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A two-leg ladder spin-1 model is constructed and examined in terms of the exact recursion relations.
The model consists of two interchain and one intrachain bilinear exchange interaction parameters J
in addition to the single ion anisotropy parameter D and external magnetic field H. Both the fer-
romagnetic, J > 0, favoring the parallel alignment between the nearest-neighbor spins and antiferro-
magnetic, J < 0, for antiparallel alignment of the nearest-neighbor spins are considered. The thermal
and external magnetic field variations of magnetizations and susceptibilities belonging to each chain
are examined. Different regions with ferromagnetic, ferrimagnetic, antiferromagnetic, non-magnetic, or
chaotic phases are observed. Magnetization plateaus and more than one susceptibility peak are also
found.
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1. Introduction

Low-dimensional spin systems with competing
exchange interactions, J > 0, favoring ferromag-
netic (FM) phase, and J < 0, favoring antifer-
romagnetic (AFM) phase, between the spins of
given topology may lead to very high frustra-
tions. Magnetic ladders are such systems which
are mainly studied in connection with spin liq-
uids [1], superconductivity [2], thermal conductiv-
ity [3], dimerized ground state [4], low tempera-
ture magnetization with plateaus and jumps [5],
etc. It is known that there are some materi-
als such as cuprates Srn−1Cun+1O2n, Sr1−nCunO2,
and La4+4nCu8+2nO14+8n which consist of ladder
structures [6–11]. The experimental properties of
the materials such as SrCu2O3, La6Ca8Cu24O41,
and Cu2(C5H12N2)2Cl4 (CuHpCl) can be analyzed
by a two-leg Heisenberg antiferromagnet [12–14].

Theoretically, the Ising or Heisenberg two-leg lad-
ders with different topology of interactions between
the spins of a given system have also received the
scientists’ attention. The ground state properties
of a one-dimensional Ising chain with the nearest-
neighbor (NN) FM interaction Jl, and a k-th neigh-
bor AFM interaction Jk were considered [15]. The
Ising spin ladder with interchain and intrachain cou-
plings was studied to investigate its thermal be-
haviors including specific heat [16]. The Ising ap-
proximation was proposed for the Heisenberg model
with two- and three-spin exchange interactions on

a zigzag ladder and examined by using the trans-
fer matrix technique [17]. The mixed spin-12 and
spin-S (S > 1

2 ) Ising model on a rope ladder was
examined by using the decoration-iteration map-
ping transformation [18]. The magnetocaloric prop-
erties of the two-leg frustrated spin ladder sys-
tem were investigated by the use of the transfer
matrix method [19]. The ground states of frus-
trated spin-1 Ising–Heisenberg two-leg ladder were
rigorously found by taking the advantage of local
conservation of the total spin on each rung [20].
The mixed spin-( 32 , 1) ladder system with the AFM
rung coupling and the next NN interaction was
exactly solved to investigate its ground state and
thermodynamic properties [21]. The spin- 12 Ising–
Heisenberg two-leg ladder accounting for alternat-
ing Ising and Heisenberg inter-leg couplings was rig-
orously mapped onto the mixed spin-( 32 ,

1
2 ) Ising–

Heisenberg diamond chain [22]. Two types of the
Ising–Heisenberg ladders consisting of spin- 12 par-
ticles partitioned into adjoined block formed from
butterfly-shaped plaquettes were investigated by
the transfer matrix approach [23]. The dynamic
magnetic behaviors of a ferrimagnetic (FI) mixed
spin-(1, 32 ) Ising ladder-type graphene nanoribbon
in a time-dependent magnetic field were studied by
utilizing the Monte Carlo (MC) simulation [24] and
similarly the effects of the anisotropies, exchange
couplings, longitudinal magnetic field, and temper-
ature on the magnetic and thermodynamic proper-
ties were also considered [25].
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Fig. 1. Schematic diagram of a two-leg ladder: bi-
linear interaction parameter J1 is along the NN
spins of each chain, J2 is between the spins of chains
at cross positions, J3 is along the spins of each rung,
D is the crystal field and H is the external magnetic
field at each site, with σi and Sj indicating the spins
of upper and lower chains. Two branches of the lad-
der are also shown for which q = 2.

