
ACTA PHYSICA POLONICA A No. 2 Vol. 140 (2021)

Analysis of Thickness Vibration
Frequencies of FBAR as Layered Structures

with Piezoelectric Plates

Yurun Chena, Jiansong Liua, Ji Wanga,b,∗,
Tingfeng Maa,b, Jianke Dua,b and Honglang Lic

aPiezoelectric Device Laboratory, School of Mechanical Engineering & Mechanics,
Ningbo University, 818 Fenghua Road, Ningbo, 315211 Zhejiang, China
bTXC-NBU Joint Center of Research, School of Mechanical Engineering & Mechanics,
Ningbo University, 818 Fenghua Road, Ningbo, 315211 Zhejiang, China
cNational Center for Nanoscience and Technology,
11 Beiyitiao Road, Zhongguancun, 100190 Beijing, China

Received: 05.07.2021 & Accepted: 29.07.2021

Doi: 10.12693/APhysPolA.140.105 ∗e-mail: wangji@nbu.edu.cn

Film bulk acoustic resonators as a newer generation of acoustic wave resonators have been a proper
replacement of traditional resonators for frequency control and sensor applications with a fast adop-
tion in mobile communication and other major consumer electronics. Extensive research work on the
materials, processing, structure, and design has contributed to the phenomenal growth of film bulk
acoustic resonators. As a procedure for the selection of optimal design parameters, we started from the
layered structures of film bulk acoustic resonators with a one-dimensional model, i.e., only considering
the thickness of resonators for the calculation of vibration frequencies in order to support the resonator
design. The resonant frequency of thickness-extension mode — a key parameter of resonators — was
obtained through the consideration of the elastic and piezoelectric properties of each layer in the res-
onators structure. It has been proven through numerical examples that in this way we gain an effective
approach to the accurate determination of resonant frequency. Clearly, the method based on film bulk
acoustic resonators is also helpful for the early stage of product design in the selection of some essential
parameters and later combinations for device upgrades.
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1. Introduction

Thin film bulk acoustic resonators (FBAR) [1–5]
are a newer generation of products in piezoelec-
tric acoustic wave device industry, which is vigor-
ously replacing some applications of surface acous-
tic wave (SAW) resonators [6, 7] and quartz crystal
resonators [8] due to its higher resonance frequency
and smaller size. FBAR have the typical layered
structure, that is a piezoelectric thin film is sand-
wiched by metal electrodes on the Bragg reflection
layers and the substrate [9–11]. All these develop-
ments of a new type of piezoelectric acoustic wave
resonators, of course, are based on the precise design
and fabrication. These resonators are typical thin
film structures with larger quantities of layers. The
utilization of piezoelectric thin films for the genera-
tion of acoustic waves with higher frequency poses
another challenge, because it requires more accu-
rate analysis and design to realize devices functions
in higher frequency.

The general methods for the analysis of propaga-
tion of acoustic waves in FBAR, which are needed
for the initial design of piezoelectric resonators, pro-
vide essential solutions of vibration frequency and
deformation. Many methods for the analysis of lay-
ered piezoelectric devices for acoustic wave applica-
tions have been proposed in earlier studies [12–15].
In fact, most methods of analysis are based on the
matrix method [16–20]. Apparently, these methods
for designing and simulating layered structures of
acoustic wave resonators in software tools are very
useful as they allow to determine the optimal struc-
tural parameters of resonators [21]. However, with
more layers of resonator structure, a large number
of linear equations has to be solved.

It is difficult to utilize the general techniques
and methods, especially the finite element method
(FEM) with the finite structures, multiple units,
and complicated boundary conditions. In addi-
tion, the earlier matrix formulation and obsolete
programming languages may no longer be available
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for more complex calculations or newer piezoelec-
tric devices. Therefore, an approximate method
has to be developed to enable accurate analysis of
solidly mounted resonators (SMR), i.e., FBAR with
the Bragg reflector, or piezoelectric device with new
materials. The procedure is very efficient because
it requires to predetermine the structure by an ana-
lytical method and to use a simulation software be-
fore fabrication. Besides, the explicit expressions of
vibration frequency and displacement have already
been derived by traditional approach, thus one can
evaluate with their use the parameters of materi-
als like the density, thickness, and elastic constants
directly [22–27]. More rigorous methods and solu-
tions based on the theory for the finite plates of lay-
ers can be established with our initial results from
the current analysis. It is shown that the essen-
tial properties of resonators, such as the vibration
frequency, can be accurately obtained. Naturally,
it is important to design and optimize resonators
by selecting the appropriate materials and optimal
thickness of plates.

