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A new analytical equation of state based on the Eulerian finite strain scheme has been formulated.
The n-th power of edge length by compression has been used. This equation correctly evaluates models
of the high-pressure theory and corresponds well to the experimental data of geophysical minerals. The
new equation of state is capable of producing other prominent equations of state such as the Birch–
Murnaghan equation of state, the third-power Eulerian equation of state, etc. The derived equation
has been used to develop the expression of the pressure dependence of bulk modulus and its pressure
derivative. The developed expressions have been used to test and investigate the pressure dependence
of bulk modulus and its pressure derivative of alkaline earth oxides viz. MgO, CaO. It is found that
the computed results using the present models show a better agreement with available experimental
results. It is concluded that new expressions are capable of predicting the elastic properties of earth’s
minerals under high-pressure conditions. It can be used in geophysical applications.

topics: equation of state (EOS), n-th power of edge length, pressure dependence of bulk moduli, high
pressure

1. Introduction

Currently, understanding the state of earth’s in-
terior minerals and its density distribution under
high pressure and high temperature attracts many
researchers. Mineral physics has played a major role
in explaining the physical properties of matter un-
der extreme conditions of pressure and temperature.
The results of such researches have a significant im-
pact in the fields of geophysics, materials science
and condensed matter physics. Since compressibil-
ity is defined by the derivative of volume, therefore
elasticity offers more information to interpret the
pressure and temperature dependence of the equa-
tion of state (EOS) [1]. The elastic moduli are ap-
propriate physical quantities to depict the mechan-
ical properties of materials. They are utilized to
assess the elastic strains or energies in materials un-
der the pressure of different roots: outside, inside,
warm, and so on. The elastic properties are di-
rectly connected with numerous key physical quan-
tities, for example, seismic velocities, anisotropy,
Cauchy’s deviation, thermal conductivity, the De-
bye temperature, interatomic potentials, etc. The
behaviors of elastic moduli under the effect of high
pressure and high temperature have aroused great
interest in experimental [2–4], as well as theoretical
researchers [5–12].

This paper is divided into two parts. The first
part deals with the development of a new equa-
tion of state depending upon the Eulerian finite
strain scheme to utilize the n-th power of the edge
length by pressure. The Eulerian finite strain has
to be truncated for this purpose. We have derived
the second-order and third-order equation of states.
The second part deals with the derivation of the
pressure dependence of isothermal bulk modulus
and its pressure derivatives with the help of the pro-
posed equations of state. The derived expressions
will be applied to alkaline earth oxides viz. MgO,
CaO. Finally, the validity and applicability of the
proposed work will be tested and evaluated under
extreme pressure.

Note that the study of alkaline earth oxides
(AEOs) is of great interest for several reasons.
These oxides have been considered a typical case in
understanding bonding in ionic oxides [13]. Further,
they are one of the most fundamental materials for
industrial science. These oxides are also a major
constituent of earth’s lower mantle (between 600
and 2900 km in depth) [5]. The electronic struc-
ture [14], structural phase transitions [6–9], elastic-
ity [1–12], thermal properties [1–3, 8, 9], stability
and the equation of state [10, 11] of these oxides
have been extensively studied theoretically [5–10]
as well as experimentally [1–4].
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The results of the proposed study are discussed
and the comparison is made with the available
experimental data and other theoretical methods.
The utility of the present study under extreme pres-
sure is essential as it allows the extrapolation into
the regions for which the experimental data are not
available abundantly.

2. Theoretical analysis

Let us assume that a unit cubic body has the
length of an introductory edge X0, and its vol-
ume V0 = X3

0 . If the unit cubic body is uniformly
compacted along the edge length X, the volume of
such body is V = X3. The body displacement u
(u < 0) due to compression V/V0 can be represented
in terms of the introductory edge length, and thus
the length change can be given as

X0 = X − u, (1)
where the displacement u (u < 0) due to compres-
sion can be represented in terms of the introductory
edge length.

