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Ab initio calculations are used to predict tetragonal transformation of Co2Ti1−xFexAs Heusler alloys.
We show that distortion of the cubic (austenite) Heusler structure induces a tetragonal (martensite)
structure with space group I4/mmm. At tetragonality, with the c/a ratio of 1.30, 1.26, 1.22, 1.17,
and 1.16 corresponding to x = 0, 0.25, 0.5, 0.75, and 1, respectively, the martensite phases become
energetically more stable than the austenite ones. The negative values of tetragonal shear modulus
parameter mean that the austenite phases of these alloys are elastically unstable, and consequently are
expected to undergo martensitic transformations. The stability of the martensitic phases is confirmed
by calculating the total spin polarized density of states at the Fermi level. The addition of Fe to the
Co2TiAs alloy decreases the energy difference between the austenite and martensite phases, leading
to a decrease of the martensitic transformation temperature TM . With TM higher than the room
temperature for x = 0 and 0.25, these compounds are expected to behave like high-temperature shape
memory alloys.
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1. Introduction

Full Heusler alloys are ternary compounds with
the X2YZ formula, where X and Y are transition
metals and Z is the main group element. They
crystallize in a Cu2MnAl cubic structure with space
group Fm3̄m. The X atoms occupy (1/4,1/4,1/4)
and (3/4,3/4,3/4) positions while the Y and Z
atoms are located on (1/2,1/2,1/2) and (0,0,0) po-
sitions, respectively. The Heusler alloys present
a vast variety of properties, ranging from semi-
conductors, half-metallic ferromagnets, supercon-
ductors, and topological insulators to shape mem-
ory alloys. They are considered potential candi-
dates for various practical applications, including
spintronic [1], thermoelectric [2] and magnetic re-
frigeration or magnetostrictive transducers [3, 4].
Shape memory alloys (SMAs) have the stunning
property of recovering their initial shape after de-
formation which can be induced by submitting to
a change in temperature or stress. A solid–solid
structural transformation from the parent phase
(austenite) to the product (martensite) phase oc-
curs at the martensitic transformation tempera-
ture TM (martensite start temperature). However,

industrial SMAs have a low operating temperature
drawback, which reduces their potential applica-
tions. This is the reason why there is a techno-
logical need to develop new SMAs with high TM ,
which will open up unexplored application fields.

Ferromagnetic shape memory alloys (FSMA) are
a subgroup of shape memory alloys (SMA) that
also exhibit a ferromagnetic behavior. In this way,
the Ni2MnGa compound, one of the best under-
stood FSMA, has been extensively studied [5–11].
It undergoes a transition from a cubic to a tetrago-
nal distorted structure at TM around 200 K, which
could be enhanced by changing the concentration
of the Ni-Mn-Ga alloy’s constituent elements, lead-
ing to TM equal to 330 K [12]. The FSMA
has also been observed in the Heusler compounds
containing Co and Ni atoms, such as Co2NiGa
and Co2NiAl [13–17]. The studies carried out on
Ni–Fe–Co–Mn–Sn alloys by Qu et al. [18] have led
to results of great importance for the design of high
performance multifunctional materials. Moreover,
Chen et al. have observed experimentally that the
NiCoFeGa alloy system with various Co contents
deformed in tension at various temperatures dis-
plays a supercritical elasticity [19]. On the one
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hand, in the Co–Ti-based Heusler alloys, the ma-
jority of theoretical and experimental researches
have focused on magnetic, optical and electronic
transport properties. In this view, we cite mag-
netic, half-metallic and optical properties of the
full-Heusler alloys Co2TiX (X = Al, Ga, Si, Ge,
Sn, Sb) carried out theoretically and experimen-
tally by Lee et al., Webster and Ziebeck, Bainsla
and Suresh, and Shreder et al. [20–23], magnetic
and transport properties of Co2Ti1−xFexGe studied
experimentally by Venkateswarlu et al. [24], elec-
tronic and magnetic properties of the full-Heusler
alloys Co2Ti1−xFexGa studied theoretically by Ah-
madian and Boochani [25] and last but not least,
half-metallic ferromagnetic behavior observed ex-
perimentally in Co2Ti1−xFexSn by Rani et al. [26].
On the other hand, the martensitic transformation
has been experimentally observed and theoretically
predicted in the Co2TiSb1−xSnx alloy by Wang
et al. [27, 28]. The main concern of the present work
is to provide theoretical prediction about marten-
sitic transformations in Co2Ti1−xFexAs (x = 0,
0.25, 0.5, 0.75, 1) alloys.