In this study, we proposed a one-dimensional
model of analysis for the thickness-extension
mode of FBAR and SMR structures. The one-
dimensional method for the vibration frequency is
applicable for infinite plates, because the width and
length of layers are much larger than the thickness,
implying a dependence on the thickness only. What
is more, the analysis takes into account the coupled
interaction between the electrical and mechanical
fields to obtain more practical structures in the cal-
culation of the electrical properties of resonators.
Finally, it is found that the results of the one-
dimensional model are reasonably consistent with
the results of measurements. The analytical re-
sults of frequency have been verified through exper-
imental data of many different types of FBAR with
satisfactory agreement. Our research provides new
opportunities for producing plate equations of res-
onators in one-dimensional approach that can pro-
vide a better analysis of vibrations of FBAR and
SMR devices.

2. Thickness-extension vibrations
of layered thin film plates

With the assumption that the surface area of
plates is infinite due to the finite plate thick-
ness, the vibration equations and solutions auto-
matically become one-dimensional in the analy-
sis. It is generally accepted that using the lin-
ear theory of piezoelectricity for layered piezoelec-
tric structures or devices can simplify the analysis
of thickness-extension vibrations in the formulation
and solution [21–26]. The layered model of a typical
piezoelectric resonator is depicted in Fig. 1. The
thickness-extension wave is emerged in FBAR de-
vice as the functioning vibration modes. The thick-
ness of the i-th layer is denoted as 2bi, and the origin

Fig. 1. An FBAR model as a layered structure of
thin piezoelectric plates.

of the coordinate system is located in the center of
the piezoelectric thin film, as shown in Fig. 1.

The one-dimensional displacements u(m)
j of the

m-th layer (m = 0, 1, . . . , n) and electrical poten-
tial φ are assumed as

u
(m)
1 = u

(m)
2 = 0, (1)

u
(m)
3 = u

(m)
3 (x3) e iωt, (2)

φ = φ (x3) e iωt, (3)
where x3, ω, t, and n are the thickness coordinate,
the frequency, the time, and the total number of
layers, respectively. The electrical potential is the
thickness direction because the piezoelectric thin
film is sandwiched by two electrodes.

The strain components of the m-th layer with the
field variables in (1)–(3) are known and given (we
omit the time factor in the abbreviated notions) in
the form of [28]:

S
(m)
1 = S

(m)
2 = S

(m)
4 = S

(m)
5 = S

(m)
6 = 0, (4)

S
(m)
3 =

∂u
(m)
3

∂x3
. (5)

For the piezoelectric thin film with the anisotropic
materials of 6 mm crystal family, the nontrivial
stresses and electrical displacements, in abbreviated
notations, are [28]:

T
(1)
1 = c

(1)
13 S

(1)
3 + e31φ,3, (6)

T
(1)
2 = c

(1)
23 S

(1)
3 + e32φ,3, (7)

T
(1)
3 = c

(1)
33 S

(1)
3 + e33φ,3 = c

(1)
33 u

(1)
3,3 + e33φ,3, (8)

D3 = e33S
(1)
3 − ε33φ,3, (9)

where eip, cpq and εij are the piezoelectric, elastic,
and dielectric constants, respectively. A comma fol-
lowed by an index denotes partial differentiation
with respect to the coordinate associated with the
index. Here, φ,3 = ∂φ

∂x3
. The summation convention

for repeated indexes is employed.
The stress equation of motion for the layer is then

c
(1)
33 u

(1)
3,33 + e33φ,33 = −ρ(1)ω2u

(1)
3 , (10)

where ρ(1) is the density of a piezoelectric thin
film. A comma followed by two indexes denotes
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second-order partial differentiation with respect to
the coordinate associated with the indexes. Here,
φ,33 = ∂2φ

∂x2
3
.

