (5)

3. Weak-excitation limit

3.1. Linearization technique

If the system was initially (t = t0) in its lower
state |1〉, the domain of weak excitation means
|R(t)|2 � 1 for arbitrary t. In this limit, we will
adapt the linearization method of approximate solu-
tion of (4) presented previously [1, 2] in the context
of the single-laser field. Shortly, the method con-
sists in, first, neglecting the quadratic term Q(t)R2

in (4) and finding the zero-order solution

R0 (t) = i

t∫
t0

dt′Q∗ (t′) (6)

and, then, postulating the corrected solution in the
form R(t) = R0(t) +R1(t) with the restriction that
|R1 (t)| � |R0(t)|. With this restriction, the Riccati
equation for R1, obtained from (4), is linearized to
the ordinary differential equation

iṘ1 = 2QR0R1 +QR2
0, (7)

whose formal solution is [9]

R1 (t) = −
1

2

t∫
t0

dt′R0 (t
′)

dZ (t, t′)

dt′
(8)

with

Z (t, t′) = exp

2

t∫
t′

dt′′ Ṙ∗0(t
′′)R0 (t

′′)

 . (9)

To calculate R0(t) from (6), with Q(t) given by (3),
we assume long laser pulses in the sense that each
pulse-shape function fj (t) has its full width at
half maximum much greater than the optical cycle
2π/ωj . Also, the laser frequencies ωj are assumed
to be far from the transition frequency ∆. Under
these assumptions, the j component of (6) includes
the time integral of the product of the slowly time-
varying pulse-shape function fj(t) and the fast-
varying function exp (i∆t) cos (ωjt). We calculate
(6) by parts for an arbitrary smooth pulse-shape
function fj(t), applying the boundary condition
fj (t0) = 0 and finally retaining only the leading
part fj (t)

∫
dt exp (i∆t) cos (ωjt), resulting in the

approximate

R0(t) = e i∆t
∑
j

xj fj (t)

y2j − 1

×
(
yj cos(ωjt)− i sin(ωjt)

)
=
∑
j

R0j (t),

(10)
where

xj =
Ωj
ωj
, yj =

∆

ωj
(11)

are dimensionless strength and frequency parame-
ters, respectively, related to a given laser beam. To
fulfil the condition of weak excitation, i.e., |R (t)|2 ≈
|R0 (t)|2 � 1, each pair of the parameters needs to
be chosen so that |R0j (t)|2 � 1. This will lead to
the restriction

x2j
2

y2j + 1(
y2j − 1

)2 � 1, (12)

obtained by replacing cos2 (ωjt) and sin2 (ωjt) by
their time average values, and f2j (t) by its max-
imum value equal to 1. Obviously, (10) and (12)
can be used far from one-photon resonance only
(yj 6= 1, ωj 6= ∆).

3.2. Low-frequency case

From now on we focus on a physically im-
portant case of low laser frequencies, meaning
yj = ∆/ωj � 1. Alternatively, this frequency limit
is also called the multiphoton excitation one. It is
usually met when typical lasers are applied to ex-
cite the majority of atoms, molecules and ions from
their ground states to their first excited states. In
this limit, we are allowed to simplify (10) for R0 (t)
by rejecting the term proportional to sin (ωjt). With
the so simplified R0(t), the integrand in (9) for
Z (t, t′) takes the form

2Ṙ∗0 (t
′′)R0 (t

′′) = − i2Q (t′′)R0 (t
′′) =

− i

~
∑
j

∑
j′

d0j (t
′′) · Ej′ (t′′) , (13)
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where Ej′ (t′′) = E0j′fj′ (t
′′) cos (ωj′t

′′) is the elec-
tric field of the j′ laser beam, and

d0j (t
′′) = 2µ21

xjyj
y2j − 1

fj (t
′′) cos (ωjt

′′) (14)

is the electric dipole moment induced by the j laser
beam in the lowest-order approximation, i.e., by
substituting R (t) = R0j (t) in (5) and then neglect-
ing the term |R0j (t)|2. In (13), the double summa-
tion is recognized as the total interaction energy
between all induced partial dipole moments d0j (t)
and all laser fields engaged Ej′ (t).