The n-th power of the change in length by
compression, i.e.,

Xn −Xn
0 ≡ Xn − (X − u)

n
=

Xn −Xn
(
1− u

X

)n
, (2)

can be expanded, neglecting the higher terms of
u in the term

(
1− u

X

)n, because u < 0. Then,
(2) takes the following form:

Xn −Xn
0 = nuXn−1 − n(n− 1)

2
u2Xn−2. (3)

Due to uniform compression, the displacement will
be proportional to the reference edge length

u = cX, (4)
where c is a proportional constant at a given
compression, referred to as the strain in linear
elasticity. Now, using (3) and (4), we have

Xn −Xn
0 =

(
nc− n(n− 1)

2
c2
)
Xn. (5)

The finite strain under the Eulerian scheme εE is
defined as:

εE ≡ c− n− 1

2
c2. (6)

Hence, from (5) and (6), we get
Xn −Xn

0 = nεEX
n. (7)

Thus, we can easily write the finite strain for the
n-th power of the edge length.

The body is compressed if εE is negative. With
the use of (7), one can obtain the Eulerian finite
strain f , expressed in terms of V0

V . Namely,

f = −ε = 1

n

[(
V0

V

)n/3

− 1

]
, (8)

where V0 is the volume at P = 0, and
V0

V
=
(
1 + nf

) 3
n . (9)

The partial derivative of this Eulerian finite strain f
with respect to volume is given as follows:

∂f

∂V
= − 1

3V0

(
1 + nf

) 3
n+1

. (10)

In the compressed state, the Helmholtz free en-
ergy of a matter increases. Thus, the Helmholtz free
energy can be expressed in the form of the Taylor
series expansion of the Eulerian finite strain

A = a0 + a1f + a2f
2 + a3f

3 + a4f
4 + . . . (11)

2.1. Second-order equation of state

To obtain the second-order equation of state
(EOS), (11) has to be truncated up to the second
term. Hence, (11) reduces to

A = a0 + a1f + a2f
2. (12)

The first coefficient in (12) should be taken as
a0 = 0 because pressure in the uncompressed con-
dition case (when V = V0 and A = 0) is zero. We
get then

A ∼= a1f + a2f
2. (13)

In isothermal EOS, the pressure P is expressed as
a function of the volume V . From the thermody-
namics identity, the pressure is the volume deriva-
tive of the Helmholtz energy A, i.e.,

P = −
(
∂A

∂V

)
T

(14)

and the relation between pressure and volume be-
comes

P =
(a1 + 2a2f

)
3V 0

(
1 + nf

) 3
n+1

. (15)

Under the uncompressed condition, the first coef-
ficient in (15) is taken as a1 = 0 because pressure
should be zero then. Since P = 0 and V = V 0,
(15) reduces to the form of

P =
2a2f

3V0

(
1 + nf

) 3
n+1

. (16)

Now, the value of the second coefficient a2 can
be easily determined using the thermodynamic re-
lation for isothermal bulk modulus, i.e.,

KT = −V
(
∂P

∂V

)
T

. (17)

The partial derivative of pressure with respect to
the volume in the uncompressed state (when P = 0
and V = V 0) results in f = 0. Therefore(

∂P

∂V

)
T,P=0

= −KT0

V0
, (18)

where KT0 is the isothermal bulk modulus at stan-
dard temperature.

Using (16)–(18) and assuming P = 0, one gets
the coefficient a2:

a2 =
9

2
KT0

V0. (19)

Substituting (19) into (16), the P–V relation is ob-
tained as

P = 3fKT0

(
1 + nf

) 3
n+1

. (20)
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The above result (20) is the second-order EOS,
given in terms of the Eulerian finite strain f and
KT0 — the isothermal bulk modulus at standard
temperature.

Next, using (17), we obtained the expression for
isothermal bulk modulus. It has the following form:

KT = KT0 (1 + nf)
3
n+1

[1 + (3 + 2n)f ] (21)
and it is given in terms of the Eulerian finite
strain f .

