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In this paper, we have demonstrated the application of the U(2) Lie algebraic method to predict the
vibrational frequencies of sulfur dioxide (SO2). A Hamiltonian that preserves the C2ν point group sym-
metry of the molecule is devised using three interacting Morse oscillators. Root mean square deviation
of the calculated vibrational frequencies is found to be 1.054 cm−1 with reference to their experimental
values. This asserts that the U(2) Lie algebraic method is successful in calculating the fundamental
vibrational frequencies, and their higher overtones near to the spectroscopic level of accuracy.
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1. Introduction

Theoretical calculations of vibrational frequen-
cies of polyatomic molecules have been one of the
interesting research areas for scientists on account
of the development of innovative spectroscopic tech-
niques. The investigation of vibrational spectra of
molecules has been improved in recent years both
theoretically and experimentally. Two approaches
have been predominantly used so far in the study
of experimental spectra: the well-known Dunham-
like expansion of energy levels in terms of rotation–
vibration quantum numbers and the solution of the
Schrödinger equation with potential functions.

In this work, we applied the Lie algebraic method
to study the vibrational frequencies of sulfur diox-
ide. This method reformulates the Hamiltonian op-
erator in terms of elements of the Lie algebra and
provides the same physical information as that of
the Dunham and potential approaches [1, 2]. The
advantage of the proposed method, as compared to
that of the Dunham or potential approach, is that
usually fewer parameters are required to get the
same level of accuracy, in contrast to their com-
parators [3, 4]. The Lie algebraic method makes it
possible to predict the vibrational frequencies much
more accurately and possibly at a much lesser com-
putational cost as compared to other theoretical

approaches. The lesser computational cost of the
Lie algebraic framework is evident from the lesser
demand of computational time for performing al-
gebraic manipulations, rather than integration and
differentiation of the potential function as in other
approaches [1, 2].

2. The U(2) Lie algebraic method

Sulfur dioxide (SO2) is a bent triatomic molecule
with the equilibrium structure belonging to the C2ν

point group symmetry. The molecule is non-linear
with 3 vibrational degrees of freedom. Each of the
vibrating bonds in SO2 molecule is effectively de-
scribed by a one-dimensional Morse oscillator and
is assigned with a corresponding U(2) Lie algebra,
as per the schematic shown in Fig. 1.

The two possible chains of dynamical symmetry
groups in SO2 molecule, corresponding to the local
and normal couplings in stretching vibrations, are
given by

U1(2)⊗ U2(2) ⊃ O1(2)⊗O2(2)→ local
coupling (1)

U1(2)⊗ U2(2) ⊃ U12(2) ⊃ O12(2)→ normal
coupling (2)

The interaction results in three normal mode vi-
brations ν1, ν2, and ν3, correspond to the symme-
try species A1 (symmetric stretch), B1 (asymmetric
stretch), and A1 (bend).
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Fig. 1. Assignment of U(2) Lie algebras for bonds
in SO2 molecule.

The local vibrational basis is constructed as∣∣∣∣∣U1(2) ⊗ U2(2) ⊗ U3(2) ⊃ O1(2) ⊗ O2(2) ⊗ O3(2)

N1 N2 N3 ν1 ν2 ν3

〉
(3)

keeping the total vibrational quantum number
V =

∑
i=a,b,c νi always a conserved quantity.

The Hamiltonian operator that describes the vi-
brational spectra of the two interacting single bonds
(S–O) in SO2 molecule are expressed mathemati-
cally as [5, 6]:

H = E0 +

n∑
i=1

AiCi +

n∑
i<j

AijCij +

n∑
i<j

λijMij .

(4)
Here, E0 is the electronic ground state energy of
the bond S–O, which will be taken as the zero ref-
erence for all the vibrational excitations. The term∑n
i=1AiCi corresponds to the independent local os-

cillators expressed using the invariant Casimir oper-
ators Ci. The term

∑n
i<j AijCij is accounted for the

cross-anharmonicities between pairs of distinct local
oscillators in terms of the coupled Casimir opera-
tors Cij . The term

∑n
i<j λijMij expresses the an-

harmonic, non-diagonal interactions involving the
pairs of local oscillators in terms of the coupled
Majorana operators Mij . The eigenvalues of the
Hamiltonian can be evaluated and give a descrip-
tion of n coupled anharmonic vibrations. The cou-
plings in the Hamiltonian are only first order, in
the sense that the Majorana operators Mij annihi-
late one quantum of vibration in bond j, and create
one in bond i (or vice versa).

