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A system of optimal biaxial molecules placed at the sites of a cubic lattice is studied in an extended
Lebwohl–Lasher model. Molecules interact only with their nearest neighbors through the pair potential
that depends on the molecule orientations. It is known that in a homogeneous system there is a di-
rect second-order transition from the isotropic to the biaxial nematic phase, however the properties of
confined systems are less known. In the present paper, the lattice has periodic boundary conditions
in the X and Y directions and has two walls with planar anchoring, perpendicular to the Z direc-
tion. We have investigated the model using Monte Carlo simulations on Nx × Ny × Nz lattices, for
Nx = Ny = 10, 16, Nz from 3 to 19, with and without mirror symmetry. This study is complementary
to the statistical description of hard spheroplatelets near a hard wall (Phys. Rev. E 89, 062503 (2014)).
The temperature dependence of the order-parameter profiles between walls is calculated for many cases
of wall separations. For large wall separations, there are surface layers with biaxial ordering on both
walls (≈ 4–5 lattice constants wide) and, beyond the surface layers, the order parameters have values
as in a homogeneous system. For small wall separations, the isotropic–biaxial transition is shifted and
the surface layers are thinner. Above the isotropic–biaxial transition the preferable orientations in both
surface layers can be different. It is interesting that planar anchoring for biaxial molecules leads to
uniaxial interactions on the wall. As a result, we get the planar Lebwohl–Lasher model with additional
(biaxial) interactions with neighbors from the second layer, where the Kosterlitz–Thouless transition is
present on the wall.

topics: liquid crystals, biaxial nematics, Monte Carlo simulations

1. Introduction

Biaxial nematic phases are characterized by
an orientational order along three perpendicular di-
rections (L,M ,N) and by the existence of three
distinct optical axes. Such phases were first pre-
dicted by Freiser in 1970 [1]. Later, biaxial phases
have been studied by mean field theory [2–4], count-
ing methods (a generalization of Flory’s lattice
model) [5, 6], bifurcation analysis [7], and other
methods including computer simulations [8–10].
Motivation for these studies ranges from purely aca-
demic interest to the potential usage of biaxial ne-
matics in displays with improved response times
and better viewing characteristics [11, 12]. It was
found that switching of the secondary axis is up
to an order of magnitude faster than that of the
principal axis.

Straley obtained a phase diagram for a system of
biaxial molecules using mean field theory [2]. He
showed that four order parameters are necessary
to describe ordered phases with biaxial molecules.

The same was confirmed by Mulder who also de-
rived the analytical formula for the excluded vol-
ume for a pair of spheroplatelets which are biaxial
objects [13].

The first theories predict that a system of bi-
axial molecules can exhibit four phases, depending
on the molecular biaxiality, i.e., positive uniaxial
phase (NU+, with prolate molecules), negative uni-
axial phase (NU−, with oblate molecules), biaxial
phase (NB), and isotropic phase (I). The nematic–
isotropic phase transition is weakly first order
and becomes continuous at the point of maximum
molecular biaxiality. At this point there is a direct
transition from the biaxial to the isotropic phase.

Later theories have showed that the phase tran-
sitions to the biaxial phase can be either first or
second order with the possibility of several critical
points and reentrant biaxial nematic phases [14]. In
some phase diagrams three different biaxial phases
were identified, where two additional biaxial phases
were connected with mixtures of rodlike and plate-
like molecules [15].
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2. Previous computer studies

2.1. Lattice models

The Lebwohl–Lasher (LL) model is a lattice ver-
sion of the Maier–Saupe model of anisotropic liquids
with uniaxial molecules [16, 17]. A weak first-order
nematic–isotropic phase transition was found in the
three-dimensional model at T ∗ = 1.1232(1) for lat-
tice sizes up to 28× 28× 28 [18]. Pretransitional
fluctuations of the LL model were studied by Gre-
eff and Lee [19]. A large lattice of 120 × 120 × 120
was studied on a parallel supercomputer and the
temperature dependence of energy, order parameter
and heat capacity was obtained with greater accu-
racy [20]. The effect of an external field on a nematic
system was also investigated and a change in the
character of the transition from the first to the sec-
ond order with the disappearance of the transition
at a critical point was observed.