2. Calculation details

The calculations are carried out within density
functional theory. We use the all-electron full po-
tential linearized augmented plane-wave method as
implemented in the Wien2k code [29]. The ex-
change and correlation effects are introduced us-
ing the generalized gradient approximation (GGA)
based on the Perdew–Burke–Ernzerhof (PBE) ap-
proach [30]. We use a 12-atom supercell, corre-
sponding to a 1 × 1 × 1 conventional cubic cell.
The cubic and tetragonal crystal structures of the
Co2TiAs alloy visualized by the Xcrysden tool [31]
are shown in Fig. 1.

In the cubic Heusler structure (space group
Fm3̄m), the Co atoms occupy 8c (1/4, 1/4, 1/4)
positions, the Ti and As atoms are located at
the Wyckoff position of 4b (1/2, 1/2, 1/2) and 4a
(0, 0, 0), respectively. The calculations are per-
formed for the Co2Ti1−xFexAs alloys with 5 Fe
compositions (x = 0, 0.25, 0.50, 0.75 and 1). For
x = 0.25, one Fe atom substitutes one Ti atom

Fig. 1. Crystal structures of the Co2TiAs alloy,
cubic (left) and tetragonal (right).

at (1/2, 0, 0) position. For x = 0.50, two Ti atoms
are replaced by two Fe atoms at positions (1/2, 0, 0)
and (0, 1/2, 0), respectively. For x = 0.75, three Ti
atoms are substituted by three Fe atoms at posi-
tions (1/2, 0, 0), (0, 1/2, 0) and (0, 0, 1/2), respec-
tively. For x = 1, all four Ti atoms are replaced
by four Fe atoms. In the tetragonal structure with
space group I4/mmm, the Co atoms occupy the
Wyckoff position 4d (0, 1/2, 1/4), the Ti and the As
atoms are located at 2b (0, 0, 1/2) and 2a (0, 0, 0),
respectively.

We expand the basis function up to
RMTKmax = 7 (RMT is the muffin-tin radius
and Kmax is the maximum modulus for reciprocal
lattice vectors). The RMT spheres adopted are
2.1, 2.0, 2.1, and 2.2 a.u. (atomic units) for Co,
Ti, Fe, and As atoms, respectively. The Brillouin
zone integrations were performed with the special
k-point method of the Monkhorst–Pack mesh [32]
over a 9 × 9 × 9 mesh. Self-consistency was
achieved with an energy tolerance of 10−4 Ry.
The elastic constants are calculated using the
thermo_pw package [33] integrated in the Quan-
tum ESPRESSO code [34]. The PBE-GGA is
used for the exchange-correlation functional with
ultra-soft pseudopotentials.

3. Results

3.1. Structural and mechanical properties

The total energy for cubic and tetragonal Heusler
structures of Co2Ti1−xFexAs alloys in the ferro-
magnetic state have been calculated for different
volumes and fitted by the Murnaghan equation
of state [35]. The corresponding equilibrium lat-
tice parameter a, bulk modulus B and its pressure
derivative B′ are summarized in Table I. We note
that experimental and theoretical lattice constants
of these alloys are still unavailable to be compared.

At the equilibrium state, the variation of calcu-
lated lattice parameters of the cubic phase versus
the Fe composition obeys Vegard’s law [36] as shown
in Fig. 2.

TABLE I

Calculated structural properties of Co2Ti1−xFexAs
alloys in the cubic and tetragonal phases.

Compound Phase a [Å] c/a B [GPa] B′

Co2TiAs
cubic 5.860 1 163.38 4.46
tetragonal 5.335 1.30 182.56 4.44

Co2Ti0.75Fe0.25As
cubic 5.838 1 167.55 4.42
tetragonal 5.374 1.26 175.39 4.52

Co2Ti0.5Fe0.5As
cubic 5.822 1 163.99 4.39
tetragonal 5.423 1.22 166.533 4.06

Co2Ti0.25Fe0.75As
cubic 5.804 1 160.61 4.48
tetragonal 5.462 1.17 168.75 4.53

Co2FeAs
cubic 5.777 1 162.19 4.06
tetragonal 5.433 1.16 167.43 4.49
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TABLE II
Calculated mechanical properties and martensite transformation temperature of Co2Ti1−xFexAs alloys.

