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The deformations of a cholesteric liquid crystal layer with a helical axis parallel to the layer plane are
investigated numerically. When such a layer, called the Uniform Lying Helix texture, is placed between
crossed polarizers, then the system gives an interesting linear electro-optic effect provided that the
cholesteric possesses flexoelectric properties. Namely, the electric field perpendicular to the layer plane
rotates the optical axis of the liquid crystal around the layer normal by an angle nearly proportional to
the field strength. As a result, the optical transmission of the system is controlled by the bias voltage.
The present study is devoted to numerical simulations of the Uniform Lying Helix layers. The director
distributions in the layers were calculated by means of minimizing the free energy of the system. The
voltage dependence of the rotation angle and of the pitch, occurring at various system parameters,
was determined. The influence of parameters on efficiency of the flexoelectro-optic effect expressed
by the derivative of the rotation angle with respect to bias voltage was studied. The results showed
that high efficiency is favoured by long pitch, small sum of bend and splay elastic constants, large
difference between splay and bend flexoelectric coefficients, zero dielectric anisotropy and thin layer
which confirmed the earlier theoretical predictions.
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1. Introduction

Optical properties of cholesteric liquid crystals
result from a relation between light wavelength λ
and their spatial periodicity manifested by pitch p.
In particular, if p is sufficiently smaller than λ,
a cholesteric behaves like a uniaxial medium with
an optical axis parallel to the helical axis, i.e.,
perpendicular to the twisted director. This fea-
ture gives an interesting linear electro-optic effect
provided that the cholesteric possesses flexoelectric
properties [1]. The flexoelectro-optic effect occurs
in cholesteric liquid crystals confined in layers with
homeotropic boundary conditions. The optical axis
is then parallel to the layer plane creating the so-
called Uniform Lying Helix (ULH) texture [2–5].
If the applied electric field is perpendicular to the
layer, then the director and— in consequence — the
optical axis rotate around the layer normal by an
angle Φ proportional to the field strength E. If the
layer of thickness d is placed between crossed polar-
izers, the optical transmission of the system can be
controlled by the bias voltage U = Ed. In the op-
timum case, the zero field helical axis should make
an angle of 22.5◦ with one of the polarizers while the
rotation angle Φ should vary between −22.5◦ and
+22.5◦ with respect to the undistorted helical axis
under the action of positive and negative voltage,

respectively [6, 7]. Cholesteric materials exhibiting
large rotation angles |Φ| ≥ 45◦ can also be used if
the undeformed helical axis coincides with one of
the polarizers [8, 9]. In both configurations, the op-
tical transmission of the system can be electrically
switched between 0 and 1.

Theoretical formulae for the rotation angle and
for the pitch p varying under the action of the elec-
tric field have already been derived [1, 2]. They are
given, respectively, as

tan(Φ) =
(e11 − e33)p0E,

2π(k11 − k33)
, (1)

tan(Φ) =
(e11 − e33)p0E

2πk22

−k11 + k33 − 2k22
2πk22

sin(Φ), (2)

and
p = p0 cos(Φ), (3)

where k11, k22 and k33 are the splay, twist and
bend elastic constants, e11 and e33 are the flexo-
electric coefficients related to splay and bend defor-
mations, and p0 is the intrinsic pitch in the undis-
torted cholesteric. The situation when the length of
the pitch varies with the change of field strength is
described by (1), whereas (2) is suitable when the
boundary conditions prevent any changes.

258

http://doi.org/10.12693/APhysPolA.140.258
mailto:mariola.buczkowska@p.lodz.pl


Influence of Parameters on Flexoelectro-Optic Effect. . .

Fig. 1. Schematic presentation of the ULH struc-
ture of a chiral nematic confined in a layer of thick-
ness d. The twisted structure is illustrated by means
of projections of director on (a) the yz plane and (b)
xy plane. The helical axis is indicated by a dotted
line. The optical axis (a dashed line) is oriented
normal to the director. Its orientations, induced
by electric field of strength E directed parallel and
antiparallel to the z axis, are presented in (b). Ro-
tation angle Φ is indicated in both cases. In the
absence of the field, the optical axis coincides with
the helical axis.