The first pressure derivative of isothermal bulk
modulus is defined as follows:

K ′T =

(
∂KT

∂P

)
T

= − V

KT

(
∂KT

∂V

)
T

. (22)

Using (22), we obtained the expression for the first
pressure derivative of bulk modulus, written as

K ′T =
KT0

KT

(
1 + nf

) 3
n+1

×
[
2 + n+

(
3 + 4n+

4

3
n2

)
f

]
. (23)

The above expression (23) is required for the first
pressure derivative of bulk modulus.

2.2. Third-order equation of state

To obtain the third-order equation of state
(EOS), (11) has to be truncated up to the third
term. Hence (11) reduces to

A ∼= a2f
2 + a3f

3. (24)
With the help of (14), one obtains the pressure in
the form of

P =
1

3V0

(
2a2f + 3a3f

2
) (

1 + nf
) 3

n+1
, (25)

where a2 = 9
2KT0V0. The undetermined third co-

efficient a3 can be easily evaluated in the identical
manner as for a2.

The volume second-order derivative of pressure
can be evaluated using isothermal bulk modulus
and its pressure derivative. From the definition of
isothermal bulk modulus(

∂P

∂V

)
T

= −KT

V
(26)

we have(
∂2P

∂V 2

)
T

=
KT

V 2
(K ′T + 1) . (27)

Let us apply the condition of the uncompressed
state of matter, i.e., P = 0 and f = 0 at V = V 0.
Therefore, (27) takes the following form:(

∂2P

∂V 2

)
T,P=0

=
KT0

V 2
0

(
K ′T0

+ 1
)
, (28)

where K ′T0 — the pressure derivative of isothermal
bulk modulus at standard temperature.

Now using (25), (28) together with the expression
a2 = 9

2KT0
V0, we can easily determine the value of

the third coefficient a3. It is

a3 =
9

2
KT0

V0

[
K ′T0

− (n+ 2)
]
. (29)

Substituting the coefficient a2 and a3 by (19)
and (29), respectively, in pressure and volume,
then (25) can be written as

P = 3fKT0

(
1 + nf

) 3
n+1

×
{
1 +

3f

2

[
K ′T0 − (n+ 2)

]}
. (30)

The second term in the curly bracket shows up
due to the truncation of the Helmholtz free en-
ergy to the third-order term. The type of the curly
bracket can be attributed to the considered Eulerian
finite strain (8). The third-order equation of state
(30) becomes indistinguishable from the second-
order equation of state (20) when K ′T0 = n+ 2.
In other words, if K ′T0 = 0, the third-order equa-
tion of state (30) differs from (20).

In order to evaluate the expression for isother-
mal bulk modulus for third-order, the approach is
identical as in (21) when the definition (17) is used.
Therefore, one gets

KT = KT0
(1 + nf)

3
n+1

{
1 + (3 + 2n)f

+
3

2

[
K

′

T0
− (n+ 2)

] [
2f + 3(n+ 1)f2

]}
,

(31)
i.e., the expression for isothermal bulk modulus for
third-order in terms of the Eulerian finite strain f .
Note that (31) is identical to isothermal bulk mod-
ulus (21) for second-order equation of state (EOSs)
if K ′T0 = n + 2. In other words, if K ′T0 = 0,
(31) should differ from (21).

Using (22), the first pressure derivative of bulk
modulus with respect to the third-order equation
of state can be determined. Thus,

K
′

T =
KT0

KT

(
1 + nf

) 3
n+1

{
K

′

T0
+

(2n+ 3)
2

3
f

+(5n+ 6)
[
K

′

T0
− (n+ 2)

]
f

+
9

2
(n+ 1)

2
[
K

′

T0
− (n+ 2)

]
f2
}

(32)

represents the expression for the first pressure
derivative of bulk modulus with respect to the third-
order equation of state.