To find Z (t, t′) from (9), we integrate (13) over
time along a similar line as that described be-
fore (10) and obtain Z (t, t′) = exp (i(u(t′)− u(t))),
where

u(τ) =
∑
j

[(
aj

∫
dτ f2j (τ)

)
+bjf

2
j (τ) sin (2ωjτ)

]

+
∑
j

∑
j′>j

fj(τ)fj′(τ)xjxj′

(
y2j

y2j − 1
+

y2j′

y2j′ − 1

)

×
(
sin (ωj + ωj′) τ

yj′ + yj
+

sin (ωj − ωj′) τ
yj′ − yj

)
(15)

with

aj =
x2jyj

y2j − 1
ωj , bj =

aj
2ωj

. (16)

Above, the single summation over j originates in
the interaction between the zero-order partial dipole
moment d0j(t), induced by the j laser beam, with
the same j beam. On the other hand, the double
summation over j and j′ comes from the interaction
between the partial dipole moment d0j(t), induced
by the j laser beam, with a different j′ 6= j beam.
Moreover, the parameter aj is simply the ordinary
Stark shift (in a frequency scale) introduced to the
transition frequency ∆ by the j laser beam.

3.3. Application to two-colour field

As representative, we consider in detail the case of
two laser beams (j = 1, 2 and j′ = 1, 2) of different
low frequencies such that y2j − 1 ≈ y2j . Using the
Fourier–Bessel expansion [10, 11] to exp (iu(t′)) in
Z (t, t′) (see Appendix A) we then get the dominant
part of the integrand in (8). Its form is

R0 (t
′)

dZ (t, t′)

dt′
=

i∆

4
e− iu(t)

∞∑
n=−∞

∞∑
m=−∞

∞∑
k=−∞

∞∑
l=−∞

Bn,m,k,l (t
′)

× exp

(
i

((
∆+ (2n+ k + l + 1)ω1 + (2m+ k − l)ω2

)
t′ + a1

∫
dt′ f21 (t′) + a2

∫
dt′ f22 (t′)

))
,

(17)

where the coefficients Bn,m,k,l (t′) are defined from
(A1) in Appendix A. These coefficients are slowly
varying in time through the pulse-shape func-
tions fj (t′) and also depend on strength of pulses
(see (A2)).

Finally, (17) is integrated over time t′ with the
assumption that the low-frequency Stark shifts
aj = (xj/yj)

2
∆ are much smaller than the

mixed multiphoton detunings |δ| = |∆+ (2n+ k +
l + 1)ω1 + (2m + k − l)ω2|. The ratio (xj/yj)

2 is,
however, restricted here by the weak-excitation con-
dition (xj/yj)

2 � 2 resulting from (12) for the as-
sumed low frequencies (yj � 1). Consequently, for
the weak excitation by a low-frequency field the two
conditions, aj � |δ| and (xj/yj)

2 � 2, are recon-
ciled when

(
xj
yj

)2

=

(
Ωj
∆

)2

� min

(
2,

∣∣∣∣1 + 2n+ k + l + 1

y1
+

2m+ k − l
y2

∣∣∣∣) , (18)

where min(u, v) means the smaller of the values u
and v. Under the restriction given by (18), the only
fast varying function in (17) is exp (iδt′). Thus, the

dominant part of R1(t), obtained from integration
of (17) by parts along the line described before (10),
is

R1 (t) = −
1

8

∞∑
n,m,k,l=−∞

∞∑
n′,m′,k′,l′=−∞

Bn
′,m′,k′,l′

n,m,k,l (t)

1 + 2n+k+l+1
y1

+ 2m+k−l
y2

× exp

(
i
(
∆+

(
2(n− n′)+k − k′+l − l′+1

)
ω1 +

(
2(m−m′) + k − k′ − l + l′

)
ω2

)
t

)
(19)
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where the summation over n′, m′, k′, l′ comes
from the additional expansion of exp (− iu(t)) in the
Fourier–Bessel series, and

Bn
′,m′,k′,l′

n,m,k,l (t) = Bn,m,k,l (t) Jn′ (α1 (t))

×Jm′ (α2 (t)) Jk′ (β+ (t)) Jl′ (β− (t)) (20)
with αj (t) and β± (t) given by (A2) in Appendix A.