In this work, electric field-induced deformations
of the ULH structures were studied numerically.
The aim was to verify the relationships predicted
theoretically and expressed with (1)–(3). For this
purpose, director distributions in the layers de-
formed by the electric field were calculated numer-
ically using various sets of parameters, i.e., flexo-
electric coefficients, intrinsic pitch and elastic con-
stants. The results allowed to determine the voltage
dependence of the rotation angle as well as of the ef-
fective pitch and, further, to compare them with the
relationships predicted theoretically. The role of di-
electric anisotropy, thickness and anchoring energy
was also studied.

2. Geometry and parameters of the system

The geometry of the system is presented schemat-
ically in Fig. 1. The cholesteric liquid crystal layer
of thickness d confined between two plates play-
ing the role of transparent electrodes parallel to
the xy plane of coordinate system and positioned
at z = ±d/2 was considered. Such a plane-parallel
layer is typical for the systems possessing an ap-
plicative potential. The lower electrode was as-
sumed to be earthed. Homeotropic boundary con-
ditions were imposed and they were determined by
easy axes e1 = e2 = [0, 0, 1] oriented normal to
the lower and upper electrode, respectively. These
boundary conditions ensured that the helical axis of
the cholesteric was parallel to the boundary plates,

producing the ULH structure. The anisotropic sur-
face anchoring was assumed. The anisotropy was
manifested by the difference between polar and az-
imuthal anchoring strengths, on the lower and up-
per electrodes, respectively [10].

The two-dimensional deformations of director
distributions which lead to flexoelectro-optic effect
were taken into account. It was assumed that all
the physical quantities and variables describing the
two-dimensional structures are dependent on two
coordinates y and z, and are constant along the x
axis. The director distribution n(y, z) was deter-
mined by means of the polar angle θ(y, z) measured
between n and the xy plane and by the azimuthal
angle ϕ(y,z) between the x axis and the projection
of n on the xy plane. First, a set of initial param-
eters of the layer was assumed. Their values are
summarized as follows:

• intrinsic pitch p0 = 0.4 µm;
• elastic constants k11 = 8 pN, k22 = 4 pN,
k33 = 12 pN;

• flexoelectric coefficients e11 = 10 pC/m,
e33 = −10 pC/m;

• dielectric anisotropy ∆ε = 0;
• polar anchoring strengths Wθ1 = 10−4 J/m2

andWθ2 = 10−4 J/m2 on the lower and upper
electrode, respectively;

• azimuthal anchoring strengths Wϕ1
=

10−5 J/m2 and Wϕ2
= 10−5 J/m2 on the

lower and upper electrode, respectively;
• thickness d = 2 µm.

Each of these parameters was varied within rea-
sonable range while the other remained unchanged.
Voltage dependence of the rotation angle Φ and
of the pitch p were determined for each set of pa-
rameters. The cholesteric was treated as a perfect
insulator.

3. Method

The equilibrium structures of the director field
inside the layer were determined based on mini-
mizing the free energy per unit area of the layer.
The method successfully applied in earlier works,
see e.g., [11, 12], was used for this purpose. A seg-
ment of the layer of the width equal to the pitch
was considered during the computations. The pe-
riodic boundary conditions along the y axis were
imposed. In the sites of the M × N regular lat-
tice, where M = 64 and N = 65, we introduced
the electric potential Vij and defined the discrete
angles θij and ϕij describing the director distribu-
tion over the cross-section of the segment. The in-
dices i = 1, . . . ,M and j = 1, . . . , N determined
the position along the y and z axes, respectively.
The coordinates y = 0 and y = p corresponded to
i = 1 and i = M whereas z = −d/2 and z = d/2
were labelled by j = 1 and j = N . The planes de-
termined by i = const and j = const divided the
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cross-section of the segment into (M − 1)× (N − 1)
rectangular cells. The values θij , ϕij and Vij taken
from the corners of each cell gave the average angles
as well as the spatial derivatives of the angles and of
the potential. These values were used to calculate

the total free energy counted per unit length of the
segment in the x direction. Then, the result was
divided by actual p in order to obtain the total free
energy per unit area of the layer. Now, the corre-
sponding formula on the free energy