D1,1 +D2,2 +D3,3 = e33u
(1)
3,33 − ε33φ,33 = 0.

(11)
It will yield

φ =
e33
ε33

u
(1)
3 + C1x3 + C2, (12)

where C1 and C2 are the two constants of integra-
tion.

A substitution of the electrical potential solution
(12) into the constitutive relations (6)–(9), will yield

T
(1)
3 = c̄

(1)
33 u

(1)
3,3 + e33C1, (13)

D3 = −ε33 C1. (14)
The displacement equation of motion (10) will be

c̄
(1)
33 u

(1)
3,33 = −ρ(1)ω2u

(1)
3 , (15)

where

c̄
(1)
33 = c

(1)
33

(
1 +

e233
c
(1)
33 ε33

)
(16)

is the piezoelectrically stiffened elastic constant. We
can assume the solution (15) of displacement as

u
(1)
3 = A(1) sin

(
ξ(1)x3

)
+B(1) cos

(
ξ(1)x3

)
,
(17)

where ξ(1) is the wave number of a piezoelectric thin
film.

By substituting (17) into (15), one yields the fre-
quency solution, i.e.,

ω2 =
c̄
(1)
33

ρ(1)

(
ξ(1)
)2
. (18)

Then, the electrical potential and stress solutions in
the piezoelectric thin film will be

φ =
e33
ε33

[
A(1) sin

(
ξ(1)x3

)
+B(1) cos

(
ξ(1)x3

)]
+C1x3 + C2, (19)

T
(1)
3 = c̄

(1)
33 ξ

(1)
[
A(1) cos

(
ξ(1)x3

)
−B(1) sin

(
ξ(1)x3

)]
+ e33C1. (20)

With a constant alternating electric field on the
electrodes, it follows that

φ (±b1) = ±φ0. (21)
Applying (21) to (19) and (20), we now have

C1 =
φ0
b1

− e33
ε33

A(1) sin
(
ξ(1)b1

)
b1

, (22)

C2 = −e33
ε33

B(1) cos
(
ξ(1)b1

)
, (23)

T
(1)
3 =

A(1)

[
c̄
(1)
33 ξ

(1) cos
(
ξ(1)x3

)
− e233
ε33

sin
(
ξ(1)b1

)
b1

]

−B(1)c̄
(1)
33 ξ

(1) sin
(
ξ(1)x3

)
+
e33
b1
φ0. (24)

Note that there is no need to consider the driving
voltage on the Bragg reflector and substrate layer.
As a result, only the mechanical displacement will
enter into the equations of the nonpiezoelectric thin
film with

S
(m)
3 =

∂u
(m)
3

∂x3
(25)

for m = 0, 2, 3, . . . , n. The constitutive relations
will be

T
(m)
1 = c

(m)
13 S

(m)
3 , (26)

T
(m)
2 = c

(m)
23 S

(m)
3 , (27)

T
(m)
3 = c

(m)
33 S

(m)
3 . (28)

The displacement equations of motion will give us

c
(m)
33

∂2u
(m)
3

∂x23
= −ρ(m)ω2u

(m)
3 , (29)

while the displacement solution of a nonpiezoelec-
tric layer will be

u
(m)
3 (x3) = A(m) sin

(
ξ(m)x3

)
+B(m) cos

(
ξ(m)x3

)
. (30)

The frequency solution will yield

ω2 =
c
(m)
33

ρ(m)

(
ξ(m)

)2
. (31)

The wave numbers will be related to each other
through

ξ(m) =

√√√√ c̄
(1)
33 ρ

(m)

c
(m)
33 ρ(1)

ξ(1). (32)

Finally, the stress solutions of a nonpiezoelectric
layer will be given as

T
(m)
3 = c

(m)
33 ξ(m) (33)

×
[
A(m) cos

(
ξ(m)x3

)
−B(m) sin

(
ξ(m)x3

)]
.