3.4. Induced dipole moment in the case of weak
excitation by two-colour field of low frequencies

Due to (5), (10), and (19), two low-frequency laser
beams (yj = ∆/ωj � 1), weakly exciting a two-
level system (see (18)), induce the electric dipole
moment d (t) = d0 (t) + d1 (t), where

d0 (t) = 2µ21Re
(
R0 (t) e

− i∆t
)
= 2µ21

2∑
j=1

xj
yj
fj (t) cos (ωjt) (21)

and

d1 (t) = 2µ21Re
(
R1 (t) e

− i∆t
)
= −µ21

4

∞∑
n,m,k,l=−∞

∞∑
n′,m′,k′,l′=−∞

Bn
′,m′,k′,l′

n,m,k,l (t)

×
cos
((

2(n− n′) + k − k′ + l − l′ + 1
)
ω1 +

(
2(m−m′) + k − k′ − l + l′

)
ω2

)
t

1 + (2n+ k + l + 1) /y1 + (2m+ k − l) /y2
. (22)

Part d0 (t) arises from the zero-order solution to
the Riccati equation (see (6)) and describes the or-
dinary oscillations of the induced dipole moment
at frequencies of the incoming laser beams. How-
ever, part d1 (t) results from the correction to the
above solution (see (8)) and describes the additional
oscillations at frequencies being different combina-
tions of those of the incoming laser beams, i.e., the
mixing of laser beams. Apart from the frequency
denominator in (22), the amplitudes of the mixed
oscillations are determined from (20) and (A1) for
the field-dependent coefficients Bn

′,m′,k′,l′

n,m,k,l (t). Obvi-
ously, the amplitudes of the mixed oscillations are

much smaller than those of the oscillations given
by (21), due to the restriction (18). This restriction
causes that the arguments αj and β± (see (A2)) of
the Bessel functions in (20) and (A1) for the co-
efficients Bn

′,m′,k′,l′

n,m,k,l (t) are generally much smaller
than 1, if the laser frequencies are not too close to
each other. Then, the greatest contribution to these
coefficients comes from two sets of indices. Namely,
n′,m′, k′, l′, k = 0, l = 0,−1 and the corresponding
Bessel functions in (20) and (A1) can be approxi-
mated by 1. Consequently, the number of summa-
tions in (22) for d1 (t) is reduced to two only, namely
over n and m, resulting in

d1 (t) =

−µ21

4

∞∑
n,m=−∞

{[
x31
y31
f31 (t)

(
3Jn

(
α1(t)

)
+ 3Jn+1

(
α1(t)

)
+ Jn−1

(
α1(t)

)
+ Jn+2

(
α1(t)

))
Jm
(
α2(t)

)
+3

x1
y1

x22
y22
f1(t)f

2
2 (t)

(
Jn
(
α1(t)

)
+ Jn+1

(
α1(t)

))(
Jm−1

(
α2(t)

)
+ Jm+1

(
α2(t)

)
+ 2Jm

(
α2(t)

))]

×
cos
(
(2n+ 1)ω1t+ 2mω2t

)
1 + (2n+ 1)/y1 + 2m/y2

+ (1 � 2, n� m)

}
, (23)

where (1 � 2, n� m) is the term obtained from
the preceding one by a mutual interchange of the
indices at xj , yj , fj , αj and Jq.

From (23) we can calculate simple formulae for
the dipole components d1 (t, ω) oscillating at fixed
frequencies ω. The dominant contribution to a given
dipole component will arise from as small as possible
summation indices in this equation due to the be-
haviour of the Bessel functions at small arguments.

