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The experimental Curie temperatures of the substituted rare earth–aluminium L1−xRxAl2 compounds
(with rare earths L, R: La, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y) scale linearly with the de Gennes
factor. The magnetic rare-earth sublattice is treated as being composed of two magnetic subsystems:
the 4f subsystem of L3+ or R3+ ions and the 5d subsystem of band electrons. The de Gennes factor
G = (g − 1)2J(J + 1), with g as the Landé factor and J as the total angular momentum quantum
number, reflects the 4f shell quantum properties of the L3+ or R3+ ion. A formula introducing the linear
dependence of the Curie temperature on the de Gennes factor for the substituted rare earth–aluminium
compounds is derived with consideration of the Zener-type 4f–5d exchange interaction within the frame
of the molecular field model. The obtained formula was tested for a number of different members of the
heavy rare earth–aluminium intermetallic series. A relative constancy of the 4f–5d exchange interaction
across the considered L1−xRxAl2 series has been deduced. The formula can easily be adapted also to
describe the non-linear dependences of the Curie temperatures on the de Gennes factor.
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1. Introduction

Rare earth(R)–3d transition metal(M) com-
pounds, with R = La, Gd, Tb, Dy, Ho, Er, Tm,
Lu, and Y, are typically treated as two-sublattice
metallic ferrimagnets [1, 2]. A variety of their
useful properties continuously gains scientific and
practical interest in the studies of these materials.
Atoms of the lanthanide series with the electronic
configuration Xe 4fn5d16s2 (or yttrium with the
configuration Kr 4d15s2) in intermetallics transfer
their 5d16s2 (or 4d15s2) electrons to the electronic
bands. As the 5d16s2 (or 4d15s2) band electrons
do not fulfil the Stoner criterion autonomously, the
lanthanum or yttrium metals are not magnetically
ordered substances [3, 4]. However, in the R–M
intermetallics, these band electrons are polarized
by the 4f -magnetic moments or the 3d-magnetic
moments and as a result their induced band mag-
netic moments can even form a Slater–Pauling-type
dependence [5, 6].

The RM2-type intermetallics considered below
stabilize in a face-centered cubic Laves Fd3̄m,
C15, MgCu2-type structure described in detail else-
where [1, 7]. In this structure, the 8a sites are
occupied by the rare-earth atoms (R — crystal
sublattice) and the 16d sites are occupied by the
3d-transition metal atoms (M — crystal sublattice).

An important part of the R–M studies is related
to the magnetic ordering temperatures of these ma-
terials. To explain magnetism in the R–M com-
pounds, mechanisms of the long range Ruderman–
Kittel–Kasuya–Yosida (RKKY) exchange interac-
tions or of the local-type exchange interactions have
been discussed in detail elsewhere [1, 2, 8].

In the R–M intermetallics, the Curie tempera-
tures are well described by the empirical Taylor for-
mula TC = TC−3d + TC−4f , where the TC−3d com-
ponent originates from the M sublattice and the
TC−4f = BG, the linear element against the de
Gennes factor G with B constant, originates from
the R sublattice with this one sort of rare-earth
atoms [1]. This formula has been derived using the
Zener-type model of exchange interactions applied
to the R–M ferrimagnets [9, 10]. The de Gennes fac-
tor G = (g − 1)2J(J + 1), with the g — the Landé
factor and J as the total angular momentum quan-
tum number, reflects the 4f -shell quantum proper-
ties of the R3+ ion [1, 2].

Currently, there is a sound experimental test
which shows that the magnetic ordering tempera-
tures TC of the substituted L1−xRxAl2 compounds
with L, R rare-earth components scale linearly with
the G-factor [11–21]. In these compounds, the L/R
rare-earth atoms occupy the 8a sites and the non-
magnetic Al atoms occupy the 16d crystal positions.
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No suitable TC-formula exists for this type of com-
pound to date. Thus the attempt of this paper is to
derive a formula for the magnetic ordering tempera-
ture of the substituted L1−xRxAl2 intermetallics (L,
R: La, Gd, Tb, Dy, Ho, Er,Tm, Lu, and Y) treated
TC as a function of the formally introduced GL and
GR de Gennes factors. Also in this case, the Zener-
type model of the exchange interactions has been
adapted for this purpose and the obtained formula
has been tested within the various experimental
TC data.