F =
1

2p

p∫
0

dy

{ d/2∫
−d/2

dz

[
k11(∇n2) + k22

(
n(∇× n)− 2π

p0

)2

+ k33 (n× (∇× n))
2

−2
(
e11n · ∇n− e33n× (∇× n)

)
·E − 1

2
ε0ε⊥E

2 − ε0∆ε(n ·E)2
]}

+
1

2p

p∫
0

dy
[
Wφ1 cos2 (θ1 − θs1) +Wθ1 sin2(θ1 − θs1)

][
1−

(
n1 · e1

)2]

+
1

2p

p∫
0

dy
[
Wφ2

cos2 (θ2 − θs2) +Wθ2 sin2(θ2 − θs2)
][

1−
(
n2 · e2

)2] (4)

was based on general expressions describing elastic,
dielectric and flexoelectric properties of liquid crys-
tals and their interactions with the substrate [13].
The symbols n1 and n2 denote the directors adja-
cent to the lower and upper plate, respectively, θ1
and θ2 are their polar orientation angles whereas
θs1 = θs2 = 90◦ determine the orientation of the
easy axes. This energy (4) was minimized with re-
spect to all the angles θij , ϕij and pitch p.

Initially, the values θij = 2π
M (i − 1) − π

2 , ϕij = 0
and p = p0 were introduced (according to the
uniform twisted director distribution in the ULH
structure), where i = 1, . . . ,M and j = 1, . . . , N .
In a similar manner, the initial distribution of the
electric potential corresponding to uniform elec-
tric field was assumed, Vij = U(j − 1)/(N − 1).
The final set of the variables θij , ϕij and p which

approximated the real equilibrium director distri-
bution, was calculated in the course of an itera-
tion process. During the computations, the values
of θij , ϕij and p were varied successively by small
intervals.

Now, the free energy per unit area of the layer
was calculated after each change. If the new energy
was lower than the previous one, the changed value
of the variable was accepted and the corresponding
interval was increased by a factor of about 1.5. In
the opposite case, the variable remained unchanged
and the interval was decreased to about 0.8 of its
previous value. When the new values of angles in all
sites of the lattice as well as the new value of p were
found, the electric potential distribution V (y, z) in
the layer was calculated as well. For this purpose,
the Poisson equation

ε0

[
∂V

∂y

(
∂εyy
∂y

+
∂εyz
∂z

)
+
∂V

∂z

(
∂εyz
∂y

+
∂εzz
∂z

)
+ εyy

∂2V

∂y2
+ 2εyz

∂2V

∂yz
+ εzz

∂2V

∂z2

]

−e11
(
∂ny
∂y

+
∂nz
∂z

)2

− e11ny
(
∂2ny
∂y2

+
∂2nz
∂y∂z

)
− e11nz

(
∂2ny
∂y∂z

+
∂2nz
∂2z

)

+e33

(
∂nz
∂y

rx + nz
∂rx
∂y
− ∂nx

∂y
rz − nx

∂rz
∂y

)
+ e33

(
∂nx
∂z

ry + nx
∂ry
∂z
− ∂ny

∂z
rx − ny

∂rx
∂z

)
= 0 (5)

was resolved, where rx = ∂nz/∂y − ∂ny/∂z,
ry = ∂nx/∂z and rz = −∂nx/∂y, while ni and εij
are the components of the director and of the dielec-
tric permittivity tensor, respectively. The bound-
ary conditions V

