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Granular matter in a tube is studied in this work. For this purpose, we consider identical disks confined
in a tube that has one open and one closed end whereby all surfaces are assumed to be hard and
frictionless. Thus, a one-dimensional system is considered. Jamming occurs due to the local pressure
in a uniform gravitational field parallel to the tube and rotation. The framework of the configurational
statistics with a generalized Pauli principle is used, in which jammed microstates are encoded in particle
configurations while macrostates are produced by uniform arbitrary agitations and described by entropy
and volume. Moreover, mass density, compactivity and population correlations of quasiparticles are
studied analytically.
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1. Introduction

Granular matter consists of particles that are so
large that thermal fluctuations do not play a signif-
icant role in the system. The macroscopic proper-
ties of the system result from the microscopic struc-
ture of particles, interactions between them and the
interactions of particles with external fields. Thus,
in this context, thermal properties are overwritten
by more macroscopic dynamics. Nonetheless, many
studies do not differentiated between systems where
there is no long-range order, and consider the granu-
lar matter as an area of a larger phase diagram [1–8].
This turns out to be a drawback as thermal inter-
actions usually play a role in such systems.

How the entropy behaves in general granular sys-
tems is quite difficult to predict because these sys-
tems are not in thermal equilibrium [9, 10]. Within
this regard, in the last decades, a large number of
studies and theories on the granular matter or more
general systems that are not in thermal equilibrium
have been published [11–18] in combination with
numerical analyses [19–37].

There is also a whole range of studies on sta-
tistical mechanics with only hard-core repulsion as
an introduction to granular matter [38–47]. All in-
significant properties of grains are neglected in these
studies. Note that in this context the energy kBT
is typically compared to the gravitational potential

energy mgσ, where σ is the diameter of the consid-
ered particle and g is the gravitational field. As a re-
sult, in suspension the granular regime is differenti-
ated from the colloidal regime. In this context, grav-
ity and centrifuge [48–51] were used to determine
the nature of jammed states. Furthermore, the crit-
ical singularities and ordering tendencies were stud-
ied based on the entropy of macrostates.

Complementary, the idea of the generalized Pauli
principle which is a sound methodology and indis-
putable because of its main root [52–56], is used
in this paper to study jamming due to gravitation
and centrifuge. In our model, grains are represented
by identical hard and frictionless disks confined in
a thin tube, such that two consecutive disks in the
interior can take one of two possible configurations,
(i) either one vertically above the other, both on the
same side of the tube (low density), or (ii) obliquely,
touching opposite sides (close packing). The sys-
tem is subjected to a uniform gravitational field
mg along the main axis of the tube and rotated
around this axis. According to generally accepted
definitions of granular matter, grains are treated as
macroscopic objects, large enough to neglect Brow-
nian motions.

The novelty of this approach consists in the appli-
cation of an important generalization of the Pauli
exclusion principle in quantum mechanics [57] by
Haldane [58]. In this context, and in cooperation
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with Wu [59], the statistical properties of the so
called quasiparticles in condensed matter physics
of low-dimensional systems were extended to the
thermodynamics of a system of several species of
identical quasiparticles. The methodology is ap-
plied to a purely classical model of macroscopic
disks in a tube. This task is performed just by
a handy association of classical variables with quan-
tum mechanical notions. The statistical interaction
between quasiparticles is encoded by characteriz-
ing how the position of one quasiparticle changes
the distribution options for different quasiparti-
cles. The analyzed sets of quasiparticles prove that
granular matter can be examined with this ap-
proach since the obtained entropy matches the well-
known results. Characteristics of profiles like vol-
ume and mass density are determined exactly. The
results show that the balance of forces in combi-
nation with the potential energies affect the nature
of jamming.

2. Methodology

In the generalized Pauli principle [58], the dimen-
sion of a Hilbert space dimHm = dm changes when
quasiparticles are added and the system under con-
sideration does not change otherwise. The statisti-
cal interaction coefficients gmn are therefore defined
by a differential relation. The equation for dm with
statistical capacity constants Am is given by

dm = Ym + gmm, (1)

where

Ym = Am −
M∑
n=1

gmnNn, (2)

andNm is the number of quasiparticles of speciesm,
M is the number of species. The thermodynamic
limit for extensive dimensions dm exists when the
statistical interaction coefficients are gmn ∈ Q. The
multiplicity expression for the number of many-
body states can be written as