It should be mentioned that one-dimensional clas-
sical short-range models in statistical physics are
proven to be free of the order–disorder phase tran-
sitions, i.e., when the magnetizations become zero
separating the FM and paramagnetic phases. The
general nonexistence theorem for phase transitions
in one-dimensional systems with short-range inter-
actions was examined and the physical examples
of such transitions were given [26]. The failure
of the effective field theory in predicting a false
spontaneous long-range order and phase transition
of the Ising nanoparticles, nanoislands, nanotubes,
and nanowires with either zero- or one-dimensional
magnetic dimensionality was clarified [27]. In ad-
dition, the necessary conditions for the existence of
a phase transition in a one-dimensional Ising ferro-
magnet were proven [28].

In this work, a two-leg ladder spin-1 Ising model
is studied in terms of exact recursion relations
(ERR), applied for the first time to the best of our
knowledge, with two interchain and one intrachain
bilinear exchange interaction parameters, single-ion
anisotropy, and external magnetic field. The ther-
mal and H variations of magnetizations and suscep-
tibilities are examined in terms of Js and D. Very
interesting results in agreement with the literature
are found.

2. Formulation

The Hamiltonian of the two-leg ladder model in-
cludes the bilinear interaction parameter J1 along
the NN spins of each chain, the parameter between

the spins of chains at cross positions J2, the param-
eter J3 along the spins of each rung, the crystal field
D and the external magnetic field H acting to each
spin site. The Hamiltonian may be written as

Ĥ = −J1
∑

<i,i+1>

σiσi+1 − J1
∑
〈j,j+1〉

SjSj+1

−J2
∑
〈i,j+1〉

σiSj+1 − J2
∑
〈i+1,j〉

σi+1Sj

−J3
∑
〈i,j〉

σiSj −D
∑
i

σ2
i −D

∑
j

S2
j

−H
∑
i

σi −H
∑
j

Sj , (1)

where σi and Sj denote the spins of upper and lower
chains assumed to be spin-1 with the values ±1
and 0 while 〈i, j〉 indicate the summation along the
given direction as displayed in Fig. 1. The Js can be
positive or negative corresponding to the FM and
AFM phases, respectively.

In order to calculate the magnetizations belong-
ing to upper and lower chains, i.e., Mσ and MS ,
a similar exact ERR approach of the Bethe lattice
case is employed [29–32]. It should be mentioned
that the ERR approach can be applied easily to
any spin system giving results better than the mean
field approaches since it also considers the internal
structure of the given spin configuration via the co-
ordination number. First, one takes the i-th and
j-th spins of the chains along the 0th rung or the
central rung. Each rung on the ladder has always
two NN rungs.

Let us start with the partition function

Z =
∑
Spc

e−βĤ =
∑
Spc

P (Spc), (2)

where Spc refers to the spin configuration, while
β = 1/kBT and the Boltzmann constant kB is set
to 1.0. Now, if the central rung is isolated from
the others, i.e., this rung is cut from the others,
one gets an unnormalized probability distribution
P (σi, Sj) given as

P (σi, Sj) = eβJ3σiSj+βD(σ2
i+S

2
j )+βH(σi+Sj)

×
q=2∏
k=1

Qn
(
σi, Sj |{σi+1, Sj+1}k

)
, (3)

where Qn includes the rest of the interactions on the
ladder, q = 2 is the number of the NN rungs and k
refers to the branch of the ladder on which one tra-
verses along the ladder. If now the ladder is cut at
the first rung with the spins σi+1 and Sj+1one gets

Qn (σi, Sj |σi+1, Sj+1) = exp
(
βJ1(σiσi+1 + SjSj+1) + βJ2(σi+1Sj + σiSj+1) + βJ3σi+1Sj+1

)
× exp

(
βD(σ2

i+1 + S2
j+1) + βH(σi+1 + Sj+1)

) q−1∏
l=1

Qn−1
(
σi+1, Sj+1|{σi+2, Sj+2}l

)
. (4)
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In order to calculate the ERRs for given spin val-
ues, ±1 and 0, along the ladder, the first one intro-
duces a function of the form
gn(σi, Sj) =

∑
σi+1,
Sj+1

Qn (σi, Sj |σi+1, Sj+1) . (5)