Approximating each Bessel function by its leading
part in the series representation, we thus obtain
from (23) the exemplifying single-beam formulae for
the dipole components oscillating at the frequencies
of odd harmonics

d1 (t, 3ωj) = −
µ21

2

(
Ωj
∆

)3 y2j
y2j − 9

×f3j (t) cos (3ωjt) , (24)
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d1 (t, 5ωj) =
µ21

4

(
Ωj
∆

)5 y4j + 15y2j(
y2j − 9

) (
y2j − 25

)
×f5j (t) cos (5ωjt) , (25)

d1 (t, 7ωj) = −
µ21

8

(
Ωj
∆

)7

×
y6j + 71y4j(

y2j − 9
) (
y2j − 25

) (
y2j − 49

)f7j (t) cos (7ωjt) ,
(26)

d1 (t, 9ωj) =
µ21

16

(
Ωj
∆

)9

×
y8j + 206y6j + 945y4j(

y2j − 9
) (
y2j − 25

) (
y2j − 49

) (
y2j − 81

)
×f9j (t) cos (9ωjt) , (27)

and the two-beam formulae for the dipole compo-
nents oscillating at mixed frequencies

d1 (t, ω1 ± 2ω2) = −
3

2
µ21

Ω1

∆

(
Ω2

∆

)2
1−

(
1
y1
± 2

y2

)2
×f1(t)f22 (t) cos (ω1 ± 2ω2) t, (28)

d1 (t, ω1 ± 4ω2) =
3

8
µ21

Ω1

∆

(
Ω2

∆

)4

×
y2

(
4
y2
± 1

y1

)
1−

(
4
y2
± 1

y1

)2 f1(t)f42 (t) cos (ω1 ± 4ω2) t,

(29)

d1 (t, 3ω1 ± 2ω2) =
µ21

8

(
Ω1

∆

)3(
Ω2

∆

)2

×
(3y1 ± y2)

(
3
y1
± 2

y2

)
1−

(
3
y1
± 2

y2

)2
×f31 (t)f22 (t) cos (3ω1 ± 2ω2) t. (30)

In (24)–(30), the yj-dependent fractions do not af-
fect substantially the dipole components because
yj � 1 here. Thus, the range of magnitude of
a given component is mainly determined by the ap-
propriate power(s) of the ratio(s) Ωj/∆ being much
smaller than 1 according to (18). As a reference
point, when considering the limit of strong excita-
tion in Sects. 4 and 5, will serve (24)–(30).

4. Strong-excitation limit

4.1. General expression for induced dipole moment

To consider the case of strong excitation, it is
convenient to transform (4) for the variable R (t)
into equation for r (t) = R (t) e− i∆t with the result

i ṙ =
(
r2 − 1

)
Ω(t) +∆r, (31)

where Ω(t) =
∑
j Ωj (t) with Ωj (t) =

Ωjfj (t) cos (ωjt) and Ωj = µ21 · E0j/~. On
the basis of (31), we define the limit of strong
excitation by the condition Ωj � ∆ being the
opposite to the condition for weak excitation by a
low-frequency field (see (18)).

For Ωj � ∆, the first term generally dominates
the second term on the right-hand side of (31). We
thus neglect ∆r in (31) and obtain the following
zero-order solution in the case of strong excitation

r0 = i tan

 t∫
t0

dt′ Ω (t′)

 . (32)

In the next step, we calculate the effect of ∆r on
the above r0 (t) postulating the corrected solution
to (31) in the form r (t) = r0 (t) + r1 (t) with
the restriction that |r1 (t)| � |r0 (t)|. Under this
restriction, (31) leads to the following linearized in
r1 (t) differential equation for the correction

i ṙ1 = 2Ω (t) r0r1 +∆r0. (33)
The last equation is a strong excitation analogue
to (7) valid for weak excitation. As an ordinary
linear equation, (33) has the exact solution [9]

r1 (t) =

t∫
t0

dt′ (− i∆r0 (t
′))