3. Results and discussion

The above mentioned equations, (30)–(32), are
the expressions for the third-order equation of state,
isothermal bulk modulus and its pressure derivative,
respectively, obtained using the n-th power of edge
length change by compression. The other equations
of state can be derived by choosing the proper val-
ues of n such that n = 1, 1.5, 2, and 3. Referring to
these equations of state, we can also get the expres-
sion for isothermal bulk modulus and its pressure
derivative.
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Case I. If n = 1, then the P–V relation (EOS),
the expression for isothermal bulk modulus and its
pressure derivative are

P = 3f KT0
(1 + f)

4

[
1 +

3f

2
(K ′T0

− 3)

]
, (33)

KT = KT0 (1 + f)
4

×
[
1 + 5f +

3

2

(
K

′

T0
− 3
)(

2f + 6f2
)]

, (34)

K ′T =
KT0

KT
(1 + f)

4
[
K ′T0

+
25

3
f

+11
(
K

′

T0
− 3
)
f + 18

(
K

′

T0
− 3
)
f2
]
. (35)

The result for n = 1 represents the pressure–volume
relation for the third-order equation of state. This is
similar to the third-order first power Eulerian EOS,
known as the Bardeen EOS. The results given by
(34) and (35) represent their expression for isother-
mal bulk modulus and its pressure derivative, re-
spectively.

Case II. If n = 1.5, then the P–V relation (EOS),
the expression for isothermal bulk modulus and its
pressure derivative are

P = 3fKT0

(
1 + 3

2f
)3 [

1 +
3f

2

(
K ′T0
− 7

2

)]
,

(36)

KT = KT0

(
1 +

3

2
f

)3

×
[
1+6f+

3

2

(
K ′T0
− 7

2

)(
2f+

15

2
f2
)]

, (37)

K ′T =
KT0

KT

(
1 + 3

2f
)3 [

K ′T0
+ 12f

+
27

2

(
K

′

T0
− 7

2

)
f +

225

8

(
K

′

T0
− 7

2

)
f2
]
.

(38)
The result given by (36) represents the pressure–
volume relation for the third-order equation of state
when n = 1.5. In turn, (37) and (38) represent the
expression for isothermal bulk modulus and its pres-
sure derivative, respectively.

Case III. If n = 2, then the P–V relation (EOS),
the expression for isothermal bulk modulus and its
pressure derivative are

P = 3fKT0
(1 + 2f)

5/2

[
1 +

3f

2
(K ′T0

− 4)

]
,

(39)

KT = KT0
(1 + 2f)

5/2

×
[
1 + 7f +

3

2

(
K ′T0
− 4
) (

2f + 9f2
)]

, (40)

K ′T =
KT0

KT
(1 + 2f)

5/2
[
K ′T0

+
49

3
f

+16
(
K

′

T0
− 4
)
f +

81

2

(
K ′T0
− 4
)
f2
]
. (41)

It is evident from (39) that the case for n = 2 in-
dicates the pressure–volume relation. This is par-
allel to the Birch–Murnaghan EOS of third-order.
The two remaining results, (40) and (41), illustrate
the expression for isothermal bulk modulus and its
pressure derivative, respectively.

Case IV. If n = 3, then the P–V relation (EOS),
the expression for isothermal bulk modulus and its
pressure derivative are

P = 3fKT0
(1 + 3f)

2

[
1 +

3f

2
(K ′T0

− 5)

]
,

(42)

KT = KT0
(1 + 3f)

3

×
[
1 + 9f +

3

2

(
K ′T0
− 5
) (

2f + 12f2
)]

, (43)

K ′T =
KT0

KT
(1 + 3f)

2
[
K ′T0

+ 27f

+21
(
K ′T0
− 5
)
f + 72

(
K ′T0
− 5
)
f2
]
. (44)

The result given by (42) provides the pressure–
volume relation identical to the third-power Eule-
rian EOS of third-order. In turn, (43) and (44)
define the expression for isothermal bulk modulus
and its pressure derivative, respectively. It is evi-
dent from the above derivations that the proposed
formulation is capable of producing the most promi-
nent equation of state for the various values of n.
For example, (i) for n = 1, the first-power Eulerian
EOS (the Bardeen EOS), (ii) for n = 2, the Birch–
Murnaghan EOS, and (iii) for n = 3, the third-
power Eulerian EOS.

