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A complete phenomenological description for the relaxation dynamics of the Ising ferromagnets in
the presence of external magnetic field h is given by using the pair approximation. To study the
relaxation dynamics, we calculate two characteristic times (denoted as τS , τF ) using the rate constants
which satisfy the Onsager reciprocity theorem. Temperature/magnetic field variations of τS and τF are
investigated. We have shown that the extrema of the curves obtained for τS when h 6= 0 determine the
loci of correlation length maxima or the Widom lines. The results are compared with those of response
functions and thermodynamic curvature. We observe that they exactly match that for the magnetic
susceptibility.
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1. Introduction

The Ising models have been the subject of impor-
tant research for more than a century [1–20]. Among
them, the phase transitions (PTs) driven by the
spin-1/2 Ising magnets are one of the fundamental
issues in equilibrium and nonequilibrium statisti-
cal mechanics. These transitions have been investi-
gated theoretically by a variety of spin models such
as the renormalization group method [21], Monte-
Carlo technique [22, 23], pair approximation [24–27]
and effective field theory [28]. Although much at-
tention has been devoted to the criticality and other
thermodynamic properties, its time-dependent be-
haviors around the critical temperatures in such
spin systems have been less studied. Especially, the
study has focused on relaxation dynamics (RD).

The study of the RD begins with Barry who in-
troduced phenomenologically the effects of flows in
ordering fields on the simple kinetics and then ex-
tended the treatment into the steady-state kinet-
ics [24]. Next, Meijer and co-workers [25] used the
time-dependent pair approximation to study the re-
laxation of spin-1/2 Ising model in terms of the
flow diagrams. Similarly, several investigations were
concentrated on the RD and nonequilibrium criti-
cal behaviors in the same model using various tech-
niques [29–35]. For the PTs theory and in particular
the theory of RD, the investigation of critical max-
ima gives an incredible effect [36]. A line, called the
Widom line (WL), or loci of correlation length (ξ)

maxima, has been presented to describe the locus
of maxima extending from the critical point [37].
The WL associated with the existence of a criti-
cal point has been especially mentioned in recent
works [38, 39]. An alternative definition for the WL
is given in terms of the locus of maxima of the corre-
lation length ξ. Emanating from any critical point
there must be the loci of extrema of thermodynamic
quantities, such as the Ricci curvature (R), suscep-
tibility (χ) and specific heat (CH) [27, 40, 41]. Also,
the relaxation time (τS) can be related to the cor-
relation length ξ [42, 43] and so, related with the
Widom line. The WL has been extensively studied
which has recently provided information for theo-
retical studies of phase transitions and a method
for the experimental data [44–48]. However, to our
knowledge, there has been no study using the pair
approximation focused on the relaxational dynam-
ics related with the WL through the maxima of the
correlation length ξ, that is captured by the relax-
ation time τS .

In this study, we present a phenomenological de-
scription of the dynamics of a spin-1/2 Ising model
with two ordering fields in the presence of exter-
nal magnetic field. We use the ORT [49] together
with the pair approximation (PA) for the free en-
ergy and investigate the temperature and magnetic
field behaviors of slow and fast relaxation times
near the continuous/discontinuous phase transition
temperatures. The novelty of this paper is the
broad extrema in the slow relaxation time near
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the critical point. Particularly, we have utilized
the locus of a maximum of τS to find the Widom
lines for the Ising model in the pair approximation
in the h–T plane.