A biaxial version of the LL model was studied
by Biscarini et al. [21]. They determined the phase
diagram of the lattice model for varying biaxiality.
The full set of four second rank order parameters
was calculated for the first time and the differences
from mean field theory were discussed.

2.2. Molecules at interface

The properties of the nematic–isotropic phase
transition in thin nematic films were studied for the
first time by Sheng [22]. He used the Landau–de
Gennes theory to show the existence of a critical
film thickness below which the transition from the
nematic phase to the isotropic phase becomes con-
tinuous. Later, this framework was used to describe
a boundary-layer phase transition that occurs at
temperatures higher than the bulk-transition tem-
perature [23].

A thin cell with hard spherocylinders was studied
by Mao et al. [24]. Spherocylinders are composed of
cylinders of a length L, a diameter D, and hemi-
spherical end caps. Grand canonical Monte Carlo
simulations (MC) were used to investigate the effect
of finite aspect ratio L/D in density profiles and in
order parameters (L/D = 10, 20). The wall effect
penetrated the bulk to a distance of order L. No
biaxial order was present if the phase was isotropic
in bulk in the simulated system. In the next paper
by Mao et al. [25] the depletion force was studied
in the confined geometry of two parallel plates.

In 2000, van Roij et al. [26, 27] investigated the
phase behavior of hard-rod fluid near a single wall
and confined in a slit pore. A wall-induced sur-
face transition was observed from uniaxial to biaxial
symmetry, as well as complete orientational wetting
of the wall-isotropic fluid interface by the nematic
film. Theoretical analysis was done by employing
Zwanzig’s rod model where the molecules are re-
stricted to orientations which are parallel to one of
the Cartesian coordinate axes. The results were con-
firmed by Monte Carlo simulations of a fluid of hard
spherocylinders with L/D = 15 [28].

Liquid crystals confined between parallel walls
were studied by Allen [29]. Numerical simulations
were compared with the theoretical predictions of
Onsager’s density functional theory. Several differ-
ent anchoring conditions on the wall-nematic inter-
face were investigated. In all cases, the principal ef-
fect of increasing the average density is to increase
the surface film thickness.

A density functional treatment of a hard Gaus-
sian overlap fluid confined between two parallel hard
walls was presented by Chrzanowska et al. [30]. For
uniaxial particles of elongation 5, the density and
order parameter profiles were obtained in the On-
sager approximation. The surface layers of thickness
about half of the particle length were present with
uniaxial and biaxial order for the isotropic and uni-
axial bulk phase, respectively.

The effect of the incomplete interaction on the
nematic–isotropic transition at the nematic-wall in-
terface was studied by Batalioto et al. [31]. They
used an extended Maier–Saupe approach with ad-
ditional interactions with the wall. In this frame-
work, the existence of a boundary layer was demon-
strated, in which the order parameter can be greater
or smaller than that in the bulk, depending on the
relation between the strength of the surface and ne-
matic potentials.

The equilibrium phase behavior of a confined
rigid-rod system was studied by Green et al. [32].
The distribution functions for stable and unstable
equilibrium states were computed as a function of
the system density and the width of the system. The
surprising conclusion was that the introduction of
walls perturbs the stability limits for any system
width which means that walls always impact the
interior of systems.

Aliabadi et al. [33] examined the ordering prop-
erties of rectangular hard rods on a single planar
wall and between two parallel hard walls using
the second virial density functional theory in the
Zwanzig approximation [33]. The most interesting
finding for the slit pore is the first-order transi-
tion from the surface ordered isotropic to the cap-
illary nematic phase. This transition weakens with
decreasing pore width and terminates in a critical
point.

