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The quasi-exact Bethe ansatz method has been examined for solving the radial Schrödinger equation
with the Yukawa potential as an important central interaction for computing bound states of neutral
atoms. The method, in spite of its simplicity with respect to other methods, leads to the ground state
and low excited states of the radial Schrödinger equation with a good accuracy. It is found that the
results are generally in agreement with the results of others and, therefore, this method can be used
for solving the Schrödinger equation instead of other numerical and analytical methods. It was also
found that the energy eigenvalues reach that of the Coulomb potential in the limit of zero screening
parameter. The method has been briefly generalized to arbitrary dimension for the Yukawa potential
inspiring the 3-dimensional trail wave function.
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1. Introduction

In order to find the properties of quantum me-
chanical systems, one needs to solve a relativistic or
non-relativistic wave equation. Solving these equa-
tions leads to energy spectra and wave functions of
the system needed to find other physical properties.
Unfortunately, the wave equation can be solved ex-
actly only for some potentials and, therefore, in re-
cent years different work has been carried out to find
the exact solutions of these equations with different
potentials [1–16].

Since analytical methods to find exact solutions
are not as simple as expected, different mathemati-
cal methods have been used to approximate the so-
lutions of quantum systems, including supersymme-
try quantum mechanics [17, 18], group theoretical
approach [19, 20] and the Nikiforov–Uvarov (NU)
method [21].

Other methods for solving wave equations, known
as quasi-exact solutions, find the polynomial so-
lutions [22–24], one of which is the Bethe ansatz
method (BAM) [25]. This method finds the ground
state, as well as excited states of systems approxi-
mately. BAM works straightforwardly and is based
on finding a polynomial solution of a second or-
der differential equation. In this method, there is
a set of n equations to find some distinct real roots
and the solution is the product of the factors of
these roots.

On the other hand, one of the most important
potentials in physics is the Yukawa potential [26],
which is usually used to calculate the bound state of
neutral atoms [27–29]. This potential, known as the
Debye–Hückel (Thomas–Fermi) potential in plasma
(solid state physics), has the following form:

V (r) = −V0
e−αr

r
, (1)

where α (screening parameter) and V0 (strength of
potential) take different values depending on the
problem under investigation. The Yukawa potential
is not shape-invariant and thus an exact analytical
solution is not possible. Hence, different methods
have been used to solve the wave equation with the
Yukawa potential. Greene and Aldrich [30] general-
ized the variational wave function, used by Lam and
Varshni for s-states [31], to l 6= 0 states. They used
the effective Hulthén potential as an approximation
for the Yukawa potential and calculated the energy
of 2p, 3p, 3d, etc. levels. Gönül et al. [32] used the
supersymmetry framework and the Riccuti equa-
tion to solve the Schrödinger equation and find the
bound states of the Yukawa potential. This method
is based on separating the Schrödinger equation into
two parts, one of which has an exact solution and
the other leads to approximated treatment. Other
methods are the asymptotic iteration method [33],
the quasi-linearization method [34], the numerical
method [35, 36], NU [37], and the canonical trans-
formations of the Schrödinger equation [38].

97

http://doi.org/10.12693/APhysPolA.140.97
mailto:m.mohamadisabet@ilam.ac.ir


M. Mohammadi Sabet

Based on the above discussion, in this paper
BAM has been used to find the energy eigenstates
and eigenvalues of the Yukawa potential in a non-
relativistic quantum mechanical (the Schrödinger
equation) system. Therefore, the structure of this
paper is as follows: firstly, the BAM method is pre-
sented in Sect. 2. Then, this method is used for
the Yukawa potential and the results are presented
as well as some comparisons are made. Further,
a brief discussion on generalization to N dimensions
is given in Sect. 4. Finally, the conclusion follows.