W = npv

M∏
n=1

(
dm +Nm − 1

Nm

)
, (3)

where npv is the multiplicity of the pseudo-vacuum.
If there is no dynamic interaction between quasi-
particles with energies εm relative to the pseudo-
vacuum, the total energy of a many-body state
given for fixed particle numbers {Nm} is

E = Epv +

M∑
m=1

Nmεm, (4)

where Epv is the pseudo-vacuum energy.
The analysis of the statistical mechanic of this

approach is well-known [59, 60]. The grand canoni-
cal partition function is given by

Z =

M∏
m=1

(
1 + w−1

m

)Am
, (5)

where the real and positive quantities wm are given
by coupled nonlinear algebraic equations. Namely,

εm
Tk

= ln (1 + wm)−
M∑
n=1

gnm ln

(
1 +

1

wn

)
. (6)

The use of these quantities allows the average num-
bers of particles to be determined with

Am = wm 〈Nm〉+

M∑
n=1

gmn 〈Nm〉 . (7)

As the nomenclature, one uses

• compacts (particles without hosting capa-
bility that exist side by side in a pseudo-
vacuum),

• hosts (particles with hosting capability that
exist side by side in a pseudo-vacuum),

• tags (hosted particles that leave place for
other tags without hosting capability),

• caps (hosted particles that leave no place for
other caps without hosting capability),

• hybrids (hosted particles with hosting capa-
bility),

Thus, in the following compact notation,
|A〉 = (A1, . . . , AM )T, (8)

|ε〉 = (ε1, . . . , εM )T, (9)

|w〉 = (w1, . . . , wM )T, (10)

|N〉 = (〈N1〉 , . . . , 〈NM 〉)T, (11)
and

g = (gmn) , G = g + (δmnwn) , (12)
are used. Now, (4) and (7) can be rewritten as

E = Epv + 〈N |ε〉 , |N〉 = G−1 |A〉 , (13)
where G is assumed to be invertible. The entropy
S = kB ln(W ) is given by

S = kB

M∑
m=1

[
(Nm + Ym) ln (Nm + Ym)

−Nm ln(Nm)− Ym ln (Ym)
]
. (14)

3. Model

The model system for studying jamming is a nar-
row tube of height H. The hard, friction-free disks
with mass µ compressed therein are combined into
geometric units, for example, two successive disks
on the same tube wall. These units have a model-
dependent energy εm and are interpreted as quasi-
particles. This enables us to use the methodology
described in Sect. 2. The tube is so narrow that
1 < H

σ < 1 +
√

3
2 applies, where σ is the disk diam-

eter. Such structure implies that only four different
disk configurations can exist. Each disk touches one
wall and two neighbouring disks. The only excep-
tions are the two outermost disks. Jamming occurs
when each disk has three contact points that do not
lie on the same semicircle.
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Fig. 1. Depiction of both quasiparticles in the
tube. The pseudo-vacuum is pointed out with the
letter v, and ω characterizes the tube spinning
about its axis.

In the presented model, the jammed states are de-
scribed by the configurations of quasiparticles. The
disks themselves are defined as microstates while
the macrostates are the merging of disks into quasi-
particles. The pseudo-vacuum from which the quasi-
particles are excited is chosen as an alternating se-
quence of one disk on one side and the other on
the opposite side of the tube. This pseudo-vacuum
is obviously two-fold degenerate, hence npv = 2.
The configuration of the model in which the jammed
microstates are countable and each has a well de-
fined volume, quasiparticles and pseudo-vacuum are
shown in Fig. 1. Quasiparticles populations com-
pletely describe the jammed macrostate. Note that
1 +

√
3

2 < H
σ < 2 leads to 32 different disk configu-

rations while for H
σ > 2 the disks are able to pass

each other resulting in a nonlocal requirement for
jamming.

The scaled rotation and position are given by
ω̂2 = µdσω2/(4Tk) and ẑ = σgz/Tk, respectively
with d = 1

2 (H −σ), and Tk is the parameter for the
strength of uniform arbitrary agitations. It plays
a major role in the mechanical stability of disk con-
figurations with more than two consecutive disks.

The set of quasiparticles consists of one host
and one tag with volume σ while the volume of
the pseudo-vaccum part is

√
H
σ (2− H

σ ). Generat-
ing a quasiparticle increases the energy, i.e.,

g =

(
2 1

−1 0

)
, |A〉 =

(
N

0

)
, (15)

|ε〉 = σ

(
1−

√
H
σ

(
2− H

σ s
))

p (z)

(
1

1

)
, (16)

where p (z) is the local pressure andN is the number
of disks. The dimensionless version of the local pres-
sure is given by p̂ = σ(1 −

√
H
σ (2− H

σ ))p (z) /Tk.
Hence, the description of the jammed macrostates
is performed by the two independent variables pres-
sure p̂ and rotation ω̂.