2. Description of model
and equilibrium properties

The spin-1/2 Ising model is defined by the Hamil-
tonian [2, 26, 27]

H = −J
Nq/2∑
〈i,j〉

σiσj − h
N∑
i

σi. (1)

Here, σi = ±1/2 in the i-th lattice site. The param-
eter J is the exchange interaction for the nearest-
neighbor sites, and N is the total number of lat-
tice sites. The coordination number of the lattice
is denoted by q and h = −gµBHz is the external
magnetic field (Hz defined as the z-axis, µB as the
Bohr magneton of each spin and g — the electronic
g factor). The magnetic Gibbs energy per spin is
written by the following form [26]

G

N
= −q

2
Jψ − hϕ− T

[q
2
S2 − (q − 1)S1

]
, (2)

where T is the absolute temperature, ϕ = 〈σi〉 is the
single-site magnetization and ψ = ϕ = 〈σiσj〉 is the
spin-pair correlation function for nearest-neighbor
spins in (2). The single-site entropy (S1) and the
two-site entropy (S2) are defined accordingly

S1 = −kB
[(

1

2
+ ϕ

)
ln

(
1

2
+ ϕ

)
+

(
1

2
− ϕ

)
ln

(
1

2
− ϕ
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, (3)

and

S2 = −kB
[(

1

4
+ ϕ+ ψ

)
ln

(
1

4
+ ϕ+ ψ

)
+2

(
1

4
− ψ

)
ln

(
1

4
− ψ

)
+

(
1

4
− ϕ+ ψ

)
ln

(
1

4
− ϕ+ ψ

)]
, (4)

where kB is Boltzmann’s constant. Therefore, the
conditions ∂G

∂ϕ = 0, ∂G∂ψ = 0 yield the self-consistent
equations

ϕ =
1

2

sinh(α)

cosh(α) + e−βJ/2
, (5)

and

ψ =
1

4

cosh(α)− e−βJ/2

cosh(α) + e−βJ/2
, (6)

at equilibrium with the notations

α =
β

q

[
(q − 1) r + h

]
, (7)

where

r = kBT ln

( 1
2 + ϕ
1
2 − ϕ

)
, (8)

β =
1

kBT
. (9)

The thermodynamical quantities, magnetic spe-
cific heat, isothermal susceptibility and the Ricci
scalar have been studied by ϕ and ψ and discussed
previously in [26, 27].

3. Kinetic equations and relaxation times

For the derivation of kinetic equations and relax-
ation times, the magnetic Gibbs energy is given in
the neighborhood of equilibrium

G (T, ϕ, ψ) = G(0) (T, ϕ0, ψ0) + ∆G, (10)
where G(0) (T, ϕ0, ψ0) is the equilibrium magnetic
Gibbs energy in the absence of h. The terms of ∆G
can be expressed in a Taylor series expansion of G
with respect to the spontaneous equilibrium point
ϕ = ϕ0, ψ = ψ0. This is

∆G = −1

2

[
φϕϕ(ϕ− ϕ0)2 + φψψ(ψ − ψ0)

2

+2φϕψ (ϕ− ϕ0) (ψ − ψ0)
]
. (11)

From (11) the expressions given below for φϕϕ, φϕψ,
φψψ are explicit functions of the ϕ0, ψ0 and take the
form

φϕϕ =

(
∂2G

∂ϕ2

)
eq

, (12)

φϕψ =

(
∂2G

∂ϕ∂ψ

)
eq

= φψϕ =

(
∂2G

∂ψ∂ϕ

)
eq

, (13)

φψψ =

(
∂2G

∂ψ2

)
eq

. (14)

Here, the subscript “eq” means equilibrium.
The generalized forces Xϕ, Xψ may be written by

using the Onsager reciprocity theorem (ORT) [49]
with respect to ϕ− ϕ0, ψ − ψ0, respectively

Xϕ =
∂(∆G)

∂(ϕ− ϕ0)
=

−φϕϕ (ϕ− ϕ0)− φϕψ (ψ − ψ0) , (15)

Xψ =
∂(∆G)

∂(ψ − ψ0)
=

−φψϕ (ϕ− ϕ0)− φψψ (ψ − ψ0) . (16)
Also, the linear relations between the currents and
forces can be given in terms of a matrix of phe-
nomenological rate coefficients[

dϕ
dt

dψ
dt

]
=

[
γϕ −γ
γ γψ

][
Xϕ

Xψ

]
. (17)