Together with (4), it reads as

gn(σi, Sj) =
∑
σi+1,
Sj+1

exp
(
βJ1(σiσi+1 + SjSj+1)

)

× exp
(
βJ2(σi+1Sj + σiSj+1) + βJ3σi+1Sj+1

)
× exp

(
βD(σ2

i+1 + S2
j+1) + βH(σi+1 + Sj+1)

)
×
(
gn−1(σi+1, Sj+1)

)p
, (6)

where p = q− 1. As a result, one gets nine gn func-
tions as follows:
(i) for σi = +1, Sj = +1,

gn(+,+) = eβ(2D+2H+2J1+2J2+J3)
[
gn−1(+,+)

]p
+eβ(D+H+J1+J2)

[
gn−1(+, 0)

]p
+eβ(2D−J3)

[
gn−1(+,−)

]p
+eβ(D+H+J1+J2)

[
gn−1(0,+)

]p
+
(
gn−1(0, 0)

)p
+eβ(D−H−J1−J2)

[
gn−1(0,−)

]p
+eβ(2D−J3)

[
gn−1(−,+)

]p
+eβ(D−H−J1−J2)

[
gn−1(−, 0)

]p
+eβ(2D−2H−2J1−2J2+J3)

[
gn−1(−,−)

]p
, (7)

(ii) for σi = +1, Sj = 0,

gn(+, 0) = eβ(2D+2H+J1+J2+J3)
[
gn−1(+,+)

]p
+eβ(D+H+J1)

[
gn−1(+, 0)

]p
+eβ(2D+J1−J2−J3)

[
gn−1(+,−)

]p
+eβ(D+H+J2)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H−J2)

[
gn−1(0,−)

]p
+eβ(2D−J1+J2−J3)

[
gn−1(−,+)

]p
+eβ(D−H−J1)

[
gn−1(−, 0)

]p
+eβ(2D−2H−J1−J2+J3)

[
gn−1(−,−)

]p
, (8)

(iii) for σi = +1, Sj = −1,
gn(+,−) = eβ(2D+2H+J3)

[
gn−1(+,+)

]p
+eβ(D+H+J1−J2)

[
gn−1(+, 0)

]p
+eβ(2D+2J1−2J2−J3)

[
gn−1(+,−)

]p
+eβ(D+H−J1+J2)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H+J1−J2)

[
gn−1(0,−)

]p
+eβ(2D−2J1+2J2−J3)

[
gn−1(−,+)

]p
+eβ(D−H−J1+J2)

[
gn−1(−, 0)

]p
+eβ(2D−2H+J3)

[
gn−1(−,−)

]p
, (9)

(iv) for σi = 0, Sj = +1,

gn(0,+) = eβ(2D+2H+J1+J2+J3)
[
gn−1(+,+)

]p
+eβ(D+H+J2)

[
gn−1(+, 0)

]p
+eβ(2D−J1+J2−J3)

[
gn−1(+,−)

]p
+eβ(D+H+J1)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H−J1)

[
gn−1(0,−)

]p
+eβ(2D+J1−J2−J3)

[
gn−1(−,+)

]p
+eβ(D−H−J2)

[
gn−1(−, 0)

]p
+eβ(2D−2H−J1−J2+J3)

[
gn−1(−,−)

]p
, (10)

(v) for σi = 0, Sj = 0,

gn(0, 0) = eβ(2D+2H+J3)
[
gn−1(+,+)

]p
+eβ(D+H)

[
gn−1(+, 0)

]p
+eβ(2D−J3)

[
gn−1(+,−)

]p
+eβ(D+H)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H)

[
gn−1(0,−)

]p
+eβ(2D−J3)

[
gn−1(−,+)

]p
+eβ(D−H)

[
gn−1(−, 0)

]p
+eβ(2D−2H+J3)

[
gn−1(−,−)

]p
, (11)

(vi) for σi = 0, Sj = −1,
gn(0,−) = eβ(2D+2H−J1−J2+J3)

[
gn−1(+,+)

]p
+eβ(D+H−J2)

[
gn−1(+, 0)

]p
+eβ(2D+J1−J2−J3)

[
gn−1(+,−)

]p
+eβ(D+H−J1)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H+J1)

[
gn−1(0,−)

]p
+eβ(2D−J1+J2−J3)

[
gn−1(−,+)