× exp

2i

t′∫
t

dt′′ Ω (t′′) r0 (t
′′)

 =

∆

2

t∫
t0

sin

(
2
t′∫
t0

dt′′ Ω (t′′)

)
dt′

cos2

(
t∫
t0

dt′ Ω (t′)

) . (34)

Applying (5), (32), and (34), we finally find the
general expression of the induced electric-dipole
moment in the limit of strong excitation Ωj/∆� 1,
i.e.,

d (t) = 2µ21
r1

1 + |r0 + r1|2
≈ 2µ21

r1

1 + |r0|2
=

µ21∆

t∫
t0

dt′ sin

2

t′∫
t0

dt′′ Ω (t′′)

 . (35)

4.2. Two-colour field

As in Sect. 3.3, we now focus on the rep-
resentative case of two different laser beams.
In this case, the leading part of the ar-
gument of the sinus function in (35) is
2x1f1 (t

′) sin (ω1t
′) + 2x2f2 (t

′) sin (ω2t
′). Thus, us-

ing the Fourier–Bessel expansions to sin (q sin(ϕ))
and cos(q sin(ϕ)) [10, 11], (35) gives the following
dominant part of d (t) when two laser beams
strongly excite a two-level system
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d (t) = J0
(
2x2f2 (t)

)
d1 (t) + J0

(
2x1f1 (t)

)
d2 (t)

−2µ21

∞∑
m=0

∞∑
n=1

[
J2m+1

(
2x1f1 (t)

)
J2n
(
2x2f2 (t)

)
×

(
cos
(
(2m+ 1)ω1 + 2nω2

)
t

(2m+ 1) /y1 + 2n/y2

+
cos
(
(2m+ 1)ω1 − 2nω2

)
t

(2m+ 1) /y1 − 2n/y2

)
+ (1 � 2)

]
,

(36)
where xj = Ωj/ωj = (Ωj/∆) yj , yj = ∆/ωj ,
(1 � 2) denotes the term obtained from the pre-
ceding one by mutual interchange of the indices at
xj , yj , fj , and ωj , while

dj (t) = −2µ21

∞∑
m=0

J2m+1

(
2xjfj (t)

)
(2m+ 1) /yj

× cos (2m+ 1)ωjt (37)
with j equal to either 1 or 2. The particular (37)
is the known formula of Ivanov and Corkum [12]
originally obtained along a different line for the
single-beam case. In our approach, the formula
of Ivanov and Corkum results from (36) for the
two-beam case by neglecting in this equation one
of the two beams and using the property of the
Bessel functions at the zero-value argument.

5. Strong-excitation effects
caused by two-colour field

Considering (36) for the two-beam strong-
excitation case, two effects are observed when com-
pared to (37) for the one-beam case. One effect is
described by the first two terms on the right-hand
side of (36). These terms show that the generation of
odd-order harmonics by a given beam is diminished
in the presence of an additional laser beam. This di-
minishing is governed by the zero-order Bessel func-
tion depending on the strength of the additional
beam. The reason for the above is that the addi-
tional beam simply enhances the degeneration of
the two-level system. We show this effect of dimin-
ishing graphically in Figs. 1 and 2 prepared for the
time-coincident laser pulses of the same shape taken
at the maximum (f1 (t) = f2 (t) = 1). On the or-
dinate, we put the absolute value of the amplitude
AN of the odd N -th harmonic of laser 1 in the ab-
sence (Ω2/∆ = 0) and in the presence of laser 2.
This amplitude (measured in units of µ21) was
calculated from AN = (−2y1/N) JN (2x1) J0 (2x2),
where xj = (Ωj/∆) yj . Such a form of AN results
from the first term in (36) along with (37) for j = 1.
Each figure consists of three parts corresponding
to different frequency regimes: (a) low frequencies
(yj � 1), (b) moderate frequencies (yj ≈ 1),
(c) high frequencies (yj � 1). To guide the eye,
the calculated values of AN , corresponding to the
successive odd N , have been connected by straight
lines. All curves in a given figure are made for the