2. Ordering temperature formula

Following the Zener-type approach, an exchange
interaction between the spin S of the localized
4f -shell and the band electron polarization s can
be expressed as [9, 10, 22, 23]:
H = −2K4f−ceS · s. (1)

The spins and electron polarizations or their ther-
mal average values can be treated as vectors in
the calculations. During further calculations, the
projection formula S = (g − 1)J , where g is the
Landé factor and J is the angular momentum of the
4f -shell of the L3+ or R3+ ion, is applied. Moreover,
the magnetic moment of the 4f -shell (in µB — the
Bohr magnetons) equals m = gJ [1, 24, 25]. The
K4f−ce is the exchange integral parameter, which
for the heavy rare earths couples S and s ferromag-
netically [1, 2, 24].

The rare-earth atoms transfer their 5d16s2 elec-
trons to the band, therefore at the 8a crystal sites
the L3+, R3+ ions reside. The localized electrons
of the 4f -shell of these ions are well shielded by the
more outer 5sp atomic-like electrons from the rest of
the crystal lattice [26, 27]. Thus, the direct 4f–4f
exchange interactions between the neighboring rare-
earth ions are practically absent. As the 5d6s elec-
trons partially reside within rare-earth ions, mag-
netic polarization of these electrons by a direct
4f–5d(6s) exchange interaction occurs and there-
fore these electrons transfer exchange interactions
to L3+, R3+ neighbors in the crystal lattice [1].
The 4f -shells form local magnetically polarizing
centers for the band 5d6s electrons, whereas these
band electrons form a medium to acquire the mag-
netic polarization throughout the entire rare-earth
sublattice.

Actually, it is known that the magnetic moment
of the polarized s-conduction electrons is small
(less than 0.025 µB), and consequently these elec-
trons can be ignored in further calculations [28].
Therefore, only the band-type 5d-electrons with the
K4f−5d exchange interaction parameter are taken
into account in the calculations. The magnetic mo-
ment m5d is considerable but most often m5d � m,
as discussed elsewhere [29].

In the Zener-type model of the exchange interac-
tions, the number of crystal nearest neighbors is not
explicitly important. In this case, there is one 5d1

electron acting as the effective nearest neighbor of
the L3+ or R3+ ion. Moreover, one L3+ or R3+

ion acting as the nearest neighbor per one 5d1 band
electron occurs. This pair locally creates a mag-
netic bonding with energy E4f−5d = E5d−4f =
K4f−5dSs = K5d−4fsS.

The 5d-band matter which straggles the 8a crys-
tal places of the sublattice additively collects the
local magnetic polarizations or more generally ac-
cumulates the local magnetic bonds. Consequently,
the magnetism of the rare-earth sublattice is me-
diated via this 5d-band medium. Especially, the
5d-band summarizes these bonds to establish the
common Curie temperature for the whole crystal
lattice. This property supports the method of de-
riving the formula for the magnetic ordering tem-
perature of the substituted compounds.

Following (1), the Hamiltonian of the L1−xRxAl2
system can be presented as an additive formula
composed of two parts

H = −2KL;4f−5d

N

i=NL;4f∑
i=1

SL;4fsL;5d

−2KR;4f−5d

N

j=NR;4f∑
j=1

SR;4fsR;5d, (2)

where the letter L before the semicolon denotes
the L component, the letter R denotes the R com-
ponent, while the N normalization number is the
number of all 8a crystal sites. Moreover, NL;4f =
(1−x)N , NR;4f = xN is the number of the L atoms
and of the R atoms populating the rare-earth sub-
lattice, respectively. The KL;4f−5d, KR;4f−5d pa-
rameters denote the 4f–5d exchange interaction in-
tegrals characteristic for the L, R component, cor-
respondingly.

Concerning the Hamiltonian (2), the energy of
magnetic ordering E can be written in the form

E = EL + ER, (3)
where EL represents the L contribution and ER rep-
resents the R contribution. At the magnetic phase
transition, the magnetic ordering energy equals the
thermal energy: E = kBTC (kB — the Boltzmann
constant) and (3) can be rewritten as

TC = TCL + TCR, (4)
where TC, TCL and TCR are the temperatures cor-
responding to the energies.