2. Bethe ansatz method

Consider the following second order differential
equation:(

P (z)
d2

dz2
+

d

dz
Q(z) +W (z)

)
S(z) = 0, (2)

where P (z), Q(z) and W (z) are the polynomials of
degree 4, 3, and 2 with constant coefficients ak, bk,
and ck, respectively

P (z) =

4∑
k=0

akz
k,

Q(z) =

3∑
k=0

bkz
k,

W (z) =

2∑
k=0

ckz
k. (3)

Following the steps suggested by Zhong [25], we look
for the polynomial S(z) of degree n as follows:

S(z) =

n∏
i=1

(z − zi),

S(z) = 1 for n = 0, (4)
where zi are the distinct real roots of S(z) given
by a set of n algebraic equations to determine these
roots,
c2 = −n(n− 1)a4 − nb3, (5)

c1 = −
(
2(n− 1)a4 + b3

) n∑
i=1

zi − n(n− 1)a3 − nb2,
(6)

c0 = −
(
2(n− 1)a4 + b3

) n∑
i=1

z2i − 2a4

n∑
i<j

zizj

−
(
2(n− 1)a3 + b2

) n∑
i=1

zi − n(n− 1)a2 − nb1.
(7)

These roots satisfy the Bethe ansatz equations
n∑
j 6=i

2

zi − zj
+

b3z
3
i + b2z

2
i + b1zi + b0

a4z4i + a3z3i + a2z2i + a1zi + a0
= 0,

i = 1, 2, . . . , n. (8)
Equations (5)–(8) give all polynomialsW (z) in such
a way that S(z) is the polynomial solution of the
differential (2).

3. Quasi-exact solution
of radial Schrödinger equation

with Yukawa potential

In order to investigate quantum mechanical sys-
tems with a central potential (V (r)), one should
solve the Schrödinger equation which is as follows:(

− ~2

2m
∇2 + V (r)

)
ψ(r, θ, φ) = Eψ(r, θ, φ), (9)

where m is the mass of a particle, ~ is the reduced
Planck constant and r, θ, and φ are the spher-
ical coordinates. The wave function ψ(r, θ, φ) is
characterized by quantum numbers n, l, ml. Now,
considering V (r) as the Yukawa potential (1) and
using the separation of variables as ψ(r, θ, φ) =
Rnl(r)
r Ylml(θ, φ), the following differential equation

is obtained for the radial Schrödinger equation
(~ = 1):[

d2

dr2
+2m

(
E + V0

e−αr

r

)
− l(l + 1)

r2

]
Rnl(r) = 0.

(10)
In order to solve this equation, the following ap-

proximation is used [37]:
1
r2 ≈ 4α2 e−2αr

(1−e−2αr)2 . (11)
Therefore, we have

1
r ≈ 2α e−αr

(1−e−2αr) , (12)
and the Yukawa potential reduces to

V (r) ≈ −2αV0 e−αr

(1−e−2αr) . (13)
The accuracy of this approximation for the Yukawa
potential (13) has been investigated in [37]. The
effective Hulthén potential is a good approximation
for the Yukawa potential as long as the value of α
is not too high [31].

Using these approximations and considering
x = e−2αr and after some algebra we get the fol-
lowing differential equation:[
− ε

4α2

1

x2
+
mV0
α

1

x(1− x)
− l(l + 1)

x(1− x)2

]
Rnl(x)

+
1

x

dRnl(x)

dx
+

d2Rnl(x)

dx2
= 0, (14)

where ε = −2mE. To solve (14) using the Bethe
ansatz method, the equation must be transformed
in the form of (2). Therefore, let us assume that
Rnl(x) has the following form:

Rnl(x) = x
√
ε/(2α)(1− x)l+1Y (x). (15)

In (15), the function Y (x) is dependent on n with
a non-trivial dependence. Substituting (15) in (14),
we get[
l(l + 1)

(1− x)2
− A

(1− x)x2
(l + x+ 2lx) +

A

x2
(16)

− l(l + 1)

(1− x)2
+
B − l(l + 1)

x
+
B − l(l + 1)

1− x

]
Y (x)

+

(
2A+ 1

x
− 2(l + 1)

1− x

)
Y ′(x) + Y ′′(x) = 0.
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After some algebra, we have[(
B − (2A+ 1)(l + 1)− l(l + 1)

)
(1− x)

+
(
B − (2A+ 1)(l + 1)− l(l + 1)

)
x
]
Y (x)

+
[
(2A+ 1)(1− x)− 2(l + 1)

]
Y ′(x)

+x(1− x)Y ′′(x) = 0, (17)
where A =

√
ε

2α and B = mV0

α . This differential equa-
tion is similar to (2) and therefore has a polynomial
solution of degree n = 0, 1, 3, . . . :