A system of hard spheroplatelets near a hard
wall was studied in the low-density Onsager ap-
proximation by Kapanowski and Abram [34]. The
spheroplatelets had optimal shape between rods and
plates, and the direct transition from the isotropic
to the biaxial nematic phase was present in the bulk.
For the one-particle distribution function ρ(z,R),
a simple approximation was used and as a result,
outside the surface layer the order parameters were
equal to their bulk values. The width of the surface
layer was equal to the half of the molecule diagonal
length. Biaxiality close to the wall appeared only if
the phase was biaxial in the bulk. For the case of
the isotropic phase in the bulk, the phase near the
wall was uniaxial (oblate).
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Our aim in the present paper is to get more re-
alistic order parameter profiles between two walls
and check the width of the interfacial region for the
system of biaxial molecules with a direct transition
from the isotropic to the biaxial nematic phase. This
paper is organized as follows. The lattice model of
biaxial molecules is described in Sect. 3. In Sect. 4,
we present the results of Monte Carlo simulations of
the homogeneous and confined systems and Sect. 5
contains the summary.

3. System

We have considered a system of optimal biax-
ial molecules placed at sites of the cubic lattice
Nx ×Ny ×Nz. The optimal hard biaxial molecules
have the shape between the rods and the plates, and
the direct transition from the isotropic to the biaxial
nematic phase is present in the bulk. In our model,
the molecule shape can be inferred indirectly from
the interactions but the key feature is the direct
I–NB transition. The orientation of a rigid molecule
can be determined by several methods, i.e, by the
three Euler angles R = (φ, θ, ψ); by the three or-
thonormal vectors (l,m,n), by the orthogonal ro-
tation matrix; and by the unit quaternion [35]. We
are using quaternions in simulations because they
are compact, stable numerically, and we do not have
to use trigonometric functions which are computa-
tionally expensive. Our calculations are based on
the second rank pair potential [3, 21], i.e.,

U(Rij) = −εij
[
F

(2)
00 (Rij) + λF

(2)
02 (Rij)

+λF
(2)
20 (Rij) + λ2F

(2)
22 (Rij)

]
, (1)

where Rij is the relative orientation of the molecule
pair, εij is equal to a positive constant ε for the near-
est neighbors, and zero otherwise. The biaxiality pa-
rameter λ accounts for the deviation from the cylin-
drical molecular symmetry. For λ = 0, the Lebwohl–
Lasher model is recovered. The value λ = 1/

√
3

marks the boundary between a system of prolate
(λ < 1/

√
3) and oblate molecules (λ > 1/

√
3). In

our study, we focus on the most biaxial molecules
so λ = 1/

√
3. Note that λ =

√
2λ′, where λ′ was

used in [21]. The difference comes from different def-
initions of symmetry-adapted functions. The func-
tions F (j)

µν are defined in [36] and they are related
to Wigner functionsD(j)

µν . The most important func-
tions are

F
(2)
00 (R) = P2(nz), (2)

F
(2)
02 (R) =

√
3

3

[
P2(lz)− P2(mz)

]
, (3)

F
(2)
20 (R) =

√
3

3

[
P2(nx)− P2(ny)

]
, (4)

F
(2)
22 (R) =

1

3

[
P2(lx) + P2(my)

−P2(mx)− P2(ly)
]
, (5)

where P2(x) is the second Legendre polyno-
mial. For the completely ordered system with all
molecule orientations parallel to the walls, we get
U = −3Nε(1 + λ2), where N = NxNyNz is the
number of molecules (lattice sites).

We have performed Monte Carlo simulations with
the following three different boundary conditions.

1. Periodic boundary conditions in the three di-
rections are for the homogeneous system.

2. Periodic boundary conditions in the two di-
rections X,Y , and the two walls at z = 0
and z = (Nz − 1)a with planar anchoring are
for the confined systems, and a is the lattice
constant. The distance between the walls is
Lz = (Nz − 1)a. In fact, we also get a periodic
condition here in the Z direction, because we
use the constant term for the missing neighbor
on both walls.

3. Periodic boundary conditions in the two di-
rections X,Y , the wall at z = 0 with pla-
nar anchoring, and mirror symmetry applied
at z = (Nz − 1)a. This corresponds to Lz =
2(Nz − 1)a, but less computer resources are
needed for simulations.

