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The hysteretic properties of a nanosized monolayer on the square lattice have been studied based on
the spin-1 Ising model, including a single-ion anisotropy (D) and dipolar–quadrupolar (or odd, L)
interaction parameters using the pair approximation. The nanosized monolayer is divided into the core,
core–surface, and surface parts as introduced in J. Magn. Magn. Mater. 373, 217 (2015). The dipolar
(or magnetization M) and quadrupolar (Q) order parameters are calculated. We have investigated
M vs. magnetic field H behaviors for different values of L, temperatures T , and monolayer sizes R.
We also observed Q–D, M–D and Q–H hysteresis loops. These results are discussed in relation to
other theoretical findings.
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1. Introduction

Nanosized monolayer (NML) systems are very
important in technology such as capacitive energy
storage [1], biomedical applications [2, 3], chemi-
cal solution deposition [4], supercapacitors [5], elec-
trocatalytic activity [6, 7], biological cell separation
and gold recovery [8]. They have been considered
in many theoretical studies where different types of
lattice structures were constructed, such as hexag-
onal lattice, square lattice, nano-graphyne struc-
ture, etc. The magnetic and thermal properties of
the NML systems on the mentioned lattices, par-
ticularly magnetic hysteresis phenomenology, have
been analyzed with the use of a variety of tech-
niques, i.e., pair approximation [9–15], effective field
theory [16, 17], Monte Carlo simulation [18–22],
density functional theory (DFT) [23], finite clus-
ter approximation [24], micromagnetic simulations
of switching processes [25, 26] and Lennard-Jones
potentials [27]. In most of these studies, the Ising
model framework has opened a new path in the re-
search of magnetic/hysteretic properties with differ-
ent shapes. Particularly, the spin-1 Ising model and
its variants on the hexagonal/square lattice NML
have attracted much interest [10–17, 20–24].

On the other hand, the spin-1 Ising model with
bilinear (J) and biquadratic (K) nearest-neighbor
pair interactions and a single-ion anisotropy

parameter (D) is known as the Blume–Emery–
Griffiths (BEG) model. Firstly, it has been intro-
duced for describing phase separation and super-
fluid ordering in the He3–He4 mixtures [28]. Then,
the multiple versions of the model have been ap-
plied to the physical systems, such as the spin-1
lattice–gas systems [29], microemulsions [30], semi-
conductor alloys [31], binary alloy models [32], and
spin-crossover solids [33].

The case of the BEG model was studied with dif-
ferent techniques to obtain a complete description
of phase transitions arising in bulk systems [34–43].
The model is also exposed by many simulation
and approximate techniques to observe various
phase regions for the nanostructured lattice types.
The Hamiltonian with J , K and D parameters
works well in the presence of an external mag-
netic field (H) for the two-dimensional nanostruc-
tures characterized with fluctuations in both mag-
netic and quadrupolar ordering [11–15]. However,
in the case of square lattice NML, the Hamilto-
nian with the dipolar–quadrupolar or odd interac-
tion (L) has not been considered for the analysis of
magnetic and quadrupolar ordering properties [13].
With incorporation of the odd interaction term,
the pair approximation (PA) formalism [44] could
provide a theoretical framework for the hysteresis
loops observed in experiments made on a square
lattice NML.
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The aim of the present paper is to investigate the
effect of L on the hysteretic properties of a spin-1
Ising NML decorated on the square lattice. Within
the PA choice, this effect has already been stud-
ied successfully for the spin-1 Ising nanoparticle on
the hexagonal lattice [14]. Shifted magnetic hys-
teresis loops with an asymmetry and coercivity en-
hancement were observed only in the presence of
the odd interaction term in the Hamiltonian expres-
sion and their magnitudes show strong dependence
on the value of L. Hence, the effect of L on the
quadrupolar hysteresis has not been taken into ac-
count while only the effect on the magnetic hystere-
sis was analyzed in [14].