At first glance, the L1−xRxAl2 system, in which
only one crystal sublattice is occupied by mag-
netic atoms, seems to be similar to a ferromagnet.
However, to treat these intermetallics as a ferro-
magnet is not the way to approach the formula
with a proportionality between TC and G. At this
stage, supporting it is the fact the 4f -rare-earth
ions and the 5d-band electrons form, to a high
level, two distinct magnetic subsystems with the
ferromagnetic K4f−5d = K5d−4f coupling for each
(L or R) component, in the shape of the two-
sublattice ferrimagnet.
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The simplest way is to treat the calculation of
the L, R components in (2) separately. Therefore,
the molecular fields for the 4f , 5d magnetic sub-
systems, considered in analogy to the two magnetic
sublattices of the ferrimagnet, appendant to the L
component, following the method presented previ-
ously, can be written as follows [9, 10, 30]:
HL;4f = H − 0− bL;4f−5dML;5d (5)

HL;5d = H − bL;5d−4fML;4f − bL;5d−5dML;5d, (6)
where HL;4f is the molecular field acting on the well
localized 4f magnetic moments of the L compo-
nent, HL;5d is the molecular field acting on the band
5d-electrons of the L component, H is the strength
of the applied external magnetic field. Moreover,
bL;ij are the appropriate molecular field coefficients,
ML;4f is the 4f -magnetic moment which belongs
to the L component and ML;5d is the 5d-magnetic
moment which belongs to the L component. Since
the direct 4f–4f exchange interaction between L–L
nearest neighbors can be excluded, thus the el-
ement bL;4f−4fML;4f in (5) is approximated to
zero [26, 27]. Therefore, after this reduction, the
above equations correspond to the pure Zener model
to be applied [22, 23]. A similar system of (5)
and (6) can also be introduced for the R compo-
nent of the rare-earth sublattice.

Summarizing, in the above set of (5) and (6),
bL;4f−5d is the molecular field coefficient corre-
sponding to the molecular field acting on the
(L; 4f)-magnetic moment from the side of the
5d-band electrons and reciprocally bL;5d−4f is the

coefficient which corresponds to the molecular field
acting on the 5d-band electron originated by the
(L; 4f) localized magnetic moment. The molecular
field coefficients bL;4f−5d and bL;5d−4f can be ex-
pressed as [9, 10, 30]:

bL;4f−5d =
(gL − 1)

gLµ2
B

2KL;4f−5du4f−5d

g5dNL;5d
(7)

and

bL;5d−4f =
(gL − 1)

gLµ2
B

2KL;5d−4fu5d−4f

g5dNL;4f
, (8)

where g5d, gL are the Landé factors of 5d-electrons,
4f -shells, NL;5d, NL;4f , as mentioned above, are the
numbers of band electrons in the 5d-subsystem, and
of ions in the 4f -subsystem, respectively. Following
the discussion above, the numbers of nearest neigh-
bors u4f−5d = u5d−4f = 1.

The magnetic moments of the magnetic subsys-
tems above the ordering temperature can be ex-
pressed as follows [9, 10, 30]:

ML;4f =
CL;4f

T
HL;4f , (9)

ML;5d = NL;5dχL;5dHL;5d, (10)
where CL;4f is the Curie constant of the L3+ ions
and χL;5d is the band susceptibility per 5d-electron.
The Curie constant can be expressed by [30]:

CL;4f =
g2Lµ

2
B

3kB
NL;4fJL(JL + 1). (11)

Above, the set of (9) and (10) proper to the L com-
ponent considering (5) and (6) can be rewritten in
a matrix form [BL][ML] = [CL]:

[
T CL;4fbL;4f−5d

NL;5dχL;5dbL;5d−4f 1 +NL;5dχL;5dbL;5d−5d

]
×

[
ML;4f

ML;5d

]
=

[
CL;4fH

NL;5dχL;5dH

]
. (12)

The symbol T in (9)–(12) indicates the absolute
temperature of the L1−xRxAl2 compound.

At the magnetic ordering temperature, the in-
verse magnetic susceptibility should approach the
value of zero which is equivalent to the condition
Det[BL] = 0 [30].