Since the electrical potential has been obtained and
incorporated into the stress equations, the traction-
free and continuity conditions become as follows

T
(0)
3 (−b1 − 2b0) = 0, (34)

T
(n)
3 (hn) = 0, (35)

T
(m)
3 (hm) = T

(m+1)
3 (hm) , (36)

u
(m)
3 (hm) = u

(m+1)
3 (hm) , (37)

where
h0 = −b1, (38)

hm = −b1 + 2

n∑
m

bm, m = 1, . . . , n− 1. (39)

Through the substitution of the stress equations
(22)–(24) and (33) into the boundary conditions
(34)–(37), the boundary conditions will be trans-
formed to
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A(0) cos
(
ξ(0) (−b1 − 2b0)

)
−B(0) sin

(
ξ(0) (−b1 − 2b0)

)
= 0, (40)

A(n) cos
(
ξ(n)hn

)
−B(n) sin

(
ξ(n)hn

)
= 0, (41)

c
(0)
33 ξ

(0)
[
A(0) cos

(
ξ(0)b1

)
+B(0) sin

(
ξ(0)b1

) ]
−A(1)

[
c̄
(1)
33 ξ

(1) cos
(
ξ(1)b1

)
− e233
ε33

sin
(
ξ(1)b1

)
b1

]
−B(1)c̄

(1)
33 ξ

(1) sin
(
ξ(1)b1

)
=
e33
b1
φ0, (42)

−A(0) sin
(
ξ(0)b1

)
+B(0) cos

(
ξ(0)b1

)
+A(1) sin

(
ξ(1)b1

)
−B(1) cos

(
ξ(1)b1

)
= 0, (43)

A(1)
[
c̄
(1)
33 ξ

(1) cos
(
ξ(1)b1

)
− e233
ε33

sin
(
ξ(1)b1

)
b1

]
−B(1)c̄

(1)
33 ξ

(1) sin
(
ξ(1)b1

)
−c(2)33 ξ

(2)
[
A(2) cos

(
ξ(2)b1

)
−B(2) sin

(
ξ(2)b1

) ]
= −e33

b1
φ0, (44)

A(1) sin
(
ξ(1)b1

)
+B(1) cos

(
ξ(1)b1

)
−A(2) sin

(
ξ(2)b1

)
−B(2) cos

(
ξ(2)b1

)
= 0, (45)

c
(m)
33 ξ(m)

[
A(m) cos

(
ξ(m)hm

)
−B(m) sin

(
ξ(m)hm

) ]
−c(m+1)

33 ξ(m+1)
[
A(m+1) cos

(
ξ(m+1)hm

)
−B(m+1) sin

(
ξ(m+1)hm

) ]
= 0, (46)

A(m) sin
(
ξ(m)hm

)
+B(m) cos

(
ξ(m)hm

)
−A(m+1) sin

(
ξ(m+1)hm

)
−B(m+1) cos

(
ξ(m+1)hm

)
= 0. (47)

where m = 1, 2, 3, . . . , n− 1.
The displacement solutions could be solved

in terms of the amplitudes of each layer using
(40)–(47) and with given driving voltage φ0.

In this simplified model, the displacement so-
lutions have very limited applications. In fact,
even the displacements themselves are not actually
needed for circuit applications of a resonator. We
need to obtain the solutions for the design and opti-
mization of FBAR and SMR structures. The avail-
able solution here is the resonant frequency that is
related to the material properties and thicknesses
of layers, which are actually the essential parame-
ters of a resonator structure. The adequately se-
lected materials and thicknesses will not only de-
termine the vibration frequency but also change
the device properties. As a result, a careful study
of the vibration frequency in terms of the mate-
rial properties and layer thickness will be impor-
tant in the prototype and improvement process of
resonators.

The boundary condition equations in (40)–(47)
are no longer the homogeneous equations for the
calculation of natural frequency. They have a driv-
ing voltage term in the right-hand side of the equa-
tions, implying this is a forced vibration problem.
However, Tiersten et al. [29] demonstrated that the
resonant frequency of a device can be obtained as

setting the coefficient determinant to vanish. The
frequency equation which depends on the quantity
of layers is usually a transcendental equation, and
it must be solved numerically. We presented a few
cases of FBAR structures with a smaller number of
layers, and compared them with earlier equations
of the mechanical vibrations in order to explore the
coupling and effect of piezoelectric properties in the
frequency equation.