In this paper, we would like to present the hys-
teresis of both magnetization (M) and quadrupole
ordering (Q) for the spin-1 Ising NML on the
square lattice. Particularly, we analyse in detail
the temperature/layer size aspects of the M–H
and Q–D dependencies when L 6= 0 for homoge-
neous/composite NML. Also, we obtain the M vs.
D and Q vs. H dependence, including novel hys-
teresis loop shapes for the homogeneous NML.

This paper includes in Sect. 2 a short descrip-
tion of the model and methodology. In Sect. 3, we
give the numerical results and discussions. Finally,
conclusions have been presented in Sect. 4.

2. Description of model and methodology

A schematic representation of an NML system on
the square lattice with two shells is shown in Fig. 1.
The filled circles in red and blue colors correspond
to the core (C), and surface (S) spins, respec-
tively. They contain core spin number (NC), core–
surface (CS) spin number (NCS) and surface spin
number (NS). The total number of spins in the sys-
tem is N = NC +NS . The number of shells inside
the layer is related to the size of the system (R).
The Hamiltonian for the above spin system can be
expressed (in the presence of an external magnetic
field H) by [14, 29, 35]:

Ĥ = −J
∑
〈ij〉

SiSj −K
∑
〈i,j〉

S2
i S

2
j

−L
∑
〈i,j〉

(
S2
i Sj + SiS

2
j

)
−D

∑
〈i,j〉

(
S2
i + S2

j

)
−H

∑
〈i,j〉

(Si + Sj) , (1)

where J , K, and L are the dipolar, quadrupo-
lar, and dipolar–quadrupolar exchange energies be-
tween the nearest-neighbor atoms (denoted by 〈ij〉)
with spins Si = +1, 0,−1, respectively, while D is
the single-ion anisotropy constant (or crystal-field
parameter). In (1), the terms with the exchange
parameters J and K are even sector contributions,
while the magnetic field-like perturbations (L and
H) are odd sector terms [34]. Since the parame-
ter L is associated with dipolar and quadrupolar
pair interactions, it is combined with J and K via

Fig. 1. Schematic representation of a nanosized
monolayer on the square lattice exhibiting two shells
of the spins. Solid red and blue lines correspond to
the core and core–surface pairs, respectively.

a geometric mean. Namely, L =
√
JK [45]. All ex-

change coupling parameters appearing in (1) are
given in units of kBT (where kB — the Boltzmann
constant, T — the temperature). The cases when
J , K > 0 and when J , K < 0 correspond to
the ferromagnetic (FM), and the antiferromagnetic
(AFM) interactions, respectively. A paramagnetic
(PM) phase exists in the system for all tempera-
tures when J = K = 0. The fractions of the
spin states (±1, 0) are called the point (or state)
variables (pi). In the PA method developed by
Kikuchi [44], another sort of variables is introduced,
known as bond (or pair) variables (Pij). If the total
number of spin pairs in the system is Np, the num-
ber of (+1,+1) bonds is P++Np, of (+1, 0) bonds is
P+0Np (P+0 = P0+), of (+1,−1) bonds is P+−Np

(P+− = P−+), the number of (0, 0) bonds is P00Np,
of (0,−1) bonds is P0−Np (P0− = P−0) and the
number of (−1,−1) bonds is P−−Np. The rela-
tions between point and bond variables are given
by pi =

∑
j=+,0,− Pij (i = +, 0,−).

We now separate (1) into three terms
(ĤC , ĤCS , ĤS), including all interactions be-
tween the nearest neighboring spins in core
(JC ,KC , LC , DC), core–surface (JCS ,KCS , LCS),
and surface (JS ,KS , LS , DS) regions. Here,
LC =

√
JCKC , LCS =

√
JCSKCS , LS =

√
JSKS .