Compound Phase
C11

[GPa]
C12

[GPa]
C13

[GPa]
C33

[GPa]
C44

[GPa]
C66

[GPa]
C′

[GPa]
TM

[K]

Co2TiAs
cubic 77.32 215.37 – – 63.01 – −69.02

998.31
tetragonal 284.51 103.56 177.03 224.15 51.19 42.6 90.47

Co2Ti0.75Fe0.25As
cubic 88.73 208.43 – – 62.56 – −59.84

652.38
tetragonal 260.39 103.10 175.05 224.17 55.82 46.19 78.64

Co2Ti0.5Fe0.5As
cubic 100.42 197.98 – – 62.41 – −48.77

267.73
tetragonal 244.54 102.66 172.17 224.22 59.61 50.45 70.74

Co2Ti0.25Fe0.75As
cubic 111.03 190.50 – – 62.31 – −39.73

193.49
tetragonal 236.95 103.09 168.37 235.57 62.55 56.49 66.93

Co2FeAs
cubic 124.06 190.34 – – 66.89 – −33.14

28.60
tetragonal 237.73 103.56 163.68 247.48 64.64 63.50 67.08

Fig. 2. Calculated lattice parameters versus Fe
composition of the cubic phase together with Ve-
gard’s law variation of Co2Ti1−xFexAs alloys.

The mechanical stability of Co2Ti1−xFexAs al-
loys is estimated by calculating the elastic con-
stants Cij . In the tetragonal lattice symmetry, there
are six independent elastic constants C11, C12, C13,
C33, C44, and C66, which are reduced to three (C11,
C12, and C44) in the cubic symmetry case. The
calculated constants of all studied alloys in both
symmetries are summarized in Table II. The Born
mechanical stability criteria [37] for a cubic crystal
requires that C11−C12 > 0, C11 > 0, C11+2C12 > 0
and C44 > 0 (for a tetragonal crystal, C11−C12 > 0,
C33 > 0, C44 > 0, C66 > 0, C11 + C33 − 2C13 > 0
and 2C11 +C33 + 2C12 + 4C13 > 0). From Table II,
it is clear that the elastic constants of tetragonal
structures satisfy all the conditions, whereas those
of cubic ones are not fulfilled, which indicates that
these alloys are mechanically unstable in the cu-
bic phase and are expected to undergo martensitic
transformations. This is confirmed by the negative
values of the tetragonal shear modulus parameter,
C ′ = (C11 − C12)/2, in the austenite phases (see
Table II). We notice that C ′ of tetragonal marten-
sitic phases decreases and that of cubic austenite
phases increases, with increasing Fe concentration.

3.2. Prediction of martensitic transformation

To study a structural transformation from the
cubic austenite phase to the tetragonal marten-
site phase, we calculate the total energy versus
the tetragonal distortion, by varying the c/a ra-
tio and keeping the volume unchanged. Distortions
of the cubic Heusler structures induce tetragonal
structures with space group I4/mmm. The energy
difference between the martensite and austenite
phases versus c/a deformations of Co2Ti1−xFexAs
Heusler alloys are shown in Fig. 3. The results wit-
ness that, for each concentration, there are two en-
ergy minima, a shallow one at c/a < 1 and a deeper
one at c/a > 1. The tetragonally distorted struc-
tures are energetically favorable to the cubic ones
with a local energy minima of c/a = 1.30, 1.26,
1.22, 1.17, and 1.16 for x = 0, 0.25, 0.5, 0.75, and 1,
respectively. This indicates that at temperature
change, a transformation from the austenite to the
martensite phase may happen in Co2Ti1−xFexAs
Heusler alloys.

Fig. 3. Energy difference, ∆E, between the
martensite and austenite phases versus tetragonal
distortion c/a of Co2Ti1−xFexAs alloys.
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Fig. 4. Energy difference between the austenite
and martensite phases, ∆E, versus Fe composition
of Co2Ti1−xFexAs alloys.

It has been reported that a large difference in
stabilization energy, ∆E, which is defined as the
energy difference between the austenite and the
martensite phases, implies a high stability of the
martensitic phase and a change in the martensitic
transformation temperature TM [38]. We find that,
when the lattice is deformed, the total energy of the
tetragonal phase is reduced by 86.06, 56.24, 23.08,
16.70, and 2.46 meV/atom for x = 0, 0.25, 0.50,
0.75, and 1, respectively. By comparing the cal-
culated energy difference and the experimentally
measured martensitic transformation temperature
for several compounds, Barman et al. [38] found
an approximately linear relationship between ∆E
and TM , ∆E ∝ kBTM , where kB is the Boltzmann
constant. According to Fig. 4, ∆E decreases with
increasing Fe concentration and consequently TM

decreases. For x ranging from 0 to 1, which corre-
sponds to an increase of valence electron concentra-
tion per atom (e/a) from 6.75 to 7.75, TM decreases
from 998 to 28 K. The e/a number is closely related
to TM in a large variety of Heusler alloys [39–41].
Table II demonstrates that Co2Ti1−xFexAs alloys
follow the general rule regarding the tetragonal
shear modulus C ′ and TM , a smaller C ′ indicates
a higher TM [42–45].