Fig. 2. Depiction of a three disk configuration.
The centrifugal force Fω = µω2c stabilizes while
contact forces p(z)

cosφc
destabilize the configuration.

The forces are in balance for c = dp̂
ω̂2 tanφc.

The energies |ε〉 of the quasiparticles do not de-
pend on ω̂. However, it is obvious that small ro-
tations ω̂ � 1 should lead to unstable tags. For
the description of this effect three disks are consid-
ered. The first assumption is that the disks above
and below the middle disk always touch the wall.
The second assumption is that the pressure p (z)
above and below the middle disk is approximately
the same. The configuration is depicted in Fig. 2.

These assumptions generate the function Rω =
1 − c

d = 1/(1 + d
σ
p̂
ω̂2 ) which specifies how many

tags overcome a reorganization of the system due
to mechanical instabilities.

Note that, in principle, there is an alternative pro-
cedure for describing the mechanical instabilities.
Unlike Rω, a chemical potential ψ (ω̂) can be in-
troduced such that ε2 → ε2 + ψ (ω̂). However, the
numerical studies show that in the presented model
both populations of quasiparticles simultaneously
tend to zero for small ψ(ω̂)

p̂ . This possible modifica-
tion of the model is not investigated further since
the population density of the host quasiparticle does
not depend on mechanical instabilities.

4. Results

The form of (6) and (12) is then
w = w1 = w2 = ep̂, (17)

and

G−1 =
1

(1 + w)
2

(
w −1

1 2 + w

)
. (18)

4.1. Population densities

Population densities N̄1 = limN→∞
〈N1〉
N and

N̄2 = Rω limN→∞
〈N2〉
N are given by∣∣N̄〉 =

(
N̄1

N̄2

)
=

1

(1 + w)
2

(
w

Rω

)
, (19)
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Fig. 3. Course of population densities N̄1 and N̄2

for growing pressures p̂. The results for varying ro-
tations ω̂ and d/σ = 1

4
are shown. The black and

gray curves depict the cases for ω̂ = 0 and ω̂ →∞,
i.e., N̄2 = 0 and N̄2 =

(
1 + ep̂

)−2, respectively. The
curves for finite rotations ω̂ lie between these two
cases. The blue curve for ω̂ = 2 lies almost on top
of the curve for ω̂ →∞.

Fig. 4. Depiction of the relation between N̄1 and
N̄2 for d

σ
= 1

4
. The results obtained for ω̂ = 0.1,

0.5, 1, 2, ∞ become steeper for N̄1 ≈ 1
4

with
decreasing ω̂.

where Rω appears due to the mechanical instabili-
ties. For small and large rotations ω̂, we find

N̄2 =

{
σω̂2

dp̂

(
1 + ep̂

)−2
+O

(
ω̂2
)
, ω̂ � 1,(

1 + ep̂
)−2

+O
(
ω̂−2

)
, ω̂ � 1.

(20)
The population density N̄2 for quasiparticle 2 van-
ishes for small rotations ω̂. Figure 3 shows the re-
sults for the population densities

∣∣N̄〉 for varying
rotations ω̂.

Note that p̂→ 0 yields ẑ → 0. For small or large
p̂, the population densities simplify to

N̄1 =

{
1
4 +O

(
p̂2
)
, p̂� 1,

e−p̂ +O
(

e−2p̂
)
, p̂� 1,

(21)

N̄2 =


1
4 +O (p̂) , p̂� 1,

σω̂2

dp̂ e−2p̂ +O
((
p̂ep̂
)−2
)
, p̂� 1,

(22)
which is also observable in Fig. 3.

Due to (19) the presented model has proper-
ties adapted to the expected physics, namely, for
ω̂ = 0 (this case) the unstable particle 2 van-
ishes. The system is dominated by the pseudo-
vacuum and particle 1. If p̂ = 0 is given addi-
tionally, particle 1 and pseudo-vacuum have the
same particle energy which leads to an equal weight-
ing by the configuration statistics. Exactly half of
the disk configuration is pseudo-vacuum. The other
half consists of the state in which the amount of
particle 1 is maximized. Hence, a quarter of the
total configuration consists of particle 1. Accord-
ingly, p̂ = 0 leads to N̄1 = 1

4 . Note that the
value 1

2 , which is in principle the highest possible
density of particle 1 in Fig. 1, is not reached within
this model.