Explicit details of the above formulation are
presented by Erdem and co-workers for a nanoscale
monolayer on the hexagonal lattice in [14, 15].
The dipolar and quadrupolar order parameters are
calculated, respectively [15, 41, 46]:

M = P++ + P+0 + P+− − (P−+ + P−0 + P−−) ,

(2)

Q = P++ + P+0 + P+− + P−+ + P−0 + P−−.

(3)
The bond variables are found from the numerical
solutions of the following set of equations for
i, j = {+, 0,−},

Pij = Z−1(pipj)
γ−1
γ exp (−βεij) ≡ Z−1 eij , (4)
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TABLE IBond energies of spin pairs (i, j) for C, CS, S ions.

C CS S

ε++ −(JC +KC + 2LC + 2DC + 2H) −(JCS +KCS + 2LCS) −JS−KS−2LS−2DS − 2H

ε+0 −(DC +H) 0 −(DS +H)

ε+− JC −KC − 2DC JCS −KCS JS −KS − 2DS

ε0+ −(DC +H) 0 −(DS +H)

ε00 0 0 0
ε0− −DC +H 0 −DS +H

ε−+ JC −KC − 2DC JCS −KCS JS −KS − 2DS

ε−0 −DC +H 0 −DS +H

ε−− −(JC +KC − 2LC + 2DC − 2H) −(JCS +KCS − 2LCS) −(JS +KS − 2LS + 2DS − 2H)

where β = 1/(kBT ), γ is the coordination num-
ber of a given lattice site inside the NML system.
The partition function Z is defined with the relation
Z =

∑
i,j=+,0,− eij . For the energy parameters εij

in (4) one can introduce the following definition:
εij = Np,Cεij,C +Np,CSεij,CS +Np,Sεij,S , (5)

where Np,C = 1
2NCγC − NCS , Np,CS = NCSγCS ,

Np,S = 1
2NSγS are the numbers of spin pairs (with

γC = 4, γCS = 2, γS = 0) and εij,C , εij,CS , εij,S
are called the bond energies of spin pairs (ij) for
C, CS, S ions, respectively [11–15]. Their com-
puted values, by using (1), are presented in Table I.
To solve the nonlinear algebraic equations (4), the
Newton–Raphson or iteration method was applied.
After establishing the Pij values, M and Q can be
obtained easily using, respectively, (2) and (3).

In the next section, we examine the hysteretic
properties of M and Q at various temperatures,
magnetic fields, and layer sizes under L 6= 0.

3. Results and discussion

In the numerical calculations presented below, we
focus on two different cases, which will let us study
the effect of interactions across the CS interface
on the hysteresis phenomena. The monolayer with
the FM core / FM core–surface interactions with
JC = JCS = J = 1, KC = KCS = K is called the
homogeneous (HM) NML. In turn, the FM core /
AFM core–surface interactions with JC = J = 1,
JCS = −J , KC = K, KCS = −K is known as
the composite (CM) NML. For simplicity, we chose
LC = LCS = L and DC = D in both cases. As for
the bilinear, biquadratic, and odd interactions be-
tween surface spins (JS ,KS ,LS) we did not consider
contribution to total magnetization. Quadrupole
moment appeared from the surface part because
of zero lattice coordination (γS = 0), as shown
in Fig. 1.

The magnetization M as a function of H and
the quadrupolar order parameter Q as a function
of D for the HM- and CM-NML with six shells
of spins are performed at T = 100 J/kB and the
results are displayed in Fig. 2. Taking D = −1,
three hysteresis curves are shown for the HM-NML

Fig. 2. Magnetic field H dependence of M when
D = −1 and crystal field D dependence of Q
when H = 0 at various L values using R = 6,
T = 100 J/kB. The cases (a) and (c) are for the
HM-NML while (b) and (d) for the CM-NML.