Y (x) =

n∏
i=1

(x− xi), Y (x) ≡ 1 for n = 0, (18)

where xis are the roots of the above polynomial
satisfying (5)–(7) and determined by the Bethe
ansatz (8). Therefore, we have

a4 = a3 = a0 = 0, a2 = −1, a1 = 1, (19)

b3 = b2 = 0, b1 = −2(l + 1)− 2

(√
ε

2α
+

1

2

)
,

b0 = −2
(√

ε
2α + 1

2

)
, (20)

c2 = c1 = 0,

c0 = mV0

α − 2
(√

ε
2α+

1
2

)
(l+1)− l(l+1). (21)

Comparing these coefficients with those of (5)–(7)
and after some algebra the energy eigenvalues of the
Yukawa potential are as follows:

Enl = −
α2

2m

(
mV0

α − (n+ l + 1)2

n+ l + 1

)2

, (22)

where n = 0, 1, 2, . . . and l = 0, 1, . . . are the inte-
gers satisfying the physical condition n + l + 1 ≤√

mV0

α . We see that these eigenvalues are exactly
similar to the formula obtained by Peña et al. [38],
as well as NU [37], and BAM finds the energy spec-
tra in an easier manner. In Table I, the numerical
values of energy have been compared to the results
of other works [30, 31, 33–35] as well as the ac-
curate variational method applied by Greene and
Valdrich [30]. These results have been calculated for
~ = m = 1, V0 =

√
2 and different values of g = α

V0
.

As we can see from this table, the BAM results are
in complete agreement with those of others, spe-
cially the NU method. This table shows that the
differences in the present work and others (in some
data) are very small and one can use BAM for the
Yukawa potential with a good accuracy.

In Tables II and III, the results of the
Bethe ansatz method have been presented for
α = 0.2 fm−1 and ~ = 2m = 1 for n = 0 and
n > 0, respectively, and the results have been
compared with other calculations [33–35]. As it is
clear from these tables, our results have a com-
plete agreement with the NU method and generally
agree with other analytical and numerical works.
These tables imply that BAM can be used as a good
quasi-exact method to find the ground state and

excited states solutions of the wave equation with
the Yukawa potential. From these tables, we can
see that the energy of higher excited states differs
slightly from BAM (as well as NU) at higher values
of V0. However, calculations show that the error
is very small. To compare with [35] and [30], one
should use 1

g = V0

α as the effective screening param-
eters (ZD/a0 in [35]). As it is mentioned in [35],
in the limit of g → 0 (alternatively V0 in Tables II
and III), the results reach those of numerical results
in agreement with the current results. In the limit
of g → ∞ (small values of ZD/a0 in [35] or high
values of V0 in these tables), the BAM results are
slightly different from those of variational and exact
numerical ones.

As we know, when α → 0, the Yukawa poten-
tial reduces to the Coulomb potential and there-
fore, the energy eigenvalues (22) must tend to the
energy eigenvalues of a pure Coulomb interaction.
Thus, after some algebra, in this limit we have

Enl = −
mV 2

0

2

1

(n+ l + 1)2
= −mV

2
0

2

1

n′2
, (23)

where we set n′ = n + l + 1. In (23), we have the
energy eigenvalues of the Coulomb potential [39].

Now, in order to find the wave functions of the
Yukawa potential, corresponding to Enl, the roots
in (18) (i.e., xi) must be found. Therefore, in the
case of n = 0, we get

Y (x) = 1, (24)
and

R0l(x) = (1− e−2αr)l+1 e−
√
εr. (25)

For n = 1, we have[
−2(l + 1)− 2

(√
ε

2α
+

1

2

)]
x1 −

(
2

√
ε

2α
+ 1

)
= 0,

(26)
and therefore

x1 =
2
(√

ε
2α + 1

2

)
−2(l + 1)− 2

(√
ε

2α + 1
2

) (27)

and the wave function is as follows:
R1l = (1− e−2αr)l+1 e−

√
εr

×

e−2αr −
2
√
ε

2α + 1

−2(l + 1)− 2
(√

ε
2α + 1

2

)
 . (28)

In the case of n = 2, the following equations must
be solved to find the roots:

2

x1 − x2
+

[
−2(l + 1)− 2

(√
ε

2α + 1
2

)]
x1

x1(1− x1)

−
2
(√

ε
2α + 1

2

)
x1(1− x1)

= 0,

2

x2 − x1
+

[
−2(l + 1)− 2

(√
ε

2α + 1
2

)]
x2

x2(1− x2)

−
2
(√

ε
2α + 1

2

)
x2(1− x2)