The method of analysis of the new equation of
state is based on the Eulerian finite strain for-
mula applying the n-th power of edge length change
by compression which is described under theoret-
ical analysis (Sect. 2). The second-order equa-
tion of state (Sect. 2.1) and the third-order equa-
tion of state (Sect. 2.2) illustrate the evaluation of
isothermal bulk modulus and its pressure deriva-
tive. To test the validity of the proposed work, we
use (36)–(44) to compute the P–V relation (EOS),
isothermal bulk modulus and its pressure derivative.
The results are obtained for alkaline earth oxides
viz. MgO, CaO, and plotted. The present formula-
tion shows the comparison for the values of n = 1.5
with BM EOS and TP Eulerian EOS. These values
obtained are also compared with other theoretical
models as well as the available experimental results.
The input parameters for formulation for alkaline
earth oxides have been shown in Table I [2, 15, 16].

Figure 1 shows the dependence of the finite strain
vs compression for different values of n. The fi-
nite strain increases almost similarly up of the com-
pression value of V/V0 = 0.8 for all values of n.
However, as V/V0 →, the finite strains sharply in-
creases and then diverges to infinity. As a re-
sult, the Helmholtz free energy and its volume
derivative, i.e., pressure, also increase to infinity
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Fig. 1. Comparison of the Eulerian finite strain
(f) at different values of n derived by the expan-
sion of the n-th powered length as a function of
compression (V/V0).

TABLE I

The input parameters bulk moduli (KT ) (in GPa) and
pressure derivative of bulk moduli (K′

T ) (dimension-
less) at ambient pressure (P = 0) and room tempera-
ture (300 K) recorded in respective reference papers.

Parameters MgO CaO
KT 161.6 [2] 110.6 [2]

K′
T 4.13 [15] 4.05 [16]

when V/V0 → 0. It is also evident that different val-
ues of n from 1 to 5 attained the finite value of finite
stain at V/V0 → 0.05 using the Eulerian scheme.
Figure 1 indicates that the function of compression
( V
V0
) decreases as the value of n increases.
The pressure has been computed at different

isothermal compression ranging from 1 to 0.6 at
300 K for MgO and CaO, with the use of (36),
(39), and (42). The results of computations are
shown in Fig. 2. We have obtained a similar trend
as compression ( V

V0
) → 0 and pressure P → ∞

with respect to the present EOS for the values 1.5,
the Birch–Murnaghan EOS and third-power Eule-
rian EOS. These equations are equivalent to the ba-
sic thermodynamic conditions as well as the Stacey
criteria. The results concerning the case of MgO
are shown in Fig. 2a. There, the percentage de-
viation at compression value (V/V0) = 0.7197 is
4.376, 4.374, and 8.334, respectively, for the present
model (36), the Birch–Murnaghan EOS (39), and
third-power Eulerian EOS (42). Karki et al. [6] re-
ported 9.173, while Oganov and Dorogokupets [8]
obtained the percentage deviation value of 7.35.
Thus, one can state that the present equation of
state used for the value n = 1.5 shows a good
agreement with the experimental results [17] when
compared to the third-power Eulerian, Karki and
Oganov models [6, 8]. It is also the evidence of the
good consistency of the present model.

Fig. 2. Compression curves for different values of
n of the equation of state for the n-th powered
length. The figures compare the calculated results
and other models (filled symbols) with experimental
data (open symbols) (a) MgO, (b) CaO.

The results concerning the case of CaO are
shown in Fig. 2b. There, the percentage devia-
tions at compression value (V/V0) = 0.741 is 4.745
for the present model (36), 4.865 for the Birch–
Murnaghan EOS (39) and 8.4 for third-power Eu-
lerian EOS (42). The P–V dependence for CaO
and the results obtained by the present model
(36) match well with experimental results [18, 19],
when compared to the Birch–Murnaghan EOS and
third-power Eulerian EOS. In fact, the third-power
Eulerian EOS diverged more from experimental
results [18, 19].

The expression for pressure dependence of
isothermal bulk modulus has been obtained by us-
ing (31). The present work estimates pressure
ranges of these two oxides which are wider than
the pressure ranges related to the B1-type phases
and stable enough to investigate the systematic of
elasticity of alkaline earth oxides.