]p
+eβ(D−H+J2)

[
gn−1(−, 0)

]p
+eβ(2D−2H+J1+J2+J3)

[
gn−1(−,−)

]p
, (12)

(vii) for σi = −1, Sj = +1,

gn(−,+) = eβ(2D+2H+J3)
[
gn−1(+,+)

]p
+eβ(D+H−J1+J2)

[
gn−1(+, 0)

]p
+eβ(2D−2J1+2J2−J3)

[
gn−1(+,−)

]p
+eβ(D+H+J1−J2)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H−J1+J2)

[
gn−1(0,−)

]p
+eβ(2D+2J1−2J2−J3)

[
gn−1(−,+)

]p
+eβ(D−H+J1−J2)

[
gn−1(−, 0)

]p
+eβ(2D−2H+J3)

[
gn−1(−,−)

]p
, (13)
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(viii) for σi = −1, Sj = 0,

gn(−, 0) = eβ(2D+2H−J1−J2+J3)
[
gn−1(+,+)

]p
+eβ(D+H−J1)

[
gn−1(+, 0)

]p
+eβ(2D−J1+J2−J3)

[
gn−1(+,−)

]p
+eβ(D+H−J2)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H+J2)

[
gn−1(0,−)

]p
+eβ(2D+J1−J2−J3)

[
gn−1(−,+)

]p
+eβ(D−H+J1)

[
gn−1(−, 0)

]p
+eβ(2D−2H+J1+J2+J3)

[
gn−1(−,−)

]p
, (14)

(ix) for σi = −1, Sj = −1,
gn(−,−) = eβ(2D+2H−2J1−2J2+J3)

[
gn−1(+,+)

]p
+eβ(D+H−J1−J2)

[
gn−1(+, 0)

]p
+eβ(2D−J3)

[
gn−1(+,−)

]p
+eβ(D+H−J1−J2)

[
gn−1(0,+)

]p
+
[
gn−1(0, 0)

]p
+eβ(D−H+J1+J2)

[
gn−1(0,−)

]p
+eβ(2D−J3)

[
gn−1(−,+)

]p
+eβ(D−H+J1+J2)

[
gn−1(−, 0)

]p
+eβ(2D−2H+2J1+2J2+J3)

[
gn−1(−,−)]p. (15)

Then, one can take the ratio of all the gn func-
tions with any one of them, for example gn(−,−).
Finally, one gets eight ERRs which behave like the
equation of states and are found as

X1 =
gn(+,+)

gn(−,−)
, X2 =

gn(+, 0)

gn(−,−)
,

X3 =
gn(+,−)
gn(−,−)

, X4 =
gn(0,+)

gn(−,−)
,

X5 =
gn(0, 0)

gn(−,−)
, X6 =

gn(0,−)
gn(−,−)

,

X7 =
gn(−,+)

gn(−,−)
, X8 =

gn(−, 0)
gn(−,−)

. (16)

The formula for the partition function can be ob-
tained from (2) and (3) which yields

Z=
∑
σi,Sj

eβ[D(σ2
i+S

2
j )+H(σi+Sj)+J3σiSj ]

[
gn(σi, Sj)

]q
.

(17)
Carrying out the summation over the spin values,
one gets Z in terms of the gn functions as

Z = eβ(2D+J3+2H)
[
gn(+,+)

]q
+eβ(D+H)

[
gn(+, 0)

]q
+ eβ(2D−J3)

[
gn(+,−)

]q
+eβ(D+H)

[
gn(0,+)

]q
+
[
gn(0, 0)

]q
+eβ(D−H)

[
gn(0,−)

]q
+ eβ(2D−J3)

[
gn(−,+)

]q
+eβ(D−H)

[
gn(−, 0)

]q
+eβ(2D+J3−2H)

[
gn(−,−)

]q
. (18)

The magnetizations belonging to the upper and
lower chains can be calculated from

Mσ =
1

Z

∑
σi,Sj

σiP (σi, Sj) = (19)

1

Z

∑
σi,Sj

σi e
β[D(σ2

i+S
2
j )+H(σi+Sj)+J3σiSj ]

[
gn(σi, Sj)

]q
and

MS =
1

Z

∑
σi,Sj

SjP (σi, Sj) = (20)