For example, for one-layer structures of FBAR,
the frequency equation is [22]:

tan
(
ξ(1)b1

)
=
c̄
(1)
33 ξ

(1)ε33b1
e233

. (48)

In turn, for two-layer structures, the frequency
equation takes the form of [22]:[

1 − e233

ε33c̄
(1)
33 ξ

(1)b1
tan

(
ξ(1)b1

)]

×

[
c
(0)
33 ξ

(0)

c̄
(1)
33 ξ

(1)
tan

(
2ξ(0)b0

)
+ 2 tan

(
ξ(1)b1

)]
=

c
(0)
33 ξ

(0)

c̄
(1)
33 ξ

(1)
tan

(
2ξ(0)b0

)
tan2

(
ξ(1)b1

)
. (49)

For three-layer structures of FBAR, the frequency
equation is [22, 23]:
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(
1 − e233

ε33c̄
(1)
33 ξ

(1)b1
tan

(
ξ(1)b1

))[c(0)33 ξ
(0)

c̄
(1)
33 ξ

(1)
tan

(
2ξ(0)b0

)
+ 2 tan

(
ξ(1)b1

)
+
c
(2)
33 ξ

(2)

c̄
(1)
33 ξ

(1)
tan

(
2ξ(2)b2

)]
=

tan
(
ξ(1)b1

){
tan

(
ξ(1)b1

)[c(0)33 ξ
(0)

c̄
(1)
33 ξ

(1)
tan

(
2ξ(0)b0

)
+
c
(2)
33 ξ

(2)

c̄
(1)
33 ξ

(1)
tan

(
2ξ(2)b2

)]

+2
c
(0)
33 ξ

(0)c
(2)
33 ξ

(2)[
c̄
(1)
33 ξ

(1)
]2 tan

(
2ξ(0)b0

)
tan

(
2ξ(2)b2

)}
. (50)

For the case with an FBAR structure over three
layers, the transcendental equations will be too
complex to present in explicit forms. However, it
could be feasible to construct the equation by uti-
lizing the known pattern of the determinant, be-
cause the frequency equations are obtained from the

coefficient determinant of the boundary condition
equations. In fact, the vibration frequency of multi-
layered structure devices can also be obtained in
this way. The general structure of the determinant
will be



A11 A12 0 0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 0 0 · · · 0 0 0 0 A2,n−1 A2,n

A31 A32 A33 A34 0 0 · · · 0 0 0 0 0 0

A41 A42 A43 A44 0 0 · · · 0 0 0 0 0 0

0 0 A53 A54 A55 A56 · · · 0 0 0 0 0 0

0 0 A63 A64 A65 A66 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · An−3,n−5 An−3,n−4 An−3,n−3 An−3,n−2 0 0

0 0 0 0 0 0 · · · An−2,n−5 An−2,n−4 An−2,n−3 An−2,n−2 0 0

0 0 0 0 0 0 · · · 0 0 An−1,n−3 An−1,n−2 An−1,n−1 An−1,n

0 0 0 0 0 0 · · · 0 0 An,n−3 An,n−2 An,n−1 An,n



(51)

where
A11 = cos

(
ξ(0) (−b1 − 2b0)

)
,

A12 = − sin
(
ξ(0) (−b1 − 2b0)