To confirm the stability of the tetragonal phase
with respect to the cubic one, we plot in Fig. 5
the total spin polarized density of states (DOS) at
the Fermi level (EF) for the martensite and austen-
ite phases of Co2Ti1−xFexAs alloys. In the cubic
phases, the calculated total DOSs of the studied
compounds reveal the existence of peaks near the
Fermi level EF. Faleev et al. [46], after analyzing
286 Heusler compounds, concluded that the main
reason of the tetragonal distortion of many Heusler
compounds is the existence of DOS peaks near EF in
the cubic phases. Figure 5 shows that the tetragonal
distortion reduces the minority spins (spin-down)
DOS at EF, while the majority spins (spin-up) DOS
at EF remains almost unchanged. Indeed, it has

Fig. 5. DOS for the austenite and martensite
phases of Co2Ti1−xFexAs alloys.

been reported by Xu and Oguchi [47] that high DOS
at the Fermi level reduces the structure stability.
Thus, we conclude that the tetragonal phases are
most stable.

To measure the asymmetry of the DOS at EF for
spin up, N↑ (EF), and spin down, N↓ (EF), elec-
trons, we calculate the spin polarization (P ) at EF

with

P =
N↑ (EF)−N↓ (EF)

N↑ (EF) + N↓ (EF)
. (1)

The polarization decreases as a function of the con-
centration of Fe in both the cubic and tetragonal
phases, and it is found equal to 84, 92, 86, 81,
and 74% in the cubic phases and 58, 41, 21, 7,
and 8% in the tetragonal ones, estimated at con-
centrations x = 25, 50, 75, and 100%, respectively.
We notice that the tetragonal distortion reduces
the spin polarization of the cubic parent phases.
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Fig. 6. Total magnetic moment versus Fe compo-
sition for the austenite and martensite phases of
Co2Ti1−xFexAs alloys.

TABLE III

Calculated atomic magnetic moment (in µB/atom) of
Co2Ti1−xFexAs alloys.

Compound Phase Co Ti Fe As

Co2TiAs
cubic 0.87 −0.004 – 0.04
tetragonal 0.53 −0.07 – 0.03

Co2Ti0.75Fe0.25As
cubic 0.97 −0.05 2.84 0.07
tetragonal 0.71 −0.11 2.85 0.03

Co2Ti0.5Fe0.5As
cubic 1.19 −0.07 2.85 0.08
tetragonal 0.90 −0.15 2.83 0.04

Co2Ti0.25Fe0.75As
cubic 1.36 −0.04 2.81 0.06
tetragonal 1.06 −0.14 2.81 0.05

Co2FeAs
cubic 1.49 – 2.81 0.07
tetragonal 1.17 – 2.77 0.03

This incomplete spin polarization at EF gives rise to
an incomplete half-metallicity and thus we expect
non-integer values of the total magnetic moments.

Figure 6 represents the total magnetic moment of
the primitive unit cell versus the Fe concentration.
The addition of Fe to Co2TiAs increases linearly the
magnetization in both the martensite and austenite
phases. We have seen that the tetragonal distortion
reduces the minority spins (spin-down) DOS at EF,
and this is due to a charge transfer from the occu-
pied to the unoccupied states. This transfer induces
holes in the minority d-states and therefore reduces
the total magnetic moment of the martensite phase.
The atomic magnetic moments for the cubic and
tetragonal Co2Ti1−xFexAs (x = 0, 0.25, 0.5, 0.75,
and 1) alloys are listed in Table III. We notice that
the atomic magnetic moments change slightly with
lattice distortion. The Ti and As atoms show the
smallest magnetic moment, thus the magnetization
for these alloys is mainly due to the Fe and Co
atoms.

4. Conclusion

We predict by means of first-principles calcula-
tions that tetragonal distortions of Co2Ti1−xFexAs
cubic alloys induce martensite phase transforma-
tions. The stability of the martensitic phase of these

alloys is confirmed by the calculations of the total
energy difference ∆E between the austenitic and
martensitic phases, the tetragonal shear modulus
C ′ and the total spin polarized density of the states
at the Fermi level. We observe that ∆E decreases
with increasing Fe composition resulting into the
change of the martensite transformation tempera-
ture TM from 998 to 28 K.
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