1

Z

∑
σi,Sj

Sj e
β[D(σ2

i+S
2
j )+H(σi+Sj)+J3σiSj ]

[
gn(σi, Sj)

]q
,

respectively. Finally, the magnetizations in terms
of the ERRs are found as

Mσ =
1

Z ′

[
eβ(2D+J3+2H)Xq

1 + eβ(D+H)Xq
2

+eβ(2D−J3)Xq
3 − eβ(2D−J3)Xq

7

−eβ(D−H)Xq
8 − eβ(2D+J3−2H)

]
(21)

and

MS =
1

Z ′
[eβ(2D+J3+2H)Xq

1 − eβ(2D−J3)Xq
3

+eβ(D+H)Xq
4 − eβ(D−H)Xq

6

+eβ(2D−J3)Xq
7 − eβ(2D+J3−2H)], (22)

where Z ′ in terms of ERRs is given as
Z ′ = eβ(2D+J3+2H)Xq

1 + eβ(D+H)Xq
2

+eβ(2D−J3)Xq
3 + eβ(D+H)Xq

4 +Xq
5

+eβ(D−H)Xq
6 + eβ(2D−J3)Xq

7

+eβ(D−H)Xq
8 + eβ(2D+J3−2H). (23)

Note that the quadrupolar moments belonging to
each chain, i.e., Qσ and QS , can be obtained by
simply taking all the signs of each term in Mσ and
MS to be positive, respectively.

The susceptibilities of each chain can be obtained
from the well-known definitions given as

χσ = lim
H→0

∂Mσ

∂H
and χS = lim

H→0

∂MS

∂H
, (24)

which are too long to be given explicitly here.
The numerical values of the ERRs are obtained

by the application of simple iterations which are ter-
minated after the ERRs reach their saturation val-
ues. Afterwards, they are used to study the thermal
and external magnetic field variations of magneti-
zations and susceptibilities.

3. Thermal and H variations
of order parameters

The dependence of the order parameters on the
given system variables are discussed in this section.
The thermal variations of the order parameters are
studied when H is turned off and on and then the H
variations at given temperatures are investigated.

276



Exact Recursion Relation Approach to Spin-1 Two-Leg Ladder

Fig. 2. Thermal variations of the order pa-
rameters with zero external magnetic field for:
(a) D/J3 = J1/J3 = J2/J3 = 1.0, (b) D/J3 = −1.4,
J1/J3 = 1.0, J2/J3 = −1.0, (c) D/J1 = −0.92,
J2/J1 = −0.5, J3/J1 = 1.0, (d) D/J1 = −1.05,
J2/J1 = −0.25, J3/J1 = −0.5, (e) D/J1 = −0.92,
J2/J1 = 0.25, J3/J1 = −0.5, (f) D/J3 = −J1/J3 =
J2/J3 = 1.0, (g) D/J3 = 0.7, J1/J3 = 0.5,
J2/J3 = −1.0, and (h)D/J3 = −0.5, J1/J3 = −0.4,
J2/J3 = 0.2.

In order to obtain different topological behaviors
and to reduce the number of variables by one to
ease the calculations, all the parameters are scaled
by Jk > 0.0 with k taken to be 1 or 3.

Let us first discuss the case with zero H, i.e.,
the spontaneous magnetizations and quadrupole
moments. Figure 2a is obtained for D/J3 = 1.0,
J1/J3 = 1.0,, and J2/J3 = 1.0. It shows the exis-
tence of an FM phase. One can see that the ground
state value is 1.0 which decreases as the tempera-
ture increases, as expected. Thus, magnetizations
decrease gradually as T increases. After changing
the sign, they become very small but never reach
zero as seen in the inset, i.e., the FM phase per-
sists even at high T s. The nonexistence of phase
transitions [20, 26] is also confirmed with this new
approach.

Figure 2b is, in turn, obtained for D/J3 = −1.4,
J1/J3 = 1.0, and J2/J3 = −1.0. It shows the AFM
phase at lower T s. Now, the ground state value is

lowered to ±0.6999 for MS and Mσ, respectively,
because of the competition between J1 and J2. As
the temperature increases, magnetizations present
peaks, then they drop closer to zero in a small tem-
perature range and as T increases further, they be-
come vanishingly small presenting the FM phase.
The increase of magnetizations as the temperature
increases in the AFM phase is seen because the NN
spins are antiparallel in the AFM phase but dur-
ing the transition to the FM phase the spins start
randomly orienting themselves which may lead to
an increase in magnetizations (see a similar behav-
ior in Fig. 2a and b of [25]).