Figure 4 shows how particles 1 and 2 are related.
The host-tag relationship of the quasiparticles is ob-
served. If particle 1 occurs more often, it is also more
likely to find particle 2 that is attached to it.

4.2. Volume

Summation of the population densities leads to
the normalized particle volume V̄ = limN→∞

V−V0

N
with V0 being the volume of the maximally compact
configuration, i.e.

V̄ = N̄1 + N̄2 =
Rω + w

(1 + w)
2 . (23)

It reaches its maximum value for p̂ = 0, which is 1
4

for ω̂ = 0 due to vanishing tags, and 1
2 for ω̂ 6= 0

while large p̂ yields a volume tending to zero that
behaves like e−p̂ + O

(
e−2p̂

)
. For small or large ω̂

one gets

V̄ =


1

4 cosh2( p̂2 )
+O

(
ω̂2
)
, ω̂ � 1,(

1 + ep̂
)−1

+O
(
ω̂−2

)
, ω̂ � 1.

(24)
These cases are depicted as black and grey curves
in Fig. 5.

Fig. 5. Volume V̄ is given for d
σ

= 1
4
and ω̂ = 0,

0.1, 0.5, 2,∞. The volume shows different behaviour
for ω̂ = 0 and ω̂ 6= 0. For ω̂ = 0 we find V̄ = 1

4
+

O
(
p̂2
)
for small p̂ due to vanishing number of tags.

In contrast, V̄ = 1
2

+ O (p̂) is observable for ω̂ 6=
0 and small p̂. Increasing ω̂ leads to an increased
volume due to an increasing number of tags.
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4.3. Mass density

The mass density of the system is given by

ρ =
µ

σ
(
1 + V̄

) =
µ

σ

(1 + w)
2

1 +Rω + 3w + w2
. (25)

For small and large rotations ω̂, one gets

ρ =


4µ
σ

cosh2( p̂2 )
1+4 cosh2( p̂2 )

+O
(
ω̂2
)
, ω̂ � 1,

µ
σ

1+ep̂

2+ep̂
+O

(
ω̂−2

)
, ω̂ � 1.

(26)

Large pressures p̂ lead to µ
σ + O

(
e−p̂
)
while pres-

sures p̂ result in 4µ
5σ+O

(
p̂2
)
for ω̂ = 0 which is larger

than 2µ
3σ +O (p̂) for ω̂ 6= 0 due to an increasing num-

ber of tags. This behaviour is shown in Fig. 6.

4.4. Packing factor

The packing factor

φ =
πσ2

4H2
(√

2σ
H − 1 + V̄

(
σ
H −

√
2σ
H − 1

))
(27)

simplifies to

φ =



πσ2(1+cosh(p̂))

2H
(
σ+H
√

2σ
H −1(1+2 cosh p̂)

) +O
(
ω̂2
)
,

ω̂ � 1,

πσ2(1+ep̂)
4H

(
σ+H ep̂

√
2σ
H −1

) +O
(
ω̂−2

)
,

ω̂ � 1

(28)

for small or large rotations ω̂. Large pressure p̂ leads
to the maximum packing

φ =
πσ2

4H2
√

2σ
H − 1

+O
(
e−p̂
)
, (29)

while the minimum packing is given for small pres-
sure p̂ by

φ =
πσ2

H
(
σ + 3H

√
2σ
H − 1

) +O
(
p̂2
)

(30)

for ω̂ = 0 or

φ =
πσ2

2H
(
σ +H

√
2σ
H − 1

) +O (p̂) (31)

for ω̂ 6= 0. The packing factor φ given by (27) and
its corresponding behaviour described by (28)–(31)
is given in Fig. 7.