= 0, (29)
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TABLE I

Some energy levels (in [fm−1]) of the Yukawa potential for different values of g and comparison with other works.
In this table, we set ~ = m = 1 and V0 =

√
2. ∗The values of s-state energies have been deduced from the

correspondence between Rogers et al. [35] and l = 0 variational wave functions [31]

State g BAM NU [37] AIM [33] SUSY [32] Numerical [35] Variational [30]∗

1s

0.002 -0.99600 −0.99600 −0.99600 −0.99601 −0.99600 −0.99600
0.005 −0.99002 −0.99002 −0.99003 −0.99004 −0.99000 −0.99090
0.010 −0.98010 −0.98010 −0.98014 −0.98015 −0.98010 −0.98010
0.020 −0.96040 −0.96040 −0.96059 −0.96059 −0.96060 −0.96060
0.025 −0.95062 −0.95062 −0.95092 −0.95092 −0.95090 −0.95090
0.050 −0.90250 −0.90250 −0.90363 −0.90363 −0.90360 −0.90360

2s

0.002 −0.24601 −0.24601 −0.24602 −0.24602 −0.24600 −0.24600
0.005 −0.24010 −0.24010 −0.24014 −0.24015 −0.24010 −0.24010
0.010 −0.23040 −0.23040 −0.23058 −0.23059 −0.20360 −0.20360
0.020 −0.21160 −0.21160 −0.21229 −0.21230 −0.21230 −0.21230
0.025 −0.20250 −0.20250 −0.20355 −0.20355 −0.20360 −0.20360
0.050 −0.16000 −0.16000 −0.16354 −0.16351 −0.16350 −0.16350

2p

0.002 −0.24601 −0.24601 −0.24601 −0.24602 −0.24600 –

0.005 −0.24010 −0.24010 −0.24012 −0.24012 −0.24010 –

0.010 −0.23040 −0.23040 −0.23049 −0.23049 −0.23050 −0.23050
0.020 −0.21160 −0.21160 −0.21192 −0.21192 −0.21190 −0.21190
0.025 −0.20250 −0.20250 −0.20298 −0.20299 −0.20300 −0.20300
0.050 −0.16000 −0.16000 −0.16148 −0.16144 −0.16150 −0.16150

3p

0.002 −0.10715 −0.10714 −0.10716 −0.10716 −0.10720 –

0.005 −0.10134 −0.10133 −0.10141 −0.10142 −0.10140 –

0.010 −0.09201 −0.09201 −0.09230 −0.09231 −0.09231 −0.09231
0.020 −0.07471 −0.07471 −0.07570 −0.07570 −0.07570 −0.07570
0.025 −0.06674 −0.06673 −0.06815 −0.06814 −0.06816 −0.06816
0.050 −0.03361 −0.03361 −0.03711 −0.03739 −0.03712 −0.03711

3d

0.002 −0.10705 −0.10714 −0.10715 −0.10715 −0.10720 –

0.005 −0.10133 −0.10133 −0.10136 -0.1014 −0.10140 –

0.010 −0.09201 −0.09201 −0.09212 −0.09212 −0.09212 −0.09212
0.020 −0.07471 −0.07471 −0.07503 −0.07502 −0.07503 −0.07503
0.025 −0.06674 −0.06673 −0.06714 −0.06713 −0.06715 −0.06715
0.050 −0.03361 −0.03361 −0.03383 −0.03388 −0.03383 −0.03383

and therefore, the wave function can be written as
R2l = (1− e−2αr)l+1 e−

√
εr

×
(
e−2αr − x1

) (
e−2αr − x2

)
, (30)

where x1 and x2 are the solutions of (29) and
ε = −2mEnl. For other values of n, one should
solve (7) straightforwardly and the wave functions
can be found using the roots of these equation for
any state.

4. Generalization to arbitrary dimension

One of the advantages of BAM calculations in
this paper is solving the N -dimensional problem.
Based on the forepart discussions, a generalization

to higher dimensions is very straightforward. To do
this, let us consider the n-dimensional radial
Schrödinger equation [40]:

1

rN−1
d

dr

(
rN−1

dunl(r)

dr

)
(31)

+
2m

~2

[
E − l(l +N − 2)

r2
− V (r)

]
unl(r) = 0,

and using unl(r) =
Rnl(r)
r one can get the following

equation:
d2Rnl(r)

dr2
+

2m

~2

[
E − V (r)− l(l +N − 2)

r2

+
(N − 1)(N − 3)

4r2

]
unl(r) = 0. (32)
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TABLE II

The same description as in Table I, but these results have been computed for ~ = 2m = 1, α = 0.2 fm−1 and
n = 0 and different values of the screening length.