)
,

A2,n−1 = cos
(
ξ(n)hn

)
,

A2,n = − sin
(
ξ(n)hn

)
,

A31 = c
(0)
33 ξ

(0) cos
(
ξ(0)b1

)
,

A32 = c
(0)
33 ξ

(0) sin
(
ξ(0)b1

)
,

A33 = −c̄(1)33 ξ
(1) cos

(
ξ(1)b1

)
+
e233
ε33

sin
(
ξ(1)b1

)
b1

,

A34 = −c̄(1)33 ξ
(1) sin

(
ξ(1)b1

)
,

A41 = − sin
(
ξ(0)b1

)
,

A42 = cos
(
ξ(0)b1

)
,

A43 = sin
(
ξ(1)b1

)
,

A44 = − cos
(
ξ(1)b1

)
,

A53 = c̄
(1)
33 ξ

(1) cos
(
ξ(1)b1

)
− e233
ε33

sin
(
ξ(1)b1

)
b1

,

A54 = −c̄(1)33 ξ
(1) sin

(
ξ(1)b1

)
,

A55 = −c(2)33 ξ
(2) cos

(
ξ(2)b1

)
,

A56 = c
(2)
33 ξ

(2) sin
(
ξ(2)b1

)
,

A63 = sin
(
ξ(1)b1

)
,

A64 = cos
(
ξ(1)b1

)
,
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A65 = − sin
(
ξ(2)b1

)
,

A66 = − cos
(
ξ(2)b1

)
,

An−3,n−5 = c
(n−2)
33 ξ(n−2) cos

(
ξ(n−2)hn−2

)
,

An−3,n−4 = −c(n−2)
33 ξ(n−2) sin

(
ξ(n−2)hn−2

)
,

An−3,n−3 = −c(n−1)
33 ξ(n−1) cos

(
ξ(n−1)hn−2

)
,

An−3,n−2 = c
(n−1)
33 ξ(n−1) sin

(
ξ(n−1)hn−2

)
,

An−2,n−5 = sin
(
ξ(n−2)hn−2

)
,

An−2,n−4 = cos
(
ξ(n−2)hn−2

)
,

An−2,n−3 = − sin
(
ξ(n−1)hn−2

)
,

An−2,n−2 = − cos
(
ξ(n−1)hn−2

)
,

An−1,n−3 = c
(n−1)
33 ξ(n−1) cos

(
ξ(n−1)hn−1

)
,

An−1,n−2= −c(n−1)
33 ξ(n−1) sin

(
ξ(n−1)hn−1

)
,

An−1,n−1 = −c(n)33 ξ
(n) cos

(
ξ(n)hn−1

)
,

An−1,n = c
(n)
33 ξ

(n) sin
(
ξ(n)hn−1

)
,

An,n−3 = sin
(
ξ(n−1)hn−1

)
,

An,n−2 = cos
(
ξ(n−1)hn−1

)
,

An,n−1 = − sin
(
ξ(n)hn−1

)
,

An,n = − cos
(
ξ(n)hn−1

)
(52)

Recapitulating, the determinant of a resonator
structure with a given number of layers will be
constructed with patterned components which are
listed above. Moreover, the determinant for fre-
quency and vibration solutions could be evaluated
by utilizing the available numerical techniques with-
out difficulties. These results are certainly useful for
the analysis of structures with a larger number of
layers.

3. Numerical examples

The frequency equations and displacement solu-
tions shown in Sect. 2 which can be utilized to ex-
plore the thickness-extension vibrations of layered
structures, such as typical FBARs and SMRs, are

Fig. 2. Frequency dependence of a three-layer thin
film structure on the thickness of symmetric metal
electrodes.

TABLE I

Calculated thickness-extension frequencies of a lay-
ered structure with different layer thicknesses in com-
parison with measurement.

Bottom
electrode
Al [µm]

Top
electrode
Al [µm]

ZnO
[µm]

Si3N4

[µm]

Measurement
[GHz]

Ref. [30]

Calculation
[GHz]

0.1 0.1 2 0.9 1.2 1.1600
0.2 0.2 2 0.2 1.4 1.3485
0.1 0.1 1 0.2 2.5 2.4752

presented and compared with earlier results from
both mechanical and piezoelectric vibrations. We
want to perform some calculations with the proce-
dure so that comparisons and verifications can be
demonstrated.

3.1. Example 1

The four-layer FBAR structure consists of top
and bottom aluminum (Al) electrodes, zinc oxide
(ZnO) piezoelectric thin film, and silicon nitride
(Si3N4) substrate. Table I lists the results from the
thickness-extension vibrations. These are consid-
erably close to the actual measurement of resonant
frequency from the actual fabricated resonators [30].
The errors frequencies of the three structures stud-
ied in this research are 3.33%, 3.68% and 0.99%,
respectively.