4.5. Entropy

The exact entropy per disk S̄ = limN→∞
S

kBN

is straightforwardly obtained from (14). It behaves
differently for ω̂ = 0 and ω̂ 6= 0 which can be seen
in the result for small rotations ω̂, i.e.,

S̄ =
2ep̂

(1 + ep̂)
2

[
1

2
ln(2)− cosh(p̂) ln (cosh(p̂))

+

(
1

2
+ cosh(p̂)

)
ln

(
1

2
+ cosh(p̂)

)]
+O

(
ω̂2
)

(32)
compared to the expression for large rotations ω̂,
i.e.,

S̄ =
ep̂

(1 + ep̂)
2

[
ln(16) + p̂

(
1− ep̂

)
+4 sinh2

(
p̂

2

)
ln
(
1+ep̂

)
+ 4 ln

(
cosh

(
p̂

2

))]
+O

(
ω̂−2

)
. (33)

Large pressure p̂ leads to S̄ = p̂e−p̂+O
(

e−p̂
)
while

small pressure p̂ results in S̄ = 3
4 ln(3) − 1

2 ln(2) +

O
(
p̂2
)
for ω̂ = 0 and S̄ = ln(2) +O

(
p̂2
)
for ω̂ 6= 0.

The entropy S̄ depending on the pressure p̂ and
the packing factor φ is given in Fig. 8a and b, re-
spectively. The maximum value is reached at the
beginning of the tube since at this point the parti-
cle densities N̄1 and N̄2 or equivalently the volume
V̄ reach the highest values. Thus, a large number of
variations of possible tube configurations is allowed.
In turn, for high packing densities φ or equivalently,

Fig. 6. Density ρ is given for d
σ

= 1
4
and ω̂ = 0,

0.1, 0.5, 2, ∞. The mass density shows different
behaviour for ω̂ = 0 and ω̂ 6= 0. Increasing ω̂ leads
to a decreasing mass density due to an increasing
number of tags.

Fig. 7. Packing factor φ is given for d
σ

= 1
4
and

ω̂ = 0, 0.1, 0.5, 2, ∞. The packing factor shows
different behaviour for ω̂ = 0 and ω̂ 6= 0. Increasing
rotation ω̂ leads to a decreasing packing factor.
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Fig. 8. The entropy S̄ is given in dependence of
the (a) pressure p̂ and (b) packing factor φ for
d
σ

= 1
4
and ω̂ = 0, 0.1, 0.5, 2, ∞. The different

S̄ behaviour is shown for ω̂ = 0 and ω̂ 6= 0. Increas-
ing ω̂ leads to an increasing entropy. At S̄ = 0 the
volume is V̄ = 0 and the system consists entirely
of the pseudo-vacuum, i.e., N̄1 = N̄2 = 0. At the
maximum of the black curve the population densi-
ties of the quasiparticles are N̄1 = 1

4
and N̄2 = 0.

Hence, at this point a quarter of the system con-
sists of particle 1 while 3

4
of the system are given

by the pseudo-vacuum. The maximum of the en-
tropy lies at ln(2). Here, half of the system consists
of the pseudo-vacuum. However, the other half is
splitted evenly into particle 1 and particle 2, i.e.,
N̄1 = N̄2 = 1

4
.

when the quasiparticles are completely replaced by
the pseudo-vacuum, the entropy S̄ vanishes. Re-
markably, the entropy shows a similar course as in
previous publications [61], even though fundamen-
tally different methods were used in these studies.
This confirms, in fact, that the presented approach
is justified.

4.6. Compactivity

Compactivity, which is the inverse slope of the
entropy S̄ with respect to the volume V̄ , is defined
by X = ∂V̄

∂S̄
for jammed macrostates depending on

only one intensive variable [36]. The compactivity
describes the intensity of uniform arbitrary agita-
tions of the configuration.

The entropy S̄ depending on volume V̄ is a con-
cave function starting at 0 for V̄ = 0 and ending
at 3

4 ln(3) − 1
2 ln(2) or ln(2) for ω̂ = 0 or ω̂ 6= 0,

respectively. Its final slope is zero while its initial
slope is infinite for ω̂ 6= 0. For ω̂ = 0, the initial
slope is (ln

(
4
3

)
)−1. Hence, the reciprocal compactiv-

ity X−1 varies accordingly and it can be simplified
as follows

X−1 =



2 ln

(
cosh(p̂)(1+ep̂)

2

ep̂(1+cosh(p̂))
√

1+2 cosh(p̂)

)
+O

(
ω̂2
)
,

ω̂ � 1,

p̂,

ω̂ � 1
(34)

for small and large rotations ω̂. The compactiv-
ity shows a p̂ + O (1) behaviour for p̂� 1 while
ln( 4

3 ) +O
(
p̂2
)
or
(
1 + d

σω̂2

)
p̂+O

(
p̂2
)
is found for

p̂� 1 and ω̂ = 0 or ω̂ 6= 0, respectively. The re-
ciprocal compactivity X−1 diverges for large pres-
sures p̂ and its behaviour is depicted in Fig. 9a.
Moreover, the dependence on the packing factor
and entropy are shown in Fig. 9b and c, respec-
tively. We recognize the well-known tendency of the
system to become particularly unstable in perfectly
ordered configurations. Specifically, there is a diver-
gence for the maximum of the packing factor given
in (29), i.e., when the complete system consists of
the pseudo-vacuum. In analogy, the reciprocal com-
pactivity X−1 diverges for S̄ = 0.