(see Fig. 2a). As indicated, the hysteresis loop is
regular and symmetrical around H = 0.0 when
L = 0.707 (blue curve), while double FM loops are
observed at L = 0.100 (black curve) and L = 0.353
(red curve). When L increases, the split loops be-
come wider. The isothermal magnetic field depen-
dence ofM at D = −1 shows the PM-type behavior
for all L values (see Fig. 2b), as for the CM-NML.
The single M–H line is based on the same direc-
tion pinned spins, at C/S interface. A detailed dis-
cussion of the above results can be found in [20].
The quadrupolar order parameter Q in the absence
of magnetic field is plotted as a function of D for
the interaction parameters used in the previous two
cases (a) and (b). According to our calculations
(see Fig. 2c and d), the Q vs. D curves also dis-
play a loop shape, which is generally called as the
quadrupolar hysteresis. As the odd interaction L
increases, the single loop becomes wider and shifts
along the negative D direction for the HM-NML,
as shown in Fig. 2c. Conversely, the shifted Q–D
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Fig. 3. Description as in Fig. 2 but for different
temperatures using R = 8, K = 0.125, L = 0.353.

loops seen for the CM-NML in Fig. 2d are very
small. A similar feature reveals as the exchange bias
(EB) effect in the magnetic hysteresis phenomena
and is determined from the horizontal shift in the
midpoint of the loop [14, 47, 48]. Perhaps one can
say that the EB-like effects can also be seen in the
Q–D loops. In other words, EB-like results from the
coupling between the pinned spins, is strongly influ-
enced by the surface anisotropy and the reversible
spins. For a similar analysis of the above loops in
the 2D spin-1 Ising nanostructures, please see [15].

In Fig. 3, the M–H and Q–D curves are given
at three different temperatures, i.e., T = 100,
200, 300 J/kB and assuming R = 8, K = 0.125,
L = 0.353. As one can notice, the curves strongly
depend on the temperature. For example, the split
hysteresis (or double FM loops) become wide for
the HM-NML when T decreases and the PM be-
havior occurs when T increases (see Fig. 3a). Sim-
ilar results are also presented for the CM-NML
in Fig. 3b. We noted there that for increasing val-
ues of T from 100 J/kB to 300 J/kB, the split loops
become narrower and further disappear for the CM-
NML. In contrast to the symmetric magnetic hys-
teresis, an asymmetric loop is observed in Q vs. D
variation for the NML.

Asymmetry of the Q–D loops without magnetic
field is generally attributed to the permanent mag-
netic moment and the single ion anisotropy. More-
over, these asymmetric loops become narrow with
increasing temperature for the HM- and CM-NML,
as can be seen in Fig. 3c and d, respectively. The
narrowing loops in the Q–D plane eventually disap-
pear at very high temperatures (see Fig. 3d). Look-
ing at the shapes of the obtained loops (Fig. 3c
and d), one can observe that there is a shift towards
the positive D direction when the temperature is
raised from T = 100 J/kB to 300 J/kB.

Fig. 4. Description as in Fig. 3 but for different
layer sizes using T = 100 J/kB.

Fig. 5. Crystal field D dependence of M on
various magnetic field values using R = 6,
T = 100 J/kB, K = 0.01, L = 0.1. The left side
is for the HM-NML, while the right side is for the
CM-NML.

In Fig. 4, we have presented the M–H and Q–D
hysteresis cycles of the spin-1 Ising NML on a dec-
orated square lattice for various values of R when
T = 100 J/kB , K = 0.125, L = 0.353. With the
increase of layer sizes R for the HM-NML, double
and asymmetric M–H loops occur in Fig. 4b. Dou-
ble PM shapes are obtained at small R sizes for the
CM-NML in Fig. 4b. Asymmetric Q–D hysteresis
loops shifting as R increases along the positive and
negative D direction are shown in Fig. 4c and d,
respectively, and correspond to the HM/CM-NML.

In Fig. 5, we plot the magnetization of the sys-
tem as a function of the crystal field D for various
values of external magnetic field H, for both the
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Fig. 6. MagnetizationM as a function ofD at var-
ious temperatures when R = 6, K = 0.01, L = 0.1,
H = 0.1. (a) is for the HM-NML while (b) is for
the CM-NML.