This condition can be used to approach a formula
for the Curie temperature contribution TCL;4f of
the magnetic L component. After the standard cal-
culation, the TCL;4f -contribution of the L1−xRxAl2
system can be expressed as

TCL;4f =
NL;5dχL;5dCL;4fbL;4f−5dbL;5d−4f

1 +NL;5dχL;5dbL;5d−5d
. (13)

In a typical case, the small bL;5d−5d coefficient can
be neglected (5d electrons do not fulfil the Stoner
criterion autonomously) and the formula for the
Curie temperature contribution takes the simple
form

TCL;4f = BL;5dK
2
L;4f−5dGL, (14)

where BL;5d is the constant which equals

BL;5d =
4

3kBµ2
B

χL;5du5d−4fu4f−5d

g25d
=

4

3kBµ2
B

χL;5d

g25d
(15)

and
GL = (gL − 1)

2
JL(JL + 1) (16)

is the de Gennes factor of the L component [25].
Taking into account Det[BR] = 0, after calcu-

lations analogous to (5)–(16), the formula TCR;4f

for the R contribution to the Curie temperature
like (14) can be obtained.

Assuming that χL;5d for the L component is equal
to χR;5d for the R component, it can be seen that
BL;5d = BR;5d = B5d; see (15).

Concerning the discussion above, both the L com-
ponent and the R component throughout the local-
type 4f–5d exchange interactions magnetically po-
larize their common 5d-band, thus introducing the
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common long range magnetic order and conse-
quently the common magnetic phase transition at
the same Curie temperature. For the studied com-
pounds, this mechanism is scaled by the substitu-
tion x-parameter.

Following the additive Hamiltonian (2), and also
(3), (4) and considering the above mentioned con-
ditions for determinants, the formula for the Curie
temperature TC of the L1−xRxAl2 system can be
written as the equation
TC = (1− x)TCL;4f + xTCR;4f = (17)

(1− x)BL;5dK
2
L;4f−5dGL+xBR;5dK

2
R;4f−5dGR.

It can be noted that the (1 − x), x parameters de-
note the L, R contributions to the common TC —
the Curie temperature, respectively.

Assuming that K2
L;4f−5d = K2

R;4f−5d = K2
4f−5d

is constant across the heavy rare-earth series (simi-
larly to results for the exchange interaction parame-
ters for the RAl2 system presented in [1]), the Curie
temperature formula takes the simplified form

TC = B5dK
2
4f−5d

[
(1− x)G1 + xG2

]
=

B5dK
2
4f−5dG = BG. (18)

Here, G is the de Gennes factor, averaged across
the rare-earth crystal sublattice and the parameter
B = B5dK

2
4f−5d, which contains the squared ex-

change integral, similarly to the other results pre-
sented elsewhere [8, 25, 31].

For the rare-earth non-magnetic constituent L,
like La, Lu, Y, the KL;4f−5d parameter equals zero
and then the TC formula reduces to the second ele-
ment of (18). It can be added that (17) can easily
be extended for more than two components present
in the rare-earth sublattice.

3. Curie temperatures of (L/R)Al2

Figure 1 presents the Curie temperature
TC against the averaged de Gennes factor
G for the compounds with the L/R substi-
tution in the rare-earth sublattice (C15, 8a
sites) and with the non-magnetic aluminium
atoms in the transition metal sublattice (C15,
16d sites), namely for: La1−xGdxAl2 (trian-
gles) [14, 15], Y1−xGdxAl2 (circles) [13, 14],
Lu1−xGdxAl2 (squares) [14, 15], Dy1−xGdxAl2
(rotated squares) [12, 17], Dy1−xTbxAl2 (trian-
gles pointing left) [16], Ho1−xTbxAl2 (triangles
pointing right) [19], Er1−xTbxAl2 (hexagons) [20],
Dy1−xErxAl2 (stars) [21]. Similarly, the figure also
contains the Curie temperatures for the RAl2 com-
pounds. The RAl2 compounds can be treated as the
fully substituted L1−xRxAl2 intermetallics (x = 1)
with R=La, Gd, Tb, Dy, Ho, Er, Tm, Lu and Y
(inverted triangles) [11, 12, 18].