It appeared that in the case 3 we cannot update
the system energy in the same way as in the cases 1
and 2, namely, molecules at z = (Nz − 1)a and
z = (Nz − 2)a have to be analyzed separately. That
is why we focus on the cases 1 and 2. Planar anchor-
ing on the walls is motivated by the fact that elon-
gated molecules can be closer to the wall only if they
are parallel to it. On the other hand, the isotropic-
nematic interface favors planar anchoring [29].

Now, let us determine the order parameters and
their temperature dependence. In computer simu-
lations of homogeneous systems, three tensors are
typically used [8, 21]

Qllαβ =
3

2N

N∑
i=1

(
liαl

i
β −

1

3
δαβ

)
, (6)

Qmmαβ =
3

2N

N∑
i=1

(
mi
αm

i
β −

1

3
δαβ

)
, (7)

Qnnαβ =
3

2N

N∑
i=1

(
niαn

i
β −

1

3
δαβ

)
. (8)

Through the tensors diagonalization one could de-
termine the order parameters according to the pro-
cedure described in [21]. A nontrivial problem is to
find a consistent way of assigning the three eigen-
values to the X,Y, Z axes. In our confined systems,
all three tensors Qllαβ , Q

mm
αβ , Qnnαβ are calculated in-

dependently for all layers parallel to the walls. Then
the Z axis is always perpendicular to the walls, and
theX axis is parallel to the walls and corresponds to
the maximum eigenvalue of the tensor Qnnαβ . Finally,
the four order parameters 〈F (2)

µν 〉 are calculated

〈F (2)
00 〉 = Qnnzz = −Qllzz −Qmmzz , (9)
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TABLE I

Order parameters (OP) for the completely ordered systems. Orientations used for the homogeneous and the
confined systems are marked.

OP
N ||Z,L||X

(homogeneous)
N ||Z,L||Y

N ||X,L||Z
(confined)

N ||X,L||Y N ||Y,L||Z N ||Y,L||X

〈F (2)
00 〉 1 1 −1/2 −1/2 −1/2 −1/2

〈F (2)
02 〉 0 0

√
3/2 −

√
3/2

√
3/2 −

√
3/2

〈F (2)
20 〉 0 0

√
3/2

√
3/2 −

√
3/2 −

√
3/2

〈F (2)
22 〉 1 −1 1/2 −1/2 −1/2 1/2

√
3〈F (2)

02 〉 = Qllzz −Qmmzz =

−Qllxx −Qllyy +Qmmxx +Qmmyy , (10)

√
3〈F (2)

20 〉 = Qnnxx −Qnnyy =

−Qllxx −Qmmxx +Qllyy +Qmmyy , (11)

3〈F (2)
22 〉 = Qllxx +Qmmyy −Qllyy −Qmmxx . (12)

Note that the same order parameters must have
the same values in all the ways they are computed.
The values of the order parameters depend on the
phase orientation. For the completely ordered sys-
tem, there are six main phase orientations which are
summarized in Table I. The 〈F (2)

00 〉 order parameter
is a measure of the alignment of the n molecule axis
along the Z axis of the reference frame. The 〈F (2)

02 〉
order parameter describes the relative distribution
of the l and the m axes along the Z axis. Both
〈F (2)

00 〉 and 〈F
(2)
02 〉 can be nonzero in the uniaxial ne-

matic phase. The 〈F (2)
20 〉 order parameter describes

the relative distribution of the n axis along the X
and the Y axes. The 〈F (2)

22 〉 order parameter is re-
lated to the distributions of the l and m axes along
the X and the Y axes. Both 〈F (2)

20 〉 and 〈F
(2)
22 〉 signal

the biaxiality of the phase.