The bulk moduli KT for the present model, the
Birch–Murnaghan EOS and the third-power Eu-
lerian EOS have been obtained for the values of
n = 1.5, 2, and 3. The result obtained for pressure
dependence of isothermal bulk modulus has been
represented by (37), (40), and (43). The derived
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Fig. 3. Pressure dependence of bulk modulus:
(a) MgO, (b) CaO. The filled and color symbols are
calculated results and other models for KT . Open
symbols show experimental data.

expression of KT corresponding to the above equa-
tion of states has been applied to MgO and CaO.
The calculated bulk moduli as functions of pres-
sure are shown in Fig. 3. It is interesting to note
that the value of KT increases with the pressure
growth. The present results (37) agree well with
PWPP LDA results [6], ab initio [20] and quite
well with DFT GGA results [8] in the case of MgO.
All theoretical calculations, i.e., (37), (40), PWPP
LDA [6], DFT GGA [8], ab initio [20], match with
each other and experimental results for the pres-
sure value of 20 GPa. However, (43) (TP Eulerian
EOS) does not correspond to the theoretical calcu-
lations [6, 8, 20] as well as experimental results [15].

In the case of CaO, the present results (37) cor-
respond well with (40) and reasonably well with ex-
perimental results [19]. However, (43) shows more
deviation from experimental results measured by
Speziale et al. [19], where the method of the single-
crystal Brillouin scattering to 25.2 GPa was used,
together with powder X-ray diffraction to 65.2 GPa
in a radial geometry at ambient temperature in
a diamond cell.

From the geophysical point of view, the first
pressure derivative of the isothermal bulk modulus
is a parameter that is necessary for the accurate

Fig. 4. Pressure derivative K′
T vs pressure

at 300 K for (a) MgO, (b) CaO.

inversion of the seismic data into composition,
structure, and texture of earth, as well as for deter-
mining the thermal properties of the deep earth [21]
and the isothermal empirical equation of state of the
materials in the deep earth [1].

The results for pressure derivative K ′T obtained
from different equations, i.e., (38), (41) and (44),
have been compared with other theoretical results
and experiments. The obtained results are shown
in Fig. 4a and 4b for MgO and CaO, respectively.
Figure 4 shows the decrease of K ′T values as the
pressure increases to 100 GPa. After that, the K ′T
values start to decrease very slowly with increasing
pressure. In turn, (44), based on TP Eulerian EOS,
showed a strong decrease with increasing pressure
as compared to all theoretical models and experi-
mental results.

The results for alkaline earth oxides in Fig. 4 ex-
hibit similar trends and in fact correspond better
with the seismological data [22] reported by Stacey
and Davis. Our results confirm the major role of
alkaline earth oxides and magnesiowustite in the
composition of earth’s mantle and the seismic het-
erogeneity that exists throughout the lower man-
tle of earth. It is more likely that this heterogene-
ity is due to a combination of chemical, thermal
and phase change effects [23]. Comparisons be-
tween seismological data and the elastic properties
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of candidate mantle minerals and assemblages are
the only way to extract information regarding the
composition and mineralogy of the mantle from the
rich seismological database [6]. The elasticity of
minerals also yields substantial insight into the na-
ture of bonding.

Thus, the derived formulation is efficient to pre-
dict the elastic properties under the varying condi-
tions of pressure. Due to the accessibility of the
method, it can be implemented to other compli-
cated minerals having geophysical importance and
applications.

4. Conclusions

The results from the proposed EOSs are very sat-
isfactory in comparison to other theoretical mod-
els [5, 8, 9] and match well with experimental re-
sults [15–20]. The main feature of this model is that
less input parameters are required which are eas-
ily available in experimental studies. The present
study is capable of producing various equations of
state. These models may be frequently employed as
the thermal equation of states of earth’s minerals.
It can be exploited for various advanced quantum
methods and simulations at the pressure and tem-
perature of earth’s interior. The present study fol-
lows the basic laws of thermodynamics with regard
to expression at high-pressure. It allows extrapola-
tion to regions for which experimental data are not
available. These models may, therefore, be useful
for future planning of high-pressure experiments on
the compression behavior of earth forming minerals,
solids, nanomaterials, etc.
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