Fig. 9. Reciprocal compactivity X−1 in depen-
dence of (a) pressure p̂, (b) packing factor φ and
(c) entropy S̄ for d

σ
= 1

4
and ω̂ = 0, 0.1, 0.5, 2,

∞. For large pressure p̂ it behaves linear while it
is 0 for p̂ = 0 and ω̂ 6= 0. However, ln( 4

3
) is found

for p̂ = ω̂ = 0. A transition for ω̂ = 0 and ω̂ 6= 0
is observable. Moreover, X−1 diverges for the maxi-
mum value of the packing factor φ and the minimum
value of the entropy S̄ = 0.
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4.7. Population correlations
Normalized population correlations introduced

in [62] and applied to the set of quasiparticles in
this study are given as

ρmn =
w (1 + w)√
N̄mN̄n

2∑
k=1

G−1
mkG

−1
nk N̄k. (35)

Note that ρmn = ρnm holds. Hence, the three rele-
vant population correlations are expressed as

ρ11 =
e3p̂ +Rω
Rω (1 + ep̂)

√
N̄1N̄2, (36)

ρ12 =
e2p̂ −Rω

(
2 + ep̂

)
Rω (1 + ep̂)

√
N̄1N̄2, (37)

ρ22 =
ep̂ +Rω

(
2 + ep̂

)2
Rω (1 + ep̂)

√
N̄1N̄2 (38)

For small or large rotations ω̂, we find

ρ11 =


e
7p̂
2

ω̂(1+ep̂)3

√
dp̂
σ +O (ω̂) , ω̂ � 1,

e
p̂
2 (1−ep̂+e2p̂)

(1+ep̂)2
+O

(
ω̂−2

)
, ω̂ � 1,

(39)

ρ12 =


e
5p̂
2

ω̂(1+ep̂)3

√
dp̂
σ +O (ω̂) , ω̂ � 1,

e
p̂
2 (ep̂−2)
(1+ep̂)2

+O
(
ω̂−2

)
, ω̂ � 1,

(40)

ρ22 =


e
3p̂
2

ω̂(1+ep̂)3

√
dp̂
σ +O (ω̂) , ω̂ � 1,

e
p̂
2 (4+ep̂)
(1+ep̂)2

+O
(
ω̂−2

)
, ω̂ � 1.

(41)

For small rotations ω̂ and small pressures p̂ all pop-

ulation correlations simplify to 1
8ω̂

√
dp̂
σ +O(p̂

3
2 ω̂−1)

and diverge for ω̂ = 0. However, small pressures p̂
and ω̂ 6= 0 leads to ρ11 = 1

4 +O (p̂), ρ12 = − 1
4 +O (p̂)

and ρ22 = 5
4 +O (p̂). Moreover, the population cor-

relations behave for large pressures p̂ as

ρ11 =
1

ω̂

√
dp̂

σ
e
p̂
2 +O

(√
p̂e−p̂/2

)
, (42)

ρ12 =
1

ω̂

√
dp̂

σ
e−

p̂
2 +O

(√
p̂e−3p̂/2

)
, (43)

ρ22 = ω̂

√
σ

dp̂
e−

p̂
2 +O

(√
p̂e−3p̂/2

)
. (44)

The population correlations (36)–(38) and their
respective behaviour analytically described by
(39)–(44) are depicted in Fig. 10a–c.