The Curie temperatures for the portman-
teau of intermetallics are well described us-
ing the common linear numerical formula:
TC = [11.48(0.14)G–12.38(1.25)] K. Consequently,

Fig. 1. The experimental Curie temperatures TC

collected for: La1−xGdxAl2 (dark blue trian-
gles), Y1−xGdxAl2 (red circles), Lu1−xGdxAl2
(black squares), Dy1−xGdxAl2 (dark green ro-
tated squares), Dy1−xTbxAl2 (dark blue trian-
gles pointing left), Ho1−xTbxAl2 (violet triangles
pointing right), Er1−xTbxAl2 (purple hexagons),
Dy1−xErxAl2 (brown stars) and for RAl2 (R —
rare-earth) compounds (magenta inverted triangles)
approximated by the linear TC-dependence vs the
average G-factor. References for the experimental
data are presented in the text.

comparing this numerical formula and the ex-
pression (18) the parameter B = 11.48(0.14) K is
obtained. The numbers in round brackets denote
the numerical fitting errors. The small negative
intercept parameter (approximately 7% of the
maximal TC-value) in the numerical formula can
be ascribed to the distribution of the experimental
TC-points in part and mainly to a little upward
deviation of experimental points from linearity
in the less represented experimental data in the
G-area near to zero. It can be carefully deduced
that the TC vs G linearity does not necessarily
appear for the low G-values.

It can be stated that the numerical fitting of the
TC-data for the particular series of compounds in-
troduces a bundle of almost parallel lines closely
situated to each other. In fact, a certain insignifi-
cant distribution of the B parameters occurs. From
the fitted data of the individual series it follows
that the resulting B-parameters are located be-
tween B = 10.82(0.33) K for the Y1−xGdxAl2 se-
ries and B = 12.93(0.15) K for the Ho1−xTbxAl2
compounds.

It can be added that the sporadic re-
sults of measurements with weakly non-linear
TC(G)-dependences are also to be evidenced in lit-
erature, as for instance, for the Dy1−xYxAl2 and
TmxDy1−xAl2 series [32, 33].

4. Summary and discussion

In order to derive the Curie temperature for-
mula for the L1−xRxAl2 compounds, the mag-
netic rare-earth crystal sublattice was split into two
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subsystems: the subsystem of the heavy rare-earth
L3+ or R3+ ions and the subsystem of the 5d-band
electrons. During calculations, the rare-earth sub-
lattice was treated as a two-sublattice ferrimagnet
with the Zener-type model of the exchange interac-
tions between the above mentioned subsystems.

The derived (18) introduces the linear depen-
dence between the Curie temperature and the de
Gennes factor. It can be noted that this formula
contains the squared exchange integral attended by
the magnetic susceptibility in accordance with simi-
lar results which are known, for R–M intermetallics
or for the RKKY-magnetic systems, as discussed for
instance in [8, 25, 31].

The expression was tested for a number of dif-
ferent members of the rare earth–aluminium se-
ries. The Curie temperature scales linearly well
with the de Gennes factor and practically one slope
(B-parameter) of the TC line appears for the series
treated as a whole. From this linearity, it can be
expected that the electron band magnetic suscepti-
bility χ5d (see (15)) should be constant for all con-
sidered compounds. Consequently, the parameter
K4f−5d (see (18)) should also be constant across
the series. As pointed out above, a constancy or
almost constancy of the exchange integral param-
eter in the dialuminides derived across the heavy
rare-earth series by different measurement methods
is presented elsewhere [1]. It seems that this result
can support the constancy of the K4f−5d parameter
deduced from the TC line. To discuss this problem
in detail, sound future ab initio studies would be
helpful.

The Curie temperature formula in the extended
form (17) is a suitable tool to describe depen-
dences which are more complex than linear depen-
dences. It at least enables considering a nonlin-
ear dependence of the K4f−5d parameter across
the heavy rare-earth series or considering differ-
ences between the KL;4f−5d and the KR;4f−5d pa-
rameters. A task which would be interesting to
study further is the deviation from linearity of the
Curie temperature dependences. It could be per-
formed both by experimental and band calculation
methods. As mentioned above, the up to date ex-
perimental evidence of the non-linear dependence
of the Curie temperature against the de Gennes
factor is poor and only few literature results can
be found [32, 33].
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