Here, i varies from 1 to 2 for the two (S–O)
stretching bonds. The algebraic parameters
{Ai, Aij , λij} are calculated from the spectroscopic
data of S–O single bond. The invariant oper-
ator Ci of the uncoupled bond with eigenvalues
−4(Niνi − ν2i ) and the operator Cij for coupled
bonds are diagonal with matrix elements
〈Ni, νi;Nj , νj |Cij |Ni, νi;Nj , νj〉 =

4
(
(νi + νj)

2 − (νi + νj) (Ni +Nj)
)
, (5)

while the Majorana operatorMij has both diagonal
and non-diagonal matrix elements

〈Ni, νi;Nj , νj |Mij |Ni, νi;Nj , νj〉 =

(Niνj +Njνi − 2νiνj) ,

〈Ni, νi + 1;Nj , νj − 1 |Mij |Ni, νi;Nj , νj〉 =

−
√
νj (νi + 1) (Ni − νi) (Nj − νj + 1),

〈Ni, νi − 1;Nj , νj + 1 |Mij |Ni, νi;Nj , νj〉 =

−
√
νi (νj + 1) (Nj − νj) (Ni − νi + 1), (6)

where νi (i = 1, 2, . . .) are the vibrational quan-
tum numbers. The vibron number Ni (i = 1, 2) for
(S–O) stretching bonds of the molecule are calcu-
lated by the following relation [7]:

Ni =
ωe

ωexe
− 1. (7)

Here, Ui(2) are the spectroscopic constants [8] and
1 6 i 6 3. The initial guess value for the param-
eter Ai (i = 1, 2) is obtained by using the energy
equation for the single-oscillator fundamental mode.
It is given as [9–11]:

E (ν = 1) = −4Ai (Ni − 1) . (8)
Initial guesses for Aij are taken as zero. The pa-
rameter λij is determined from the relation [1, 2]:

λij '
|Ei − Ej |

2N
. (9)

To get accurate results, a numerical fitting proce-
dure is essential to obtain the parameters Ai, λij
(when i, j = 1, 2, and i 6= j) starting from values as
given by (8) and (9).

3. Results

Our calculations based on the constructed Lie
algebraic Hamiltonian, followed by the linear re-
gression analysis (fitting procedure) resulted in the
optimized algebraic parameters, which are given
in Table I.

The calculated vibrational frequencies in funda-
mental, overtone and their combinations are pre-
sented in Table II.

TABLE I

Optimised fitting parameters. Note: N1, N2, and N3

are dimensionless numbers.

U(2) Lie algebraic
model parameters

Optimised value
Vibrational

mode
N1, N2 178 stretching
N3 88 bending

A1, A2 −2.2799 cm−1 stretching
A3 −2.2297 cm−1 bending

A12, A21 0.3262 cm−1 stretching
A13, A23 0.3699 cm−1 bending

λ12, λ21 0.5905 cm−1 stretching
λ13, λ23 2.9425 cm−1 bending
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TABLE II

Vibrational frequencies of sulfur dioxide.

Vibrational
mode

Vibrational frequencies [cm−1]
Experiment [12, 13] U(2) Lie method

(1 0 0) 1151 1150.9652
(0 0 1) 1361.2 1361.1832
(0 1 0) 517 517.8944
(2 0 0) 2295.9 2294.9032
(0 0 2) 2714 2715.6130
(0 2 0) 1034.9 1035.7744
(3 0 0) 3435.4 3437.0171
(0 0 3) – 4056.5053
(0 3 0) – 1553.6544
(4 0 0) – 4558.1320
(0 0 4) – 5403.2261
(0 4 0) – 2071.5344
(5 0 0) – 5758.4300
(0 0 5) – 6845.2126
(0 5 0) – 2589.4144
(6 0 0) – 6815.3209
(0 0 6) – 8287.0553
(0 6 0) – 3107.2944
(1 0 1) 2499.1 2514.758
(2 0 1) – 3658.696
(1 0 2) 3837 3869.1878
(3 0 1) – 4800.8099
(1 0 3) – 5210.0801
(4 0 1) – 5921.9248
(1 0 4) – 6556.8009
(5 0 1) – 7122.2228
(1 0 5) – 7998.7874
(2 0 2) – 5013.1258
(3 0 3) – 7496.132

4. Conclusion

Vibrational frequencies of sulfur dioxide are cal-
culated using the U(2) Lie algebraic method, and
the calculated frequencies are compared with the
reported experimental data. The results obtained
are found to be consistent with the experimental
results, indicating that our approach can be ap-
plied to study the vibrational spectra of a variety
of molecules. The obtained results confirm that the
U(2) Lie algebraic framework has successfully re-
produced the vibrational frequencies at the funda-
mental excitations near to the level of spectroscopic
accuracy, as well as predicted their first five over-
tones.
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