4. Results

Prior to studying the confined systems, we have
calculated the homogeneous bulk system and the
temperature dependence of the order parameters,
as shown in Fig. 1. We have performed MC simula-
tions on 10× 10× 10 and 16× 16× 16 lattices with
periodic boundary conditions in all three directions.
The temperature step was typically 0.1 and 0.01
near the I–NB transition. We have used 104 lattice
cycles for warm-up and 104 cycles for production,
where a cycle is N attempted moves. Sometimes
105 cycles were used as an additional check. We
started from the ideal configuration at the lowest
temperature, then the last configuration for a given
temperature was used as the initial configuration
for the next temperature. Figure 1 shows that the
biaxial–isotropic transition is near T ∗ = 1.2(1), in

Fig. 1. Order parameters 〈F (j)
µν 〉 (Fjµν in the pic-

ture) vs temperature for the homogeneous system.
Results obtained from 16 × 16 × 16 MC (no walls)
for λ = 1/

√
3. The biaxial–isotropic transition is

near T ∗ = 1.2(1). Large fluctuations of the order
parameters are present below the transition point.

Fig. 2. The profiles of 〈F (2)
00 〉 as functions of z

for the confined system between two walls. Results
obtained from 10 × 10 × 11 MC (two walls) for
λ = 1/

√
3. The isotropic phase in the bulk is present

for T ∗ ≥ 1.3.

agreement with [21], and T ∗ = kBT/ε is the dimen-
sionless temperature, where kB is the Boltzmann
constant. The energy of the homogeneous system is
always negative and it is an increasing function of
temperature.

Let us move to the description of the confined
systems. We have performed MC simulations on
10×10×Nz lattices, Nz from 3 to 19, with periodic
boundary conditions in the X,Y directions and two
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Fig. 3. The profiles of 〈F (2)
02 〉 as functions of z

for the confined system between two walls. Results
obtained from 10 × 10 × 11 MC (two walls) for
λ = 1/

√
3. The isotropic phase in the bulk is present

for T ∗ ≥ 1.3.

Fig. 4. The profiles of 〈F (2)
20 〉 as functions of z

for the confined system between two walls. Results
obtained from 10 × 10 × 11 MC (two walls) for
λ = 1/

√
3. The isotropic phase in the bulk is present

for T ∗ ≥ 1.3. Different preferable orientations on
the walls are visible for high temperatures.

parallel walls with planar anchoring. Figures 2–5
show the order parameters 〈F (2)

µν 〉 profiles for the
lattice system 10 × 10 × 11. In the isotropic phase
(T ∗ > 1.3), the order parameters are almost zero
except in the surface layers of the length of ap-
proximately 4–5 lattice constants. Near the walls,
long molecule axes are nearly parallel to the walls
and this yields 〈F (2)

00 〉 < 0, with the expected
limit of −1/2 on the walls. On decreasing temper-
ature, a transition takes place to the biaxial ne-
matic phase, at which all order parameters become
finite beyond the surface layers. Snapshots of simu-
lation configurations in the biaxial nematic and in
the isotropic phases are given in Fig. 6 and 7, re-
spectively. In the biaxial nematic phase, the prefer-
able orientation of molecules on both walls is the
same, although it is changing during computations.
In the isotropic phase, different preferable orienta-
tions on the walls are common which is visible in
the snapshots and the order parameter profiles. We
note that this effect cannot be obtained using the
boundary conditions with mirror symmetry.

Fig. 5. The profiles of 〈F (2)
22 〉 as functions of z

for the confined system between two walls. Results
obtained from 10 × 10 × 11 MC (two walls) for
λ = 1/

√
3. The isotropic phase in the bulk is present

for T ∗ ≥ 1.3. Different preferable orientations on
the walls are visible for high temperatures.

Fig. 6. A snapshot of simulation configuration
(Y Z layer) in the biaxial nematic phase at T ∗ = 0.5
for the confined system between two walls. Results
obtained from 10 × 10 × 11 MC (two walls) for
λ = 1/

√
3. Long molecule axes are parallel to the Y

axis, short molecule axes are parallel to the Z axis.

Fig. 7. A snapshot of simulation configuration
(Y Z layer) in the isotropic phase at T ∗ = 1.5 for
the confined system between two walls. Results ob-
tained from 10 × 10 × 11 MC (two walls) for λ =
1/
√
3. The preferred orientations of the molecules

on both walls (the left and the right columns) are
different.
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Fig. 8. Temperature dependence of the order pa-
rameter 〈F (2)

00 〉 for the confined systems between two
walls in the cell center. The homogeneous system
has a 10× 10× 10 lattice.