HM- and CM-NML. We take the following values
R = 6, T = 100 J/kB, K = 0.01, L = 0.1. In
the HM case, M increases (decreases) from diverse
values, at D = −1.1 with the increase of D, when
H > 0 (H < 0) as shown in Fig. 5a (Fig. 5b), respec-
tively. The saturation values of M ≈ ±1.0 occur at
D ≈ −0.65 when H = ±0.1, ±0.2, ±0.3. A sin-
gle FM loop, which is seen at intermediate crys-
tal fields, becomes wider with decreasing H value.
However, for the CM case (Fig. 5c and d), we ob-
serve no hysteresis, and rather a shifted PM curve
(towards the negative D direction) appears. We
also note that when changing the sign of H, the
tendencies are opposite, which comes from the fact
that two spins are oppositely aligned. Several of the
above results have also been identified in previous
theoretical studies [49, 50].

In Fig. 6, we show theM–D behavior at different
temperatures for the monolayer systems already de-
scribed, and choosing H = 0.1. It is clear that the
FM loops in the HM case become narrower and dis-
appear with increasing temperature (see Fig. 6a).
The PM behaviors have been observed for the CM-
NML, as seen in Fig. 6b. Also, it is worth noting
that all magnetization curves cross at the crystal
field D ≈ −0.5 for all values of the temperature,
see Fig. 6b. Hence, we conclude that M increases

Fig. 7. The Q–H hysteresis loops at various values
of (a) T , (b) L, (c) D for the HM-NML with R = 6.

rapidly to its saturation value M ≈ 1 with increas-
ing D, when H = 0.1, for small temperatures.
A similar picture of variation of magnetization with
the crystal field is found in a Blume–Capel model
with the mixed 2- and 7/2-spins using the Monte
Carlo simulation [49].

Finally, in Fig. 7, the quadrupole moment Q is
plotted as a function of the external magnetic field
H for various values of T , L, D for the HM-NML
with R = 6. In this case, two FM loops in the nega-
tive and positive direction of H are obtained. Upon
increasing the temperature T , both loops become
narrower and no shift is seen (Fig. 7a). In turn, the
increase of L values causes that wider loops are seen
with a shift towards each other (Fig. 7b). In Fig. 7c,
two FM loops are observed at different values of D
in both directions of H. These loops shift to each
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other when D grows. To the best knowledge of the
authors, the above closed loops and the correspond-
ing properties in the Q–H behavior for the spin-1
Ising NML systems have not been previously de-
picted. The aspect of the magnetic field variation
of the quadrupole moment was investigated for the
one-dimensional spin-1 BEG model using Green’s
function and the equations of motion formalism fo-
cusing on the role played by the biquadratic inter-
action and crystal field [51, 52].

4. Conclusion

In this paper, we have used the pair approxima-
tion technique to examine the hysteretic properties
with odd interactions for the nanosized monolayer
on the square lattice within the spin-1 Ising model.
We have studied the variations of the magnetization
and quadrupolar order as functions of the magnetic
and crystal fields. This issue was studied under
the effects of the odd interaction, monolayer size,
temperature and the external magnetic field. The
analysis allows for a comprehensive analysis of the
model in the entire space of parameters L, D, H,
R, and T . The investigation of hysteretic proper-
ties of an NML system revealed consistent results
with the earlier works on the same topic. Here, we
have focused on the ferromagnetism exhibited by
the model used. There are remarkable properties
of M–H, Q–D, M–D and Q–H that are worth dis-
cussing. In particular, upon increasing the value
of the odd interaction, one observes the breakdown
of the intermediate plateau, resulting in a uniform
quadrupolar moment for all values of the magnetic
field on Q–H plots. Also, the double FM and PM
phases have been detected.
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