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In this paper, an analytical approach to the temperature profile in the normal current leads to the
superconducting electromagnets has been proposed. The heat diffusion equation was solved for a one-
dimensional case. The static and dynamic temperature distribution in linear leads through which
the current flows has been determined. The influence of the thermal intercepts on the current lead
temperature distribution during current flow has been investigated, especially the temperature and
position of the intercept, and the current lead cross-section.
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1. Introduction

Nowadays, large nuclear physics scientific labora-
tories are constructed in which the most important
physical discoveries are made with the use of ad-
vanced, huge specialized apparatus constructions.
The famous examples are large colliders, such as
LHC in CERN, which allowed to find the Higgs bo-
son. The discoveries of the excited physical phe-
nomena in these modern accelerators used in nu-
clear physics are possible due to large rings of su-
perconducting electromagnets, controlling the ion-
ized bunch movement, which are equipped in cur-
rent leads, delivering the current to them. These
devices containing superconducting electromagnets
have huge circumferences, e.g., 27 km in the case of
LHC in CERN. The transport current there reaches
even 40 kA, which shows the importance of the
proper construction of the current leads to these
high power devices [1–9].

In the present paper, we have investigated low
current density normal conducting leads to small
electromagnets with the stored energy of several kJ,
which are usually constructed in the form of mono-
lithic wire, additionally cooled by returning helium
vapor to the recovery system. High current density
current leads have more advanced structure and are
built in the hybrid form of the normal metal-HTc
superconductor. A thermal intercept, considered in
the present paper, is also used, decreasing the heat
load at the cold end of the lead. Such a type of the
current lead is used in [1] while the temperature of

the intercept is dependent then on the efficiency of
the helium recovery system. Physical phenomena
occurring in the materials from which current leads
are constructed are of the same nature as in other
materials of the condensed matter physics, such as
semiconductors, magnets and insulators, while their
analysis belongs, therefore, to the applied physics.
In the case of the current leads for nuclear accel-
erators, they particularly concern the heat conduc-
tivity issues, which determine energy losses gener-
ated in cryogenic temperatures during the work of
the superconducting coils. The analysis of the heat
conductivity process in cryogenic current leads al-
lows to determine their proper work conditions as
an important part of the superconducting electro-
magnets. On the other hand, the analysis presented
here has a purely scientific meaning, because heat
conductivity is one of the most significant processes
in classical physics. It was the base for formulat-
ing the famous transform by Joseph Fourier, the es-
sential tool for scientists, from mathematicians and
physicists to engineers.

Therefore, the issues considered in this paper are
both of technical and applied physics significance.
The presented research is directed at finding an an-
alytical solution to the temperature profiles in the
resistive, copper current leads, while composite nor-
mal metal-HTc superconductors current leads will
be considered in the next paper. While these kinds
of issues are usually solved in a numerical way us-
ing computer codes, especially for the 3D case, in
the present paper, the analytic approach is adopted.
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This approach should allow to follow directly the
influence of geometrical and thermal parameters on
the temperature distribution in the linear current
lead, determining the energy losses generated then.

2. Basic equations

The temperature distribution inside the current
lead is described by the general heat diffusion
equation

ρcm
∂T

∂t
= λ∇2T, (1)

where T is the temperature, ρ is the density, cm is
the specific heat per unit mass, λ is the heat con-
ductivity constant, and t is the time. This equa-
tion is then reduced by inserting the heat diffusion
constant

D =
λ

ρcm
(2)

to the following form
∂T

∂t
= D∇2T. (3)

For the copper-made current leads, the numerical
values of the material parameters used in calcula-
tions of the temperature profile have been taken
as equal to ρ = 8.96 kg/m3, cm = 386 J/(kg K) in
room temperature, λ = 400 W/(m K). With them,
the diffusion constant D = 1.2 × 10−4 m2/s at
room temperature was deduced. The specific heat
of copper is very sensitive to temperature, for in-
stance, at 4 K it is equal to 0.09 J/(kg K), while
at 300 K it significantly increases to the value
cp(300 K) = 386 J/(kg K) [7]. However, such an in-
crease of D value does not influence the results of
the present considerations. Note that in the static
approach the term containing the coefficient D will
not occur, while in a dynamic case discussed later,
when time approaches zero, it leads to the value of
the exponent equal to unity, for arbitraryD. On the
other hand, strong temperature variation of the re-
sistivity has been explicitly taken into account.