(−d
2

)
= 0 and V

(
d
2

)
= U were im-

posed. Thus, the values of potential in the sites of

the lattice Vij were obtained. Thereby, a single cy-
cle of computations came to an end and resulted in
the new set of variables suitable for the next cycle.
The cycles were repeated until a further reduction
in the total free energy could be neglected. As a re-
sult, a state of minimum energy was obtained.
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4. Results

The influence of the system parameters on the
voltage dependence of the rotation angle and on
the effective pitch was investigated. The results
presented in Figs. 2–9 were obtained using initial
values of parameters, excepting specified values of
parameters mentioned in the captions. Also, di-
rector distributions in the cross-section of the layer
over the distance of one pitch were calculated. The
typical deformation arising after the application of
electric field normal to the layer had the form of
patterns with the splay and bend superimposed on
intrinsic twist when the director is deviated from
the helix axis. Figure 2a shows an example of the
undistorted director distribution in the absence of
external electric field.

The intrinsic twist about the axis parallel to the
layer plane is evident. In Fig. 2b, the rotation of di-
rector around normal to the layer occurring under
the action of bias voltage is demonstrated. This
kind of deformation was connected with the rota-
tion of the optical axis which coincides with the
helical axis.

4.1. Rotation angle

The rotation angle was nearly constant over the
cross-section of the layer. It depended slightly on
the z-coordinate in the vicinity of boundary plates
as a consequence of homeotropic boundary condi-
tions. In order to characterize the flexoelectro-optic
effect, the voltage dependence of the angle Φ and

Fig. 2. Director distribution in the cross-section of
the layer over the distance of one pitch. The initial
set of parameters was adopted: (a) U = 0 V, (b)
U = 30 V. A helical axis identical with the optical
axis is shown in the undeformed structure.

Fig. 3. Different voltage dependencies of the rota-
tion angle e11 − e33 = 20 pC/m. Detailed values
of flexoelectric coefficients in pC/m (e11, e33) are
as follows: 1: (10,−10); 2: (0,−20); 3: (20, 0); 4:
(−10,−30); 5: (30, 10). Other parameters had their
initial values. A dashed line shows theoretical Φ(U)
dependence obtained from (1).

of the pitch p were determined. In general, the an-
gle Φ corresponding to small deformations increased
nearly proportionally to bias voltage U . The deriva-
tive dΦ/dU could serve as a measure of efficiency
of the effect at a given voltage. The next sections
report the consequences of variation of chosen spe-
cific parameters while the other parameters retained
their initial values.

4.1.1. Role of flexoelectric coefficients

According to theoretical predictions expressed
by (1) and (2), the rotation angle depended on the
difference between flexoelectric coefficients e11−e33
and not on their particular values. This means that
the following exemplary sets of flexoelectric coeffi-
cients (e11, e33) (in [pC/m]) should result in similar
deformations: 1: (10,−10); 2: (0,−20); 3: (20, 0); 4:
(−10,−30); 5: (30, 10), etc. However, the present
calculations showed that individual coefficients had
some weak influence even if the difference between
them is constant, as shown in Fig. 3. This reveals
the differences between the presented numerical re-
sults and theoretical relations which are smaller
than ten percent. This discrepancy is illustrated
in Fig. 3, where the theoretical dependence is pre-
sented by the dashed line.

For weak flexoelectric properties (e.g., if
e11 − e33 = 10 pC/m) the rotation angle Φ was
proportional to bias voltage. When the differ-
ence e11 − e33 increased, the Φ(U) dependence be-
came stronger and deviated from proportionality as
shown in Fig. 4.

At any maintained voltage, the rotation angle in-
creased with e11 − e33 in a nonlinear way. This
means that the efficiency of the effect saturated
when the flexoelectric parameter was enhanced at
high voltages. It is worthy to note that the opposite
sign of e11 − e33 led to the opposite rotation of the
optical axis.
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4.1.2. Role of intrinsic pitch

The intrinsic pitch p0 was varied between 0.15
and 0.4 µm. For a short pitch, the rotation angle
was nearly proportional to bias voltage. The co-
efficient of proportionality increased linearly with
intrinsic pitch p0 which means that the efficiency of
the flexoelectro-optic effect was proportional to p0.
For a long pitch, nonlinear dependence occurred, as
shown in Fig. 5. At the same voltage, the rotation
angles were the larger, the longer was the intrinsic
pitch.