The curve of the population correlation ρ11 shows
that the quasiparticle of species 1 is subjected
to strong fluctuations as the pressure p̂ increases,
which leads to an increasing population correlation
ρ11. In addition, the population correlation ρ12 is
zero if(

1 +
dp̂

σω̂2

)
e2p̂ − ep̂ − 2 = 0 (45)

holds. For ω̂ →∞, we find p̂ = ln(2) as a root. This
means that the population correlation changes its

Fig. 10. Population correlations (a) ρ11, (b) ρ12
and (c) ρ22 in dependence of p̂ for d

σ
= 1

4
and

ω̂ = 0.1, 0.5, 2, ∞ are shown. The negative correla-
tion in ρ12 for small p̂ occurs due to the tearing off
of longer chains by the insertion of a quasiparticle
of species 1.

sign for sufficiently large pressure p̂. At the begin-
ning of the tube, it is initially negative. Afterwards,
the population correlation ρ12 changes its sign for
sufficiently high pressure p̂, until it vanishes due to
the absence of quasiparticles. As far as the pres-
sure p̂ is large, species 2 is stable and relatively
frequent. Let us assume that a chain of particles
of species 2 exists. A particle of type 1 leads in-
evitably to the rupture of this chain. The correlation
is then partly negative. In the deeper tube region,
the quasiparticles become rarer and there are no
chains. In this case, particle 2 always benefits over
the first species and the correlation is positive. Ad-
ditionally, when it comes to combinations, there are
much more possibilities for quasiparticle 2 to appear
in the system if the number of quasiparticles 1 is
sufficient. Hence, the population correlation ρ22 de-
creases. Furthermore, the curve for small rotations
ω̂ shows a minimum and a maximum due to infinite
ρ22 for ω̂ = 0. Small pressure p̂ leads to strong posi-
tive correlations due to the existence of many quasi-
particles of species 2. If quasiparticle 2 is very rare,
it benefits especially strongly from the existence of
quasiparticle 1 because it becomes more frequent in
combination.

395



Y. Öz

4.8. Analyses of limiting cases

Here, a narrow tube with height H and hard,
friction-free disks with diameters σ are considered,
and 1 < H

σ < 1 +
√

3
2 holds such that only near-

est neighbours interact. The other regimes, i.e.,
1 +

√
3

2 < H
σ < 2 and H

σ > 2 exist as well. The
latter requires a nonlocal jamming condition, while
the beforementioned leads to 32 different disk ar-
rangements. For these two regimes one need to ad-
just (15) and (16) with novel sets of quasiparticles.
Hence, the limits:

• H
σ → 1+ (disk diameter equals container di-
ameter),

• H
σ →

(
1 +

√
3

2

)−
(disk diameter allows only

nearest neighbour interactions),

• H
σ →

(
1 +

√
3

2

)+

(disk diameter allows addi-
tional interactions),

• H
σ → 2− (two disks fit side by side in the
container),

• H
σ → 2+ (disks can pass each other)

describe the crossovers between the regimes. Within
the scope of this study H

σ → 1+ and H
σ → (1+

√
3

2 )−

can be studied.
On one hand, for disks with diameters equal to

the tube height, i.e., H
σ → 1+, the packing factor

in (27) leads to

lim
H
σ→1+

φ =
π

4
. (46)

while results for the population densities
limH

σ→1+ |N̄〉, the volume limH
σ→1+ V̄ , the mass

density limH
σ→1+ ρ, the entropy limH

σ→1+ S̄, the
compactivity limH

σ→1+ X and the population
correlations limH

σ→1+ ρmn (m,n = 1, 2) simplify to
expressions given in (19) in addition to (20), (24),
(26), (33), (34) and (39)–(41) for infinitely large

Fig. 11. Volumes V̄ for H
σ
→ 1+ (black curve) and

H
σ
→ (1 +

√
3
2

)− with ω̂ = 0 (gray curve), 0.1 (red
curve), 0.5 (green curve), 2 (blue curve),∞ (orange
curve) are depicted. Curves for H

σ
→ 1+ and ω =∞

lie on top of each other while results for H
σ
→ (1 +

√
3

2
)− are decreased in comparison to the volume

presented in Fig. 5 for H
σ

= 3
2
.

Fig. 12. Densities ρ for H
σ
→ 1+ (black curve) and

H
σ
→ (1 +

√
3

2
)− with ω̂ = 0 (gray curve), 0.1 (red

curve), 0.5 (green curve), 2 (blue curve),∞ (orange
curve) are depicted. Curves for H

σ
→ 1+ and ω =∞

lie on top of each other while results for H
σ
→ (1 +

√
3

2
)− are increased in comparison to the density

presented in Fig. 6 for H
σ

= 3
2
.

Fig. 13. Packing factors φ for H
σ
→ 1+ (black

curve) and H
σ
→ (1+

√
3

2
)− with ω̂ = 0 (gray curve),

0.1 (red curve), 0.5 (green curve), 2 (blue curve),∞
(orange curve) are depicted.