Fig. 1. The effect of strength of laser 2 (Ω2/∆ = 0,
10, 30, 50) on the amplitude AN of the N -th har-
monic of laser 1 calculated from the strong exci-
tation (36). For details, see the first paragraph of
Sect. 5. (a) Low-frequency regime: y1 = 15, y2 = 20,
(b) moderate-frequency regime: y1 = 1, y2 = 0.9,
(c) high-frequency regime: y1 = 1/15, y2 = 1/20.
The strength of laser 1 is kept fixed Ω1/∆ = 15.
Only the points on the curves corresponding to odd
N have physical meaning.

same strength Ω1/∆ of laser 1 and a few different
strengths Ω2/∆ of laser 2. We stress that Ω1/∆ is
the only parameter that makes a difference between
Fig. 1 (Ω1/∆ = 15) and Fig. 2 (Ω1/∆ = 90). Ir-
respective of the frequency regime, the mentioned
diminishing of AN when switching on laser 2 and
changing its strength is evident. For fixed parame-
ters of laser 2, the general shape of the curves in
Figs. 1 and 2 is determined by (y1/N) JN (2x1),
i.e., the term resulting from the single-beam (37)
of Ivanov and Corkum. If 2x1 = 2y1 (Ω1/∆) is
large enough (parts (a) and (b) of the figures), then
three parts can be highlighted in each curve, gen-
erally. For N < 2x1, a given curve first gets lower
with increasing N , then reaches a kind of a plateau
when N increases and, finally, descents sharply for
N > 2x1. In the plateau region, the amplitudes
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Fig. 2. Description is the same as given in Fig. 1,
but for Ω1/∆ = 90.

corresponding to different N can have compara-
ble values or even higher-N amplitudes can exceed
lower-N amplitudes. If 2x1 gets increasingly smaller
(parts (b) and (c) of the figures) then the plateau
in Figs. 1 and 2 is shortened and even vanishes.
Qualitatively, the shape of curves in parts (a) and
(b) of Figs. 1 and 2 is similar to that known from
higher-harmonic generation from different materials
by a single laser in the so-called three-step mecha-
nism involving laser ionization in the first step, then
acceleration of the freed electron by the laser field
and, finally, recombination of this electron with the
parent ion [13–15]. The effect of an additional laser
is to diminish this harmonics generation. No such
effect has been encountered in the domain of weak
excitation (see (24)–(27)).

The other effect is multiphoton mixing of frequen-
cies of two laser beams, described by the part of (36)
with double summation. The amplitudes of oscilla-
tions at mixed frequencies are shown to be deter-
mined by the products of the opposite-parity Bessel
functions, depending on the strengths of different
laser beams through the parameters xj , as well as
on the frequency denominators. These Bessel func-
tions have their orders defined by the numbers of

Fig. 3. The amplitude AN,P of the dipole compo-
nent oscillating at a mixed frequency Nω1 + Pω2

versus the strength of lasers calculated from the
strong-excitation given in (36). Both lasers are as-
sumed to have the same strength (Ω1/∆ = Ω2/∆ =
Ω/∆ > 10) but different low frequencies (y1 = 15,
y2 = 20). For details, see par. 2 of Sect. 5..

photons engaged in an elementary act of mixing.
Obviously, the amplitudes of mixing in the strong-
excitation case depend on the field strengths in
a different way than those in the weak-excitation
case. For evidence, let us focus on low frequencies
(yj � 1), i.e., the ones we have previously assumed
in Sect. 3 when considering the case of weak ex-
citation. This frequency regime leads, along with
the strong-excitation condition (Ωj/∆� 1), to the
strength parameters xj being always much higher
than 1. In the strong excitation (36), the appropri-
ate Bessel functions of orders much smaller than
their arguments can thus be well approximated by