V0 l BAM NU [37] AIM [33] SUSY [32] Numerical [36] Analytical [36]

4 0 −3.24 −3.24 −3.2564 −3.2563 −3.2565 −3.2199

8
0 −14.44 −14.44 −14.4581 −14.4581 −14.4571 −14.4199
1 −2.56 −2.56 −2.5836 −2.583 −2.5836 −2.4332

16
0 −60.84 −60.84 −60.859 −60.859 −60.859 −60.8193
1 −12.96 −12.96 −12.991 −12.9908 −12.991 −12.8375

24

0 −139.24 −139.24 −139.2593 −139.259 −139.2594 −139.2201
1 −31.36 −31.36 −31.39381 −31.3937 −31.3938 −31.2385
2 −11.56 −11.56 −11.5959 −11.5951 −11.5959 −11.2456

TABLE IIIThe same description as in Table II, but n > 0.

V0 n l BAM NU [37] AIM [33] SUSY [32] Numerical [36] Analytical [36]

16

1 0 −12.9600 −12.9600 −13.0273 −13.0270 −13.0273 −13.0326
2 0 −4.2711 −4.2711 −4.3941 −4.3937 −4.3720 −4.4057
1 1 −4.2711 −4.2711 −4.3621 −4.3612 −4.3480 −4.3886

24

1 0 −31.3600 −31.3600 −31.4312 −31.431 −31.4356 −31.4313
2 0 −11.5600 −11.5600 −11.6998 −11.6990 −1.6998 −11.7093
3 0 −4.8400 −4.8400 −5.0441 −5.0448 −5.0442 −5.0590
4 0 −1.9600 −1.9600 −2.2033 −2.2194 −2.2033 −2.2237
1 1 −11.5600 −11.5600 −11.6652 −11.6640 −11.6653 −11.6839
2 1 −4.8400 −4.8400 −5.0134 −5.0133 −5.0135 −5.0541
3 1 −1.9600 −1.9600 −2.1770 −2.1908 −2.1770 −2.2414
1 2 −4.8400 −4.8400 −4.9515 −4.9504 −4.9516 −5.0085
2 2 −1.9600 −1.9600 −2.1241 −2.1337 −2.1241 −2.2428

Now, using the same procedure mentioned as in
(11)–(14), we get the following equation:
d2Rnl(x)

dx2
+

1

x

dRnl(x)

dx
+

(
−ε/4α

2

x2
+

mV0/α

x(1− x)

−
l(l +N − 2)+ 1

4 (N − 1)(N − 3)

x(1− x)2

)
Rnl(x) = 0,

(33)
which, except for the last term in brackets, is the
same as (14). Therefore, one can try the following
idea for the wave function:

Rnl(x) = x
√
ε/(2α)(1− x)c1Y (x). (34)

After some algebra, in the sense of the BAM equa-
tions mentioned in the previous sections, the con-
stant c1 must satisfy the following equation:

c1(c1 − 1) = l(l + 1) + l
(
l +

1

4
(N − 1)(N − 3)

)
.

(35)
After finding c1 one can find all the roots of the
BAM equations as well as wave functions. It is clear
that in three dimensions, N = 3, we have c1 = l+1
and one gets the previous results.

5. Conclusion

One of the quasi-exact solution methods to
solve the Schrödinger equation is the Bethe ansatz
method based on polynomial expansion of solutions.
Because of this and because of the importance of
the Yukawa potential in physics, in this paper BAM
has been used to find energy eigenvalues and eigen-
functions of the Schrödinger equation. The results
showed a good agreement with other works and
this method can be used as an accurate method
in this problem. In the case of a zero screening pa-
rameter limit, the eigenvalues tend to that of the
Coulomb potential. The difference between the ap-
plied method and other methods investigated is that
at higher levels the BAM method is slightly less ac-
curate for higher values of V0 (potential strength).
But, the difference is minor and the BAM method
is a reliable method to find the solution of Yukawa-
type potentials. It is found that, based on the re-
sults of the three-dimensional radial equation, the
generalization to other dimensions is very straight-
forward.
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