Fig. 9. Temperature dependence of the order pa-
rameter 〈F (2)

02 〉 for the confined systems between two
walls in the cell center. The homogeneous system
has a 10× 10× 10 lattice.

Fig. 10. Temperature dependence of the order pa-
rameter 〈F (2)

20 〉 for the confined systems between two
walls in the cell center. The homogeneous system
has a 10× 10× 10 lattice.

Figures 8–11 show the temperature dependence
of the order parameters in the cell center. The
temperature of the isotropic–biaxial transition is
shifted but for Nz > 10 it is almost the same as
in the homogeneous system. From this point the
surface layers are separated and they have both
biaxial nematic ordering (〈F (2)

22 〉 is nonzero). We
note a small discrepancy between the results for the

Fig. 11. Temperature dependence of the order pa-
rameter 〈F (2)

22 〉 for the confined systems between two
walls in the cell center. The homogeneous system
has a 10× 10× 10 lattice.

homogeneous system and for the confined systems.
This is due to finite size effects which are more pro-
nounced for the homogeneous system. We note that
the difference between the values of the order pa-
rameters calculated using different methods in (9)–
(12) is less than 10−6. For Nz = 3 and Nz = 4, the
biaxial nematic phase is present in the cell for higher
temperatures but the order parameters monotoni-
cally go to zero. We have not found any capillary
nematization transition.

5. Conclusions

In this work we have studied the order-parameter
profiles in the confined systems of optimal biaxial
molecules using Monte Carlo simulations in an ex-
tended Lebwohl–Lasher model. In the homogeneous
system, there is a direct second-order isotropic–
biaxial transition. We have studied the confined sys-
tems with two parallel walls with planar anchoring
and with different wall separations.

For large wall separations, there are surface lay-
ers on both walls with the width of ≈ 4–5 lattice
constants and beyond the surface layers the order
parameters have values as in the homogeneous sys-
tem. The ordering within the surface layers is al-
ways biaxial whereas in [34] biaxiality close to the
wall was present only if the phase was biaxial in the
bulk. The reason for this discrepancy is planar an-
choring on the walls which creates the planar (uni-
axial) Lebwohl–Lasher model with the Kosterlitz–
Thouless transition [37, 38]. In our systems, there
are additional (biaxial) interactions with neighbors
from the second layer. The partial ordering on the
walls in our finite systems creates the biaxial or-
dering in the surface layers for all temperatures.
We note that the surface transition was studied, for
uniaxial molecules and different surface couplings,
using the Landau–de Gennes approach [39, 40]. Ad-
ditional effects due to external fields were studied
in [41] but again for uniaxial molecules.

For small wall separations, the isotropic–biaxial
transition is shifted to higher temperatures and
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the surface layers are thinner. The preferable ori-
entation of the biaxial nematic phase is approxi-
mately the same near the walls and in the center of
the cell but its direction can change during simu-
lations. Above the isotropic–biaxial transition, the
preferable orientations in both surface layers can be
different.

The presented results of MC simulations re-
vealed effects which combine the properties of two-
dimensional and three-dimensional systems. Similar
results can be obtained in the case of homogeneous
anchoring where the long molecule axes are parallel
to the specified direction, the same for both walls. In
this case, the isotropic–biaxial transition is shifted
to even higher temperatures.

References

[1] M.J. Freiser, Phys. Rev. Lett. 24, 1041
(1970).

[2] J.P. Straley, Phys. Rev. A 10, 1881 (1974).
[3] G. Luckhurst, C. Zannoni, P. Nordio,

U. Segre, Mol. Phys. 30, 1345 (1975).
[4] B. Mulder, T. Ruijgrok, Physica A 113,

145 (1982).
[5] C. Shih, R. Alben, J. Chem. Phys. 57, 3055

(1972).
[6] W. Li, K.F. Freed, J. Chem. Phys. 101,

519 (1994).
[7] B. Mulder, Phys. Rev. A 39, 360 (1989).
[8] M.P. Allen, Liq. Cryst. 8, 499 (1990).
[9] P.J. Camp, M.P. Allen, J. Chem. Phys.