In the present analysis, (1) has been extended
next onto the case of the heat Q generated in a time
unit in the current lead to the form, which in the
Cartesian coordinate system is expressed by (4) for
volume dV

ρcm
∂T

∂t
dV =

[
∂T

∂x

(
λ
∂T

∂x

)
+
∂T

∂y

(
λ
∂T

∂y

)
+
∂T

∂z

(
λ
∂T

∂z

)]
dV + qdV. (4)

Here, parameter q is introduced — describing the
local heat density related to the total heat gener-
ated in the sample Q at the time unit as

Q =

∫
dV q. (5)

For a one-dimensional case and current lead vol-
ume V we therefore obtain

ρcmV
∂T

∂t
= λV

∂2T

∂x2
+Q. (6)

3. Analysis of thermal model
in stationary case

In stationary conditions, for which the temper-
ature profile in the current leads has already been
established, in the one-dimensional, homogeneous
case (4) — after integration — is reduced to the
form

−Q = λV
∂2T

∂x2
. (7)

The solution of (7) is received then in the general
parabolic form

T (x) = − Q

2λv
x2 + bx+ c, (8)

where the new parameter λv = λV is introduced.
After determining the coefficients b and c, (8) is
transformed into the following expression

T (x) = − Q

2λv
x2 +

(
T1 − T0 +

Q

2λv
x21

)
x

x1
+ T0.

(9)
In (9), T0 is the temperature of the warm end of the
current lead, while T1 is the temperature at the dis-
tance x1, usually the point of thermal intercept or
temperature of the cold end of the lead. Thus, for
the simple current lead without thermal intercept,
x1 is equal to its length, while S is the cross-section.
The heat Q generated in the current lead, through
which the current I flows, is given by the coupled
relation

Q =
I2

S

∂ρ

∂T

x1∫
0

dxT (x) = (10)

[
−Qx

3
1

6λv
+

1

2

(
T1 − T0 +

Q

2λv
x21

)
x1 + T0x1

]
∝.

For the constant derivative ∂ρ
∂T resistivity ρ versus

temperature T , the specific property of normal met-
als, the solution of (10) is

Q =
(T1 + T0)x1

2

(
1

∝
− x31

12λv

)−1

, (11)

where parameter α is given as

∝= I2

S

∂ρ

∂T
. (12)

The results of calculations of temperature distribu-
tion in the normal current lead in this stationary
model are shown in Figs. 1–6.

Figure 1 shows the influence of the current on
the temperature profile of the copper current lead.
Quite high values of the temperature seen in this fig-
ure are connected with the current amplitude and
result from the fact that the case of a vacuum cryo-
stat is considered in the model. Then, cooling of
the wire takes place through both ends only, while
not through the surface.

Figure 2 demonstrates the comparison of the tem-
perature profiles for the simple current lead and the
lead with the thermal intercept at 80 K. A reduc-
tion of the temperature of the current lead is then
well seen in the second case, and this effect is the
reason for using such a construction of leads [1]
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Fig. 1. Influence of the transport current on the
temperature profile at the current lead, without in-
termediate thermal intercept: 1 — 1 A, 2 — 5 A,
3 — 10 A, 4 — 15 A.

Fig. 2. The comparison of the temperature profile
in the current lead for I = 15 A: 1 — current lead
without a thermal intercept, 2 — current lead with
a thermal intercept.

Fig. 3. Temperature distribution in the current
lead with the thermal intercept at 70 K for vari-
ous currents, i.e., 5, 10, 15 and 17 A.

and PolFEL. For the sake of comparison of these
current leads, the heat flowing to the cryogenic
liquid through the cold end has been determined.
Losses connected with the heat diffusion through
the cold end of a 5 mm diameter lead are equal to
4.6 W for the simple lead and 0.72 W for the lead
with a thermal intercept, which clearly points to the
advantage of the more complicated solution.

Fig. 4. The dependence of the calculated temper-
ature profile of the current lead as the function
of the position of the thermal intercept at 80 K:
1 — x1 = 0.3 m, 2 — 0.7 m, 3 — 1 m.

Fig. 5. The dependence of the calculated temper-
ature profile at the copper current lead as the func-
tion of the temperature of the thermal intercept:
1 — 200 K, 2 — 150 K, 3 — 100 K, 4 — 50 K.

Fig. 6. Temperature distribution in the current
lead with the thermal intercept at 80 K for
the different cross-sections: 1 — 2.5 × 10−6 m2,
2 — 3× 10−6 m2, 3 — 4×10−6 m2, 4 — 5×10−6 m2

and I = 18 A.

Figure 3 demonstrates the temperature char-
acteristics of the copper current leads with the
thermal intercept as the function of the current,
while Fig. 4 — as the position of the thermal in-
tercept at 80 K.

In Fig. 5, the dependence of the calculated tem-
perature profile on the copper current lead is shown
as the function of the temperature of the thermal
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Fig. 7. Temperature distribution inside the cur-
rent lead determined from the dynamic approach
for different cold end temperatures, i.e., 5, 100, 150
and 200 K.

intercept. It is an important result because in the
construction of the current leads, the thermal inter-
cept is frequently realized by the thermal contact
with flowing helium gas returning to the recovery
system. Consequently, the choice of the tempera-
ture of the intercept influences the heat balance of
the cryogenic cooling system.