Figure 2c is obtained for D/J1 = −0.92,
J2/J1 = −0.5, and J3/J1 = 1.0. First, it shows the
FM phase, then the magnetizations are separated
as T increases with the sign change in Mσ, after-
wards the phase is the AFM phase which finally
goes into the FM phase region with very small
magnetization values as before.

In Fig. 2d for D/J1 = −1.05, J2/J1 = −0.25, and
J3/J1 = −0.5,MS andMσ present the AFM phase.
As T increases, they are lowered to cross each other
about zero temperature, then they change the sign
but still exhibit the AFM phase. As seen in the
inset, this behavior is repeated by the system one
more time at very low magnetizations. As before,
with a further increase of T , they become very small
but do not reach zero at finite T s.

Next, Fig. 2e is obtained for D/J1 = −0.92,
J2/J1 = 0.25, and J3/J1 = −0.5 which again
present the AFM phase at low temperatures; as
the temperature increases, both magnetizations de-
crease in magnitude, then MS changes the sign and
crossesMσ at the compensation temperature Tcomp.
After the Tcomp, the FI phase appears in a small
temperature range. The rest is the same as before.
It is very important to emphasize that the magne-
tizations in Fig. 2 can become very small (close to
zero) at higher temperatures but never reach zero
as if there is an external magnetic field acting on
the system (see inset of Fig. 2a).

The next three figures are very interesting, since
the order parameters move up and down randomly
in some temperature range. This may be the sign of
the existence of a spin glass (SG) phase which is not
investigated further in this work. Figure 2f is ob-
tained for D/J3 = 1.0, J1/J3 = −1.0, J2/J3 = 1.0
which shows this random behavior starting from
zero temperature, i.e., at the ground state, and
terminates as a knife cut at the FM border.
In Fig. 2g, obtained for D/J3 = 0.7, J1/J3 = 0.5,
J2/J3 = −1.0, the magnetizations start with the
FM phase, then we see a few ups and downs and
then the random behavior starts for both M which
again terminates at the FM phase border. It is
interesting now that the borders of the random
behavior region look like the magnetization lines
seen in the AFM phase. Figure 2h (D/J3 = −0.5,
J1/J3 = −0.4, J2/J3 = 0.2) is similar to the previ-
ous figure but now a non-magnetic region is seen
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Fig. 3. Thermal variations of the order pa-
rameters with selected values of external mag-
netic field for: (a) H/J3 = 1.0, (b) H/J3 = 1.0,
(c) H/J1 = 0.25, (d) H/J1 = 0.75, (e) H/J1 = 0.25,
(f) H/J3 = 0.750, (g) H/J3 = 0.25, and
(h) H/J3 = 0.125. The rest of the parameters,
i.e., D/Ji and Ji/Jks, are the same, respectively,
as the values of Fig. 2.

in between the FM and the random region. The
random region looks like a thumb print which again
ends at the FM phase.

It is well known that the quadrupole moments
make a little kink at the second-order phase transi-
tion temperatures. As seen in the figures, this kind
of kink does not appear at all, which is also the sign
of the non-existing finite temperature phase transi-
tions in the model. Figure 2d demonstrates that
at low temperatures the Qs are separated. Further,
Fig. 2f shows that theQs are unaware of the random
behavior of Ms, in contrast to Fig. 2g and h.

Now let us see the results when H is introduced
into the model. It is well known that when there
is an external magnetic field acting on the system,
the order–disorder phase transitions are not seen.
Figure 3a shows that all the order parameters start
from 1.0 at zero temperature, then MS =Mσ and
QS = Qσ decrease as T increases. The FM phase
is exhibited in this case. In Fig. 3b, MS = 0.0 and
Mσ = 1.0 at T = 0.0, which indicates the FI phase.
The quadrupole moments are equal to each other.