By using (15) and (16) this matrix (17) yields the
rate equations

dϕ

dt
= −Φϕϕ (ϕ− ϕ0)− Φϕψ (ψ − ψ0) , (18)

dψ

dt
= −Φψϕ (ϕ− ϕ0)− Φψψ (ψ − ψ0) . (19)

The coefficients are defined by

Φϕϕ = γϕ

(
∂2G

∂ϕ2

)
eq

− γ
(
∂2G

∂ϕ∂ψ

)
eq

, (20)
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Φϕψ = γϕ

(
∂2G

∂ϕ∂ψ

)
eq

− γ
(
∂2G

∂ψ2

)
eq

, (21)

Φψϕ = γ

(
∂2G

∂ϕ2

)
eq

+ γψ

(
∂2G

∂ϕ∂ψ

)
eq

, (22)

Φψψ = γψ

(
∂2G

∂ψ2

)
eq

+ γ

(
∂2G

∂ϕ∂ψ

)
eq

. (23)

A solution of e−t/τ for (18) and (19), the secular
equation, is written as∣∣∣∣∣ τ−1 − Φϕϕ −Φϕψ

−Φψϕ τ−1 − Φψψ

∣∣∣∣∣ = 0, (24)

which gives two relaxation times [50, 51]
1

τS
=

ΦϕϕΦψψ − ΦϕψΦψϕ
Φϕϕ + Φψψ

, (25)

1

τF
= Φϕϕ + Φψψ −

1

τS
. (26)

Here, τS is the slower and τF is the faster relax-
ation time. They are related to the single-site mag-
netization and the spin–pair correlation parameter,
respectively.

4. Results and discussion

In this part, our relaxational quantities (τS , τF )
are plotted for the Ising model with the PA in the
ferromagnetic (FM) range, the paramagnetic (PM)
range and exactly at the continuous phase transi-
tion temperature. The thermal and magnetic field
behaviors for τS and τF are presented, respectively,
in Figs. 1–3. The phenomenological rate constants
γϕ = 1, γ = 0.00001, γψ = 10 are used in these
figures. Particularly, we have examined the loci of
maxima, the WL, of dynamic and thermodynamic
quantities.

Firstly, schematic illustrations of the thermal be-
haviors for τS using various field values h and lattice
coordination numbers q and the corresponding WL
related to τS are presented in Fig. 1. A compari-
son of the WL related with some of thermodynamic
quantities, such as the Ricci curvature R, the static
magnetic susceptibility χ and the specific heat CH ,
are also included in Fig. 1c using the simple cubic
lattice with q = 6 and J = 1. The slow relax-
ation time τS versus temperature calculations that
have been obtained for four values of the external
fields h = 0, 0.03, 0.05, 0.1 for J = 1 and q = 6
and for various values of q = 4, 6, 8 with h = 0.05,
J = 1 are displayed in Fig. 1a and b, respectively.
In Fig. 1a, τS grows rapidly with increasing temper-
ature and diverges to infinity around critical tem-
perature Tc as can be seen from the green-colored
curve when h = 0. This behavior is similar to the
relaxation phenomena in Barry’s works and Tanaka
and Takahashi’s works [24, 52]. The divergence
of τS has not been seen and maxima of the curves
(or peaks) are obtained when h 6= 0. In particular,
for the cases of τS , these maxima depend on the
external field. One can see that with the increase

Fig. 1. (a) The τS–T curves calculated for vari-
ous values of h with q = 6 and J = 1. (b)
Description used is the same as in (a) but for
various values of q with h = 0.05 and J = 1.
(c) Loci of maxima of CH (red-colored circle), R
(green-colored circle), χ (blue-colored circle) and τS
(orange-colored circle) for q = 6 and J = 1 on the
h–T plane.

of h (h = 0.03, 0.05, and 0.1) the maxima become
smaller and shift towards higher temperatures. It
is important to mention that a coherent behavior of
τS versus T in Fig. 1a is also observed in the χ–T
plots in [26] and the relaxation times in [13, 53, 54].