Figure 6 presents the temperature profile of the
current lead as the function of its cross-section,
which is important for the current lead design. The
boundary conditions used in these calculations were
such that T = 300 K at the warm end of the current
lead, T = 80 K for the temperature of the intercept
and for the data shown in Fig. 3, it was 70 K and
the temperature of the cold end was 6 K. The anal-
ysis of the current leads was also made previously
in [5], where, however, a more engineering approach
was adopted, dealing with other issues as compared
to the present, more phenomenological study.

4. Dynamic approach to analysis
of current lead temperature distribution

In this part of the paper, a different analytical
method of approximation of the temperature profile
distribution in the linear current lead to the super-
conducting electromagnet, based on the dynamic
approach, is discussed. For this purpose, a one-
dimensional solution of basic (4) has been found
for the dynamic case, which reduces then to (6).
We consider the situation in which during a steady
current flow the static, stable temperature distribu-
tion in the current lead is reached. Then, the cur-
rent is switched off and the temperature starts to
decrease dynamically from this initial distribution.
The shape of the static temperature distribution is
obtained in the limit of t = 0. Mathematically, such

a situation is described by the following dynamic
part of the heat diffusion equation

ρcm
∂T

∂t
= λ

∂2T

∂x2
. (13)

The solution of (13) for the time equal to zero
will approach a steady, initial temperature profile,
determined by the equilibrium between heating dur-
ing the current flow and heat released in the process
of thermal conductivity. The goal of this attempt is
such that we investigate in this way a new physical
approach to the heat transfer in the current lead, in
which the total knowledge of the generated heat is
not necessary but only the maximum temperature
is estimated. We search for the solution of (13)
for that case in the form of the separation of the
variables

T (x, t) = Z (t)F (x) (14)
which leads to the dependence

1

DZ

∂Z

∂t
= F

∂2F (x)

∂x2
= −γ. (15)

The diffusion constant D was defined in (2). This
method of separation of the variables leads to (16),
determining the time dependence of the tempera-
ture decay

1

DZ

∂Z

∂t
= −γ (16)

which has the exponential solution
Z (t) = exp(−γDt). (17)

The second differential equation describes the
position-dependent temperature profile

1

F

∂2F (x)

∂x2
= −γ (18)

For t = 0, the solution of this equation gives, there-
fore, the required static temperature profile de-
scribed by the function F (x). The solution of (18)
has been chosen in the form of

F (x) = A sin (
√
γ (x+ β)) , (19)

where the parameters γ and β have been determined
from the boundary conditions
√
γ =

1

x1

[
π − arcsin

(
F (x1)

A

)
− arcsin

(
300

A

)]
(20)

and

β =
arcsin

(
300
A

)
x1

π − arcsin
(
F (x1)
A

)
− arcsin

(
300
A

) . (21)

Here, x1 is the length of the current lead. Finally
the initial, static profile of temperature distribution
in this model is given by

F (x) = A sin

x+
x1 arcsin

(
300
A

)
π − arcsin

(
F (x1)
A

)
− arcsin

(
300
A

)
π − arcsin

(
F (x1)
A

)
− arcsin

(
300
A

)
x1

 ,
(22)
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while the coefficient A describes in this model the
maximum temperature and is approximated by the
relation

A =
1

x1

(
I2R

λS
l1l2 + 300l2 + T2l1

)
, (23)

where l1 and l2 are the distances at the current lead
from the point of the maximum temperature xm to
the warm and cold end, respectively, while xm is
given by the relation

xm =
π
2 − arcsin

(
300
A

)
π − arcsin

(
300
A

) . (24)

The results of calculations of the influence of the
cold end temperature T2 on temperature profile in
the current lead obtained basing on the dynamic
approach are shown in Fig. 7. The shift of the pa-
rameter xm is seen here as well as the similarity to
the previous results obtained in the static approach.
The elaborated model will be useful for the analy-
sis of the hybrid current leads to be included in the
next paper.

5. Conclusions

In this paper, we have discussed two analytical
approaches to the heat diffusion issues appearing
in the normal current leads to the superconducting
electromagnets: the static and dynamic one. An-
alytical calculations performed basing on these ap-
proaches allowed to establish the influence of the
thermal intercept on the temperature profile of the
current leads and generated heat flowing through
the cold end of the current lead. These results have,
therefore, significance for applied physics, indicat-
ing the function of various physical parameters as
the current, size of the current leads, temperature
and position of the thermal intercept, cold end tem-
perature on the temperature profile in the current
lead and energy losses.
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