As seen in the inset, the magnetizations do not com-
bine to give a phase transition. But they are very
close to each other so the FM phase can be assumed.
Figure 3c shows that the ground state value is about
0.8 which is other than the expected 0 and ±1 val-
ues. The order parameters first decrease and then
increase as T increases after presenting a peak at
the same temperature, and afterwards they start
decreasing. Again the system only presents the FM
phase. Figure 3d illustrates the AFM phase at low
temperatures and as T increases, magnetizations
decrease to approach each other about zero and
subsequently they start increasing. Afterwards, the
magnetizations become equal, i.e., the FM phase
appears. The quadrupole moments present a little
separation in the AFM phase region only, otherwise,
they are equal to each other.

Figure 3e shows that all the lines start from 0.5
at T = 0.0, i.e., the FM phase is present, then the
M lines are separated from where the FI phase ap-
pears. As T increases, the magnetizations approach
each other and follow each other very closely, so
again the FM phase is seen. The quadrupole mo-
ments do the same thing but at higher T s. Figure 3f
is similar to Fig. 2f, but now after the random be-
havior terminates, the M lines almost become zero
and increase as the temperature increases. The Q
lines, however, decrease as T increases. Again, the
phase becomes the FM phase. As seen from Fig. 3g,
all the lines start from 1.0 at zero temperature. The
M lines first exhibit the FM phase with a sharp
drop close to zero, then there is a non-magnetic-like
part, very close to zero, and finally the FM phase is
seen again. Figure 3h is similar to the previous fig-
ure but now the magnetization lines sharply drop
from +1.0 to −1.0 and subsequently rise up very
close to zero presenting double regions of the FM
phase. Afterwards, as the temperature increases,
first a non-magnetic region, and later the random
behavior of the order parameters and finally the FM
phase are seen again.

It should be noted that random behaviors of the
order parameters have not been reported so far, but
all the competitions between the system variables,
namely H and J > 0.0 favors parallel alignment of
spins, J < 0.0 favors antiparallel alignment, J1, J2,
and J3 can be either positive or negative, and the
negative values of the crystal field drive the system
to the lowest spin value 0.0, may induce this random
behavior. Thus, this behavior deserves to get more
attention with the other theoretical approaches for
the probable existence of the SG phase.

Figure 4 involves the external magnetic field
change of the order parameters at given temper-
atures. Figure 4a is obtained for T/J3 = 1.4 and it
shows that magnetizations start from −1.0 at neg-
ative H, then as H decreases toward zero, it de-
creases and afterwards rises up to the value of 1.0
at higher Hs and quadrupole moments (the inset)
present kinks close to the place where Ms change
direction, i.e., about zero. Figure 4b shows that the
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Fig. 4. External magnetic field variations of
the order parameters for given temperatures:
(a) T/J3 = 1.4, D/J3 = J1/J3 = J2/J3 = 1.0,
(b) T/J1 = 0.5, D/J1 = −0.5, J2/J1 = −0.25,
J3/J1 = −0.5, (c) T/J3 = 0.2, D/J3 = −1.4,
J1/J3 = 1.0, J2/J3 = −1.0, and (d) T/J1 = 0.3,
D/J1 = −1.05, J2/J1 = −0.25, J3/J1 = −0.5.

magnetizations are of the Langevin type. The mag-
netization plateau appears at M = 0 in the range
around−1.0 ≤ H ≤ 1.0 andM = ±1.0, when about
H = ±1.0, respectively, see also Fig. 3 of [17] for
comparison. Again, quadrupole moments (the in-
set) present kinks at about H = ±1.0. As seen in
Fig. 4c, the Ms start from −1.0 at H = −2.0, as H
increased the plateau at −1.0, then they go down to
−0.5 where there is another plateau at −0.5, from
where they go down to zero and another plateau at
zero is observed. The same behavior is also ob-
served for positive Hs. They are antisymmetric
with respect to the H-axis, see a similar behavior
in Fig. 4 of [17]. The quadrupole moments (the in-
set) start from 1.0, then go down to 0.5 presenting
a plateau, subsequently go up to 1.0 at negative Hs,
and the same thing is repeated at positive Hs, i.e.,
it is symmetric with respect to the H = 0.0-axis,
as expected. Figure 4d shows that both Ms start
from −1.0 at H = −2.0, as H increases, they de-
crease gradually to zero where they are separated,
Mσ makes a deep and MS makes a peak, forming
a closed loop. Afterwards, they rise as H increases
but now no symmetry is observed. Both Q (the
inset) present kinks at about ±1.0 and also form
a closed loop as Ms. Such a behavior has not been
reported before elsewhere.