Fig. 14. Entropy S̄ for H
σ
→ 1+ (black curve) and

H
σ
→ (1 +

√
3

2
)− with ω̂ = 0 (gray curve), 0.1 (red

curve), 0.5 (green curve), 2 (blue curve),∞ (orange
curve) are depicted. Curves for H

σ
→ 1+ and ω =∞

lie on top of each other.

scaled rotation ω̂ =∞, respectively. The result (46)
for the packing factor corresponds to the trivial
geometric expectation. Complementary, disks with
diameters equal to the container diameter corre-
spond to disks under infinitely large scaled rotations
(ω̂ =∞) since, as expected, the disks are pinned to
one side of the tube which resembles stacked disks.
Only the packing factor φ varies as shown in (46).
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Fig. 15. Reciprocal compactivities X−1 for H
σ
→

1+ (black curve) and H
σ
→ (1 +

√
3

2
)− with ω̂ = 0

(gray curve), 0.1 (red curve), 0.5 (green curve), 2
(blue curve),∞ (orange curve) are depicted. Curves
for H

σ
→ 1+ and ω = ∞ lie on top of each other.

The packing factor is constantly π/4 for H
σ
→ 1+.

On the other hand, in the limiting case H
σ →

(1 +
√

3
2 )−, one obtains results similar to Figs. 5–9,

depicted in Figs. 11–15. The population correlation
N̄1 remains unchanged since it does not depend
on H

σ . The value of N̄2 decreases for Hσ → (1+
√

3
2 )−

leading to a decreasing V̄ but increasing σρ
µ . In fact,

this is in agreement with the geometric expectation
resulting from decreasing disk diameters σ.

5. Conclusions

The framework of this study is based on the
generalized Pauli Principle. The statistical mechan-
ics established for quantum many-body systems is
used for classical quasiparticles. In this context, it
is assumed that the jammed macrostates are gen-
erated by uniform random agitations and control-
lable by some variables, i.e., scaled pressure p̂ and
rotation ω̂.

The explicit results of this study, obtained rig-
orously from the structure of the configurational
statistics, lead to a situation wherein these results
can be examined by use of experiments, simulations
and other basic theories. An exemplary compari-
son of the obtained entropy S̄ with the previous
results [61] was performed. Especially, the simplic-
ity of the presented analysis (due to the considera-
tion of only flat, rigid, frictionless disks in a narrow
tube) combined with the complex results make the
model of this study particularly suitable for these
purposes.

Apart from this observation, external fields give
characteristic profiles for the volume V̄ , mass den-
sity ρ, packing factor φ, entropy S̄ and compactivity
X of the granular matter. In the presented model
jamming occurs due to the local pressure p (z) in
a uniform gravitational field parallel to the tube
in the z direction and rotation ω. The beforemen-
tioned properties of the granular matter in addition
to the characteristics (population densities

∣∣N̄〉 and
population correlations ρ11, ρ12, ρ22) of the quasi-
particles were determined. Remarkably, this simple

framework with just one host and one tag leads to
involved results for complex systems which typi-
cally show different behaviour for vanishing rota-
tion ω̂ = 0 in comparison to finite rotations ω̂. Es-
pecially the entropy S̄ is of great interest. In de-
pendence of the volume V̄ it starts at S̄ = 0 with
infinite slope and ends at ln(2) for ω̂ 6= 0 while it
starts at S̄ = 0 with the finite initial slope [ln

(
4
3

)
]−1

and ends at 3
4 ln (3)− 1

2 ln(2) for vanishing rotations
ω̂ = 0. In addition, the entropy S̄ exhibits concave
behaviour. Accordingly, the compactivity X varies
between X = 0 at V̄ = 0 and X = ∞ at V̄ = 1

2
for ω̂ 6= 0. Thus, it is a measure for the magni-
tude with which the system is arbitrarily agitated
to yield a distinct jammed macrostate. Application
of strong random agitations leads to a highly com-
pressible state with exceedingly large volume V̄ . In
contrast, shaking the matter with a smaller magni-
tude leads to a more compact and less compressible
jammed macrostate.

Complementary to these results, the presented
framework should be considered as a first step since
by considering the entropy S̄ it was shown that even
such a simple system that is exactly solvable can fit
to results of complex systems. Obviously, it is open
to further improvement with other effects like dif-
ferent configurations caused by use of 1 +

√
3

2 <
H
σ < 2 or H

σ > 2 leading to novel sets of quasi-
particles, friction, varying axis orientation, masses
and radii.
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