For comparison, we have also displayed τS versus
T for this system with q = 4 (square lattice), q = 6
(simple cubic lattice) and q = 8 (body centered cu-
bic lattice) in Fig. 1b. We have used h = 0.05 in
this figure. Upon increasing q values, the peaks be-
come larger and shift towards higher temperatures.
Furthermore, in Fig. 1c, the extrema of the curves
investigated for h 6= 0 determine the loci of the
correlation length maxima or the Widom lines ob-
tained from Fig. 1a, predicted for the Ising model
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in PA on the h–T plane. For comparison, we ob-
served two Widom lines for τS , χ, R, and CH that
start at the critical points and extend into the re-
gions h > 0 and h < 0 in the h–T plane in Fig. 1c.
We compare our results and find important agree-
ment for the Widom lines with the mean-field CW
model [27, 44].

We have also presented τF versus T for the same
system in Fig. 2a and b. The present model pre-
dicts that both the position and shape of the curves
are different when the magnetic field h is changed
(the same h values in Fig. 1a). For example, when
the h value decreases, the τF versus T curve is
shifted to lower temperature and the slope at Tc be-
comes steeper, as seen in Fig. 2a. When the h value
increases, this curve is shifted to higher temperature
and the slope becomes less steep. In other words,
the curves show a field-dependent behavior when
h 6= 0 in Fig. 2a. Figure 2b shows the τF versus T
for the same system with q = 4, 6, and 8. In this
figure, h = 0.05 is used for all lattices. The value of
τF is decreasing with increasing lattice coordination
number q and shift towards higher temperatures.

To demonstrate τS and τF as a function of h, we
change the T values in Fig. 3 with q = 6 and J = 1.
In this figure, T = 1.180 (T < Tc, blue-colored
curve), T = Tc ≈ 1.232 (green-colored curve) and
T = 1.280 (T > Tc, red-colored curve) are given.
The τS and τF are positive and symmetric on both

Fig. 2. (a) The τF –T curves calculated for various
values of h with q = 6 and J = 1. (b) Description
used is the same as in (a), but for various values of
q with h = 0.05 and J = 1.

Fig. 3. The τS–h and τF –h curves for various val-
ues of T with q = 6 and J = 1.

sides of the h = 0 line for all T values which is
also similar to the behavior of the curvature func-
tion by Erdem [27]. These results mean that re-
laxation times and the curvature scalar are inde-
pendent of orientation of the h, τS (−h) = τS (h)
and τF (−h) = τF (h). In the FM phase, T < Tc,
the τS and τF behave differently (has two physi-
cal branches) which cross at h = 0. Again, the τ -
crossing occurred below the criticality. In turn, in
T = Tc, a divergence to infinity in τS appears again,
as also seen in Fig. 1a. In the PM phase, T > Tc,
there is no crossing, but the τS shows a maximum
at h = 0 in Fig. 3.

5. Conclusion

In this study, we have shown that the relaxational
dynamics are related to the Widom line of the Ising
model. Firstly, we obtained and showed the exis-
tence of two different time scales as slow τS and
fast τF relaxation times with using the approach
based on two order parameters (ϕ,ψ). In fact, re-
laxation time τS may be connected to the correla-
tion length, ξ ≈ |T − Tc|−v, by τS ≈ ξv, where v
is the correlation length exponent, T is the temper-
ature and Tc is the critical value. The relaxation
times τS and τF behave differently (have two phys-
ical branches) that shows the τ -crossing at h = 0
near the phase transitions in the τS–h/τF –h planes.
The dependencies τS vs T and τS vs h have singu-
larities (divergence) at the critical point. The find-
ings for relaxation times versus temperature are in
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accordance with the other results obtained as theo-
retical [52, 54–57] and experimental [58–60]. Based
on the previous discussions [44], we have investi-
gated the lines of the maxima of τS , χ, R and CH
in the phase region, the so-called WL. In this paper,
we have tried to show the connection between the
WL and the thermodynamical/dynamical behavior.
Finally, it would be of great interest in future work
as disciplines in physical, chemical, and biological
sciences and engineering [61].
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