106, 6681 (1997).
[10] R.A. Skutnik, I.S. Geier, M. Schoen, Mol.

Phys. 118, e1726520 (2020).
[11] J.H. Lee, T.-K. Lim, W.-T. Kim, J.-I. Jin,

J. Appl. Phys. 101, 034105 (2007).
[12] R. Berardi, L. Muccioli, C. Zannoni, J.

Chem. Phys. 128, 024905 (2008).
[13] B.M. Mulder, Liq. Cryst. 1, 539 (1986).
[14] D. Allender, L. Longa, Phys. Rev. E 78,

011704 (2008).
[15] P.K. Mukherjee, K. Sen, J. Chem. Phys.

130, 141101 (2009).
[16] P.A. Lebwohl, G. Lasher, Phys. Rev. A 6,

426 (1972).
[17] U. Fabbri, C. Zannoni, Mol. Phys. 58, 763

(1986).
[18] Z. Zhang, O.G. Mouritsen, M.J. Zucker-

mann, Phys. Rev. Lett. 69, 2803 (1992).

[19] C.W. Greeff, M.A. Lee, Phys. Rev. E 49,
3225 (1994).

[20] S. Boschi, M.P. Brunelli, C. Zannoni,
C. Chiccoli, P. Pasini, Int. J. Mod. Phys.
C 08, 547 (1997).

[21] F. Biscarini, C. Chiccoli, P. Pasini, F. Se-
meria, C. Zannoni, Phys. Rev. Lett. 75,
1803 (1995).

[22] P. Sheng, Phys. Rev. Lett. 37, 1059 (1976).
[23] P. Sheng, Phys. Rev. A 26, 1610 (1982).
[24] Y. Mao, P. Bladon, H.N.W. Lekkerkerker,

M.E. Cates, Mol. Phys. 92, 151 (1997).
[25] Y. Mao, M.E. Cates, H.N.W. Lekkerkerker,

J. Chem. Phys. 106, 3721 (1997).
[26] R. van Roij, M. Dijkstra, R. Evans, Euro-

phys. Lett. 49, 350 (2000).
[27] R. van Roij, M. Dijkstra, R. Evans,

J. Chem. Phys. 113, 7689 (2000).
[28] M. Dijkstra, R. Roij, R. Evans, Phys. Rev.

E 63, 051703 (2001).
[29] M.P. Allen, J. Chem. Phys. 112, 5447

(2000).
[30] A. Chrzanowska, P.I.C. Teixeira, H. Ehren-

traut, D.J. Cleaver, J. Phys. Condens.
Matter. 13, 4715 (2001).

[31] F. Batalioto, L. Evangelista, G. Barbero,
Phys. Lett. A 324, 198 (2004).

[32] M.J. Green, R.A. Brown, R.C. Armstrong,
J. Comput. Theor. Nanosci. 7, 693 (2010).

[33] R. Aliabadi, M. Moradi, S. Varga, Phys.
Rev. E 92, 032503 (2015).

[34] A. Kapanowski, M. Abram, Phys. Rev. E
89, 062503 (2014).

[35] F.J. Vesely, J. Comput. Phys. 47, 291
(1982).

[36] A. Kapanowski, Phys. Rev. E 55, 7090
(1997).

[37] C. Chiccoli, P. Pasini, C. Zannoni, Physica
A 148, 298 (1988).

[38] E. Mondal, S.K. Roy, Phys. Lett. A 312,
397 (2003).

[39] Y. L’vov, R.M. Hornreich, D.W. Allender,
Phys. Rev. E 48, 1115 (1993).

[40] N. Kothekar, D.W. Allender, R.M. Hornre-
ich, Phys. Rev. E 49, 2150 (1994).

[41] M. Ito, M. Torikai, M. Yamashita, Mol.
Cryst. Liq. Cryst. 441, 69 (2005).