4.1.3. Role of thickness and anchoring strength

For each thickness varying in the range
of 1.5–4 µm and initial values of other parameters,
the rotation angle was proportional to bias voltage.
The coefficient of proportionality decreased with
thickness so that the efficiency of the flexoelectro-
optic effect was inversely proportional to thickness.
For the thinnest layer, nonlinear Φ(U) dependence
occurred. Wide regions of bend deformation were
observed in thin layers, whereas splay dominated in
thick layers.

Fig. 4. Rotation angle shown as a function of volt-
age for different values of e11 − e33 indicated in
pC/m at the curves, e33 = 0. Other parameters
had their initial values.

Fig. 5. Rotation angle shown as a function of volt-
age for various intrinsic pitch lengths indicated in
micrometers at the curves. Other parameters had
their initial values.

Fig. 6. Rotation angle shown as a function of volt-
age for different values of k11 + k33 indicated in pN
at the curves. The following sets of elastic constants
k11, k22, k33 expressed in pN were used: (6, 1, 3),
(7, 4, 7), (8, 4, 12). Other parameters had their ini-
tial values.

Interactions between liquid crystal and bound-
ary surfaces, determined by anchoring strength
parameters Wθ1, Wθ2, Wϕ1 and Wϕ2, were var-
ied from weak, determined by parameters as low
as 10−6 J/m2, to strong, reaching 10−3 J/m2. It
was found that the anchoring strength parameters
did not affect neither the rotation angle nor the
pitch.

4.1.4. Role of elastic constants

The rotation angle depended on the sum of splay
and bend elastic constants k11 + k33 and not on
their particular values. For a high sum of elas-
tic constants (e.g., k11 + k33 =2 0 pN) or for low
voltages (e.g., U < 10 V), the rotation angle was
nearly proportional to bias voltage. The efficiency
of the flexoelectro-optic effect decreased with the
increase of k11 + k33. For lower values of k11 + k33
(e.g., 9 pN), a deviation from proportionality was
evident. These features are illustrated in Fig. 6 for
three sets of elastic constants. The director distri-
bution depended on a relation between k11 and k33
even if the sum of them was the same: small k11 led
to a wide region of bend and a narrow region of splay
whereas small k33 favoured a wide area of splay and
a narrow region of bend. This observation confirms
qualitatively the expectations mentioned in [14].

Certain boundary conditions prevent changes of
the pitch. The rotation angle is determined by (2)
derived under the assumption of constant pitch
p = p0. A weak influence of k22 on the Φ(U) de-
pendence is also predicted by (2). This feature
was confirmed by the present results of calculations.
They also showed that proportionality between Φ
and U was satisfied in the wider range of voltage,
the smaller was k22.

4.1.5. Role of dielectric anisotropy

The development of deformations in the presence
of dielectric anisotropy depended in a complex way
on the sign and magnitude of anisotropy as well as
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Fig. 7. Average rotation angle Φ0 and the ampli-
tude of sinusoidal variation ∆Φ shown as functions
of bias voltage. Values of dielectric anisotropy are
indicated at the curves. Other parameters had their
initial values. Circles denote unwinding of the heli-
cal structure.

on the intrinsic pitch p0. Dielectric anisotropy gives
rise to torque which can lead to deformation or even
to unwinding of the helical structure when the layer
is subjected to external electric field. Therefore, the
zero dielectric anisotropy is required for the proper
performance of the flexoelectro-optic effect. Simula-
tions reported in [14] showed that if the cholesteric
possessed a significant dielectric anisotropy, the ro-
tation angle Φ varied sinusoidally along the helix
axis. The present calculations confirmed that this
variation is described by the function