3.2. Example 2

The piezoelectric effect for the vibration fre-
quency is our major concern in this study. In order
to test the effect of piezoelectric stiffening with dif-
ferent metal electrodes and thickness, we calculated
a three-layer FBAR structure with symmetric elec-
trodes and the thickness of a ZnO layer of 2 µm
vibrating at the thickness-extension mode. The
significant changes of frequencies in the thin film
structure are shown in Fig. 2. It is clear that the
vibration frequency decreased with the increase of
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Fig. 3. Frequency dependence on the thickness of
a ZnO piezoelectric layer in a three-layer structure
with the thickness of electrodes of 200 nm.

Fig. 4. Frequency dependence on the thickness of
a silicon substrate for a multiple-layer structure in
the thickness-extension mode.

thickness of electrodes because of mass loading. Be-
sides, different materials of electrodes with the same
thickness result in different shifts of vibration fre-
quency, because the higher the density of materials,
the more gravimetric loading on the FBAR.

3.3. Example 3

Figure 3 depicts the thickness-extension variation
frequency of a three-layer FBAR structure, which
consists of fixed 200 nm electrodes and the variation
of the thickness of a ZnO piezoelectric thin film.
The results are the same as the last example where
the resonant frequencies are significantly decreased
with the increase of the thickness of layers.

3.4. Example 4

Figure 4 depicts the thickness-extension fre-
quency of a ZnO-based FBAR with a Bragg reflec-
tor. The piezoelectric element consists of a 480 nm
ZnO piezoelectric thin film and 100 nm top and bot-
tom Pt electrodes. The Bragg reflector consists of
periodic high and low impedance layers. The low

impedance layers are ZnO of 1080 nm and the high
impedance layers use Pt with 710 nm. The initial
resonance frequencies of FBAR with different pairs
of the Bragg reflection layers are same. It is interest-
ing to find out that the vibration frequencies have
certain regions with relatively flat curves at certain
thickness of the substrate, implying design windows
for a possible insensitive selection of substrate thick-
ness. We also found that the distance between the
Bragg reflection layers becomes smaller in this case.
It means the majority of energy of acoustic waves is
limited in the piezoelectric element. Therefore, our
results are very reasonable for the purpose of the
Bragg reflection layers’ design.

4. Conclusions

From the vibration analysis of multi-layered
structures representing the FBAR with the consid-
eration of piezoelectric properties, we have obtained
accurate resonant frequencies of these stacked layers
vibrating in the thickness-extension mode. By com-
paring the analytical results with known measure-
ments from actual prototypes of FBAR resonators,
we have proven that the analytical procedure based
on the layered plate model can provide accurate pre-
diction of the vibration frequency which is the es-
sential parameter of resonators. Furthermore, the
effect of the Bragg reflectors in FBAR could be de-
duced by this analysis. Such a simple model also
proves that in the FBAR structures, due to the rela-
tively larger size in the plane, the vibration is almost
solely determined by the sequence and thickness of
each layer. In other words, the effect of plane sizes
has limited influence on the vibration frequencies.
This signifies the thickness vibrations of a layered
high-frequency resonator structure, and the thick-
ness deformation is dominant in the plate plane. In
this case, an approximate analysis with thickness
deformation should provide a reasonable estimation
of resonator properties in addition to the vibration
frequency shown in this study. Or, the approxima-
tion of other field variables should also be made as
demonstrated with the calculation of the function-
ing frequency. It also suggests that in the design
process, we can use the one-dimensional method
presented in this study to calculate the vibration
frequency and the resonator development should be
focused on the electrical properties, which may be
better predicted based on the structural patterns
and interactions of different partitions and layouts.

The future development may go in two directions
in the analysis and modeling through the frequency
determination with one-dimensional structures with
all layers and the electrical properties which are ob-
tained from the patterns of electrodes and layout of
conducting and piezoelectric materials in the plane.
Of course, we need further studies on vibration anal-
ysis to verify the accuracy of vibration frequencies
of the structures, acoustic wave field, and distribu-
tion of electrical field for the estimation of other
parameters and properties.
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