Jk (q)
q�k
≈
√

2
πq cos

(
q −

(
k + 1

2

)
π
2

)
[10, 11]. As a re-

sult, the amplitudes of mixing described by these
Bessel functions in (36) depend on the laser
strengths through the factor 1/

√
x1x2, among oth-

ers, and thus diminish with these strengths increas-
ing. For low frequencies, such a behaviour in the
strong-excitation case is quite the opposite to that
in the weak-excitation case described in Sect. 3
(see, e.g., (28)–(30)). This strong-excitation effect
is shown graphically in Fig. 3, where the absolute
value of the amplitude AN,P of the dipole compo-
nent oscillating at a mixed frequency Nω1 + Pω2

(N = 1, 3, 5, ... and P = 2, 4, 6, ...) is plotted ver-
sus the strength parameter Ω/∆ assumed to be
the same for both lasers, i.e., Ω1/∆ = Ω2/∆ =
Ω/∆. Generally, the expression for AN,P is AN,P =
−2JN (2x1) JP (2x2) / (N/y1 + P/y2), where xj =
(Ωj/∆) yj , and results from the third term in (36).

6. Conclusions

We have presented a fully analytical approach to
multiphoton frequency mixing and high harmon-
ics generation based on the Riccati-type differential
equation for a two-level system in the field of several
lasers. This approach has turned out to be very ef-
fective and led us to two main results given by (23)
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and (36) for the dipole moment induced in the sys-
tem by the two-laser field under the conditions of
weak and strong excitation, respectively. We have
shown that both equations are easy in use when cal-
culating the magnitude of the amplitudes of differ-
ent dipole components oscillating at either high har-
monics or mixed frequencies. Based on these equa-
tions, we have pointed to two strong-excitation ef-
fects. One effect, shown in Figs. 1 and 2, is the di-
minishing of the generation of odd-order harmonics
of a given laser beam when an additional laser beam
is turned on. The other effect, shown in Fig. 3, con-
cerns low laser frequencies (multiphoton excitation)

and consists in the diminishing of the radiation at
mixed frequencies with increasing laser strengths.
Obviously, both effects do not have their analogies
in the weak-excitation limit (compare (24)–(30)).

Appendix A

To obtain (17), we have expanded exp (iu (t′))
in Z (t, t′) into the Fourier–Bessel series, according
to exp (iq sinϕ) =

∑∞
p=−∞ Jp (q) exp (ipq), where

Jp (q) is the Bessel function of the first kind [10, 11].
As a result, the Bn,m,k,l coefficients in (17) have
been found as

Bn,m,k,l (t
′) ={[(

x1
y1

)3

f31 (t′)
(
3Jn

(
α1 (t

′)
)
+ 3Jn+1

(
α1 (t

′)
)
+ Jn−1

(
α1 (t

′)
)
+ Jn+2

(
α1 (t

′)
))
Jm
(
α2 (t

′)
)

+3
x1
y1

(
x2
y2

)2

f1 (t
′) f22 (t′)

(
Jn
(
α1 (t

′)
)
+ Jn+1

(
α1 (t

′)
))

×
(
Jm−1

(
α2 (t

′)
)
+ Jm+1

(
α2 (t

′)
)
+ 2Jm

(
α2 (t

′)
))]

Jl
(
β− (t′)

)
+(1 � 2, n� m, l � l + 1)

}
Jk
(
β+ (t′)

)
(A1)

with
αj (t

′) = bjf
2
j (t
′) ,

bj =
aj
2ωj
≈ yj

2

(
xj
yj

)2

,

β± (t′) =
2x1x2
y2 ± y1

f1 (t
′) f2 (t

′) . (A2)

Above, αj is the dimensionless Stark-shift param-
eter for a given beam (see (16)), β± — the kind
of dimensionless mixing parameter of two different
beams, and (1 � 2, n� m, l � l + 1) in (A1) de-
notes the term obtained from the preceding one by
the indicated interchange of the indices at xj , yj ,
fj (t), αj and Jq.
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