Φ(y) = Φ0 + ∆Φ cos

(
4πy

p

)
, (6)

where Φ0 and ∆Φ depend on z in the vicinity
of the boundaries only. The average rotation an-
gle Φ0 increased with voltage. Figure 7 shows
that small deformations were independent of di-
electric anisotropy in a wider range of voltages.
At higher voltages, the Φ0(U) dependence deviated
from proportionality according to suggestions made
in [15]. This nonlinearity occurred at lower voltage
if ∆ε > 0. Amplitude ∆Φ increased with voltage
but was rather small in comparison with Φ. The
negative anisotropy induced larger amplitude ∆Φ
and caused a stronger dependence of the rotation
angle on y coordinate than the positive anisotropy.
Amplitude ∆Φ was negative when ∆ε < 0 and pos-
itive in the opposite case. In the case of the nega-
tive anisotropy, the prevailing part of the layer was
dominated by bend, whereas splay dominated in the
case of the positive anisotropy.

4.2. Pitch

If variations of the pitch were allowed, it de-
creased with voltage starting from p0 at U = 0, si-
multaneously with the director rotation (see Fig. 8).

The decrease of the pitch induced by voltage was
the stronger, the larger was p0, the lower was the
sum k11+k33, the thinner was the layer (see Fig. 8),
and the stronger were the flexoelectric properties
(see Fig. 9). The function p(Φ) had the same form
for all thicknesses taken into account. In the case
of small deformations occurring when the flexoelec-
tricity was weak, e.g., if e11− e33 = 10 pC/m, pitch
was proportional to cos(Φ) according to (3). This
relationship was confirmed by the present compu-
tations.

In the presence of dielectric anisotropy, the de-
formations were more complex than in the case of
∆ε = 0 due to the presence of dielectric torque.
Initially, the pitch weakly depended on growing
voltage up to some critical value above which it
increased rapidly. An undesirable increase of the
pitch above the wavelengths of light may lead to
the extinction of the flexoelectro-optic effect. Fi-
nally, the helical structure became unwound.

Fig. 8. Pitch shown as a function of voltage for dif-
ferent thicknesses of the layer indicated in microm-
eters at the curves. Other parameters had their
initial values.

Fig. 9. Pitch shown as a function of voltage for
different values of e11 − e33 indicated in pC/m at
the curves e33 = 0. Other parameters had their
initial values.
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5. Conclusions

The director distributions in the ULH structure
deformed by bias voltage were determined. The
role of parameters important for the behavior of
the ULH structure was studied. The linear voltage
dependence of the rotation angle of the optic axis
was found at low voltages, however deviations from
proportionality occurred when the voltage reached
sufficiently large values. The voltage dependence
of freely deformed pitch was also calculated. The
results of simulations confirmed the validity of the-
oretical formulae (1)–(3) describing the flexoelectro-
optic effect. All the curves obtained from numerical
computations and presented in Figs. 3–6 and 8, 9
agree with the corresponding curves calculated from
theoretical formulae with the accuracy better than
ten percent as exemplified in Fig. 3. This concerns
the voltage dependence of the rotation angle as well
as of the effective pitch occurring at various sets of
system parameters. The consequences of non-zero
dielectric anisotropy illustrated in Fig. 7. confirmed
qualitatively the results reported in [14].

The requirements which should be satisfied in or-
der to obtain great efficiency of the flexoelectro-
optic effect were determined. In particular, a chiral
material should have the longest pitch which, how-
ever, ensures necessary optical properties, the sum
of splay and bend elastic constants should be small
and the difference between flexoelectric coefficients
should be as large as possible. The thinnest layer is
preferred, provided that it is fitted to birefringence
of the cholesteric in order to satisfy the condition
sin2(πd∆n/λ)=1. The anchoring strength has mi-
nor influence if only it ensures a stable ULH struc-
ture. The dielectrically compensated cholesteric
should be used.
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