371

http://dx.doi.org/10.1103/PhysRevLett.24.1041
http://dx.doi.org/10.1103/PhysRevLett.24.1041
http://dx.doi.org/10.1103/PhysRevA.10.1881
http://dx.doi.org/10.1080/00268977500102881
http://dx.doi.org/10.1016/0378-4371(82)90012-7
http://dx.doi.org/10.1016/0378-4371(82)90012-7
http://dx.doi.org/10.1063/1.1678719
http://dx.doi.org/10.1063/1.1678719
http://dx.doi.org/10.1063/1.468162
http://dx.doi.org/10.1063/1.468162
http://dx.doi.org/10.1103/PhysRevA.39.360
http://dx.doi.org/10.1080/02678299008047365
http://dx.doi.org/10.1063/1.473665
http://dx.doi.org/10.1063/1.473665
http://dx.doi.org/10.1080/00268976.2020.1726520
http://dx.doi.org/10.1080/00268976.2020.1726520
http://dx.doi.org/10.1063/1.2433126
http://dx.doi.org/10.1063/1.2815804
http://dx.doi.org/10.1063/1.2815804
http://dx.doi.org/10.1080/02678298608086278
http://dx.doi.org/10.1103/PhysRevE.78.011704
http://dx.doi.org/10.1103/PhysRevE.78.011704
http://dx.doi.org/10.1063/1.3117925
http://dx.doi.org/10.1063/1.3117925
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1080/00268978600101561
http://dx.doi.org/10.1080/00268978600101561
http://dx.doi.org/10.1103/PhysRevLett.69.2803
http://dx.doi.org/10.1103/PhysRevE.49.3225
http://dx.doi.org/10.1103/PhysRevE.49.3225
http://dx.doi.org/10.1142/S0129183197000436
http://dx.doi.org/10.1142/S0129183197000436
http://dx.doi.org/10.1103/PhysRevLett.75.1803
http://dx.doi.org/10.1103/PhysRevLett.75.1803
http://dx.doi.org/10.1103/PhysRevLett.37.1059
http://dx.doi.org/10.1103/PhysRevA.26.1610
http://dx.doi.org/10.1080/002689797170716
http://dx.doi.org/10.1063/1.473424
http://dx.doi.org/10.1209/epl/i2000-00155-0
http://dx.doi.org/10.1209/epl/i2000-00155-0
http://dx.doi.org/10.1063/1.1288903
http://dx.doi.org/10.1103/PhysRevE.63.051703
http://dx.doi.org/10.1103/PhysRevE.63.051703
http://dx.doi.org/10.1063/1.481112
http://dx.doi.org/10.1063/1.481112
http://dx.doi.org/10.1088/0953-8984/13/21/306
http://dx.doi.org/10.1088/0953-8984/13/21/306
http://dx.doi.org/10.1016/j.physleta.2004.02.070
http://dx.doi.org/10.1166/jctn.2010.1413
http://dx.doi.org/10.1103/PhysRevE.92.032503
http://dx.doi.org/10.1103/PhysRevE.92.032503
http://dx.doi.org/10.1103/PhysRevE.89.062503
http://dx.doi.org/10.1103/PhysRevE.89.062503
http://dx.doi.org/10.1016/0021-9991(82)90080-8
http://dx.doi.org/10.1016/0021-9991(82)90080-8
http://dx.doi.org/10.1103/PhysRevE.55.7090
http://dx.doi.org/10.1103/PhysRevE.55.7090
http://dx.doi.org/10.1016/0378-4371(88)90148-3
http://dx.doi.org/10.1016/0378-4371(88)90148-3
http://dx.doi.org/10.1016/S0375-9601(03)00576-0
http://dx.doi.org/10.1016/S0375-9601(03)00576-0
http://dx.doi.org/10.1103/PhysRevE.48.1115
http://dx.doi.org/10.1103/PhysRevE.49.2150
http://dx.doi.org/10.1080/154214091009554
http://dx.doi.org/10.1080/154214091009554