4. Thermal and H variations
of susceptibilities

The susceptibilities of each chain are obtained by
using (24) which is calculated in the limit H going
to zero.

First, we present thermal variations of suscep-
tibilities at H = 0. Figure 5a is obtained for
D/J3 = J1/J3 = J2/J3 = 1.0 and shows only one

Fig. 5. Thermal variations of susceptibilities, χσ
and χS , with zero external magnetic field for:
(a) D/J3 = J1/J3 = J2/J3 = 1.0, (b) D/J3 = −1.4,
J1/J3 = 1.0, J2/J3 = −1.0, (c) D/J1 = −0.92,
J2/J1 = −0.5, J3/J1 = 1.0, and (d) D/J1 = −0.92,
J2/J1 = 0.25, J3/J1 = −0.5.

Fig. 6. External magnetic field variations of
susceptibilities, χσ and χS , for some selected
temperatures: (a) T/J3 = 1.4, D/J3 = J1/J3 =
J2/J3 = 1.0, (b) T/J3 = 1.4, D/J3 = −1.4,
J1/J3 = 1.0, J2/J3 = −1.0, (c) T/J1 = 0.25,
D/J1 = −0.92, J2/J1 = −0.5, J3/J1 = 1.0, and
(d) T/J1 = 0.75, D/J1 = −0.92, J2/J1 = 0.25,
J3/J1 = −0.5.

peak in agreement with Fig. 2a. This peak is not
sharp but instead it is broad so it does not indi-
cate a phase transition. Figure 5b shows that the
susceptibilities start from zero, then as T increases,
they are separated, χS rises up to a maximum and
χσ goes down to a minimum and subsequently they
turn back intersecting each other at zero with sign
changes. After presenting peaks they go to zero.
These two peaks are in agreement with Fig. 2b cor-
responding to rising up and going down of magne-
tizations. The two peaks in the susceptibilities are
also observed in Fig. 4 of [21]. Figure 5c is similar
to the previous one but it first presents a jump at
very low temperatures and the first peak of Fig. 5b
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becomes a plateau in here, and then the second peak
is seen. The jump at very low temperatures may not
be trustworthy and may be the artifact of the itera-
tions. In the last one, as shown in Fig. 5d, they start
from zero, then go up to present a shallow region
and subsequently go down to zero as T is increased.
They are separated at low T , and afterwards com-
bine again forming a closed loop in agreement with
the FI phase of Fig. 2e.

Finally, the H variations of susceptibilities are
presented at a given temperature. Figure 6a shows
a peak at H = 0.0 in agreement with Figs. 2a–4a
and Fig. 5a of [17]. Figure 6b is calculated in cor-
respondence with Fig. 4c, where two peaks for each
region ofH are seen to be symmetric with respect to
H = 0.0 and each peak corresponds to the rise ups
and downs in Fig. 4c (see also Fig. 4 of [17]). In the
next two figures, the symmetries are spoiled again.
Figure 6c shows a peak around zero H and another
peak at about 0.2. Figure 6d shows, in turn, that
they start from zero at H = −2.0 and both follow
the same path of rising up, presenting their com-
mon peaks at H = 0.0, and then as H increases,
they both go down. The χsigma is separated, pre-
senting a second peak forming a closed loop with χS
in agreement with the FI phase of Figs. 2d and 5d.

5. Conclusions

In this work, a two-leg ladder spin-1 Ising model
was analyzed with a new approach in terms of exact
recursion relations. It was found that the model ex-
hibits the FM, AFM, FI, non-magnetic phases, and
a random behavior resembling the SG phase. The
latter has not been reported so far. The nonex-
istence of the finite temperature phase transitions
is also supported with our findings. The thermal
and external magnetic field change of the order pa-
rameters and susceptibilities are in agreement with
the previous research as mentioned in the text. It
should be noted that the free energy is not ob-
tainable in the present approach, the free energy
term has the coefficient 1/(q − 2) [29–32] which
goes to infinity since each rung has two NN rungs,
i.e., q = 2.0. Therefore, the heat capacity is not
obtained.
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