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A method for studying the melting curves, eutectic point, and Lindemann’s melting temperatures
of hcp binary alloys is derived, based on the Debye–Waller factors given in terms of mean square
displacement. Analytical expressions obtained for the considered quantities are based on Lindemann’s
criterion on melting. The mean square displacement is applied to calculate the ratio of the root mean
square fluctuation in atomic positions around their equilibrium position in the lattice and atomic
nearest neighbor distance. Using these results, the expression of the melting curve of hcp binary alloys
is derived, which provides information on Lindemann’s melting temperatures and eutectic point with
respect to any proportion of hcp constituent elements. The proposed method allows to specify the
binary alloy forms for the calculated atomic number of host and doping elements and their distribution
in each elementary cell. Numerical results for the melting curve, eutectic point of Cd1−xZnx, and for
Lindemann’s melting temperatures of several hcp binary alloys agree well with experiment.

topics: melting curve and eutectic point, Lindemann’s melting temperature, the Debye–Waller factor,
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1. Introduction

The atomic vibration theory has been success-
fully applied by Lindemann and others [1–5] to the
researches on melting. Lindemann’s criterion on
melting [1, 2] is based on the concept that the melt-
ing occurs when the ratio of the root mean square
fluctuation (RMSF) in atomic positions around
equilibrium lattice position and the atomic near-
est neighbor distance reaches the threshold value.
The validity of this criterion was tested experimen-
tally [6]. The binary alloy phase diagrams have been
measured [7].

Many efforts have been made to derive proce-
dures for studying the melting problems. The phe-
nomenological theory of the phase diagrams of the
binary eutectic systems [8] has been developed to
qualitatively show temperature–concentration dia-
grams of eutectic mixtures with the use of a Landau-
type approach. This approach involves a cou-
pling between the liquid–solid transition order-
parameters and a specific nonlinear dependence on
concentration of the free-energy coefficients. Based
on this theory, the eutectic point can be defined
more generally as the minimum of the melting
curve. Extended X-ray absorption fine structure

(EXAFS) [9] in studying melting is focused mainly
on the Fourier transform magnitudes and cumu-
lants of EXAFS. The melting curve of materials
has been studied in experiments [10] and theory,
where results in theory were obtained from quantum
mechanics within the framework of density func-
tional theory using the generalized gradient correc-
tions. The purpose of these studies focused, how-
ever, mainly on the dependence of the melting tem-
perature of single elements on pressure. In order
to characterize the melting transition of solids, em-
pirical rules [1, 11–13] have been applied as useful
procedures in computer simulations without per-
forming free energy calculations [14]. The mech-
anism for the solid–liquid phase transition that is
based on Lindemann’s criterion has been studied us-
ing a Monte–Carlo simulation [15]. The dependent
pressure melting curves have also been computed
with ab initio molecular dynamics simulations for
some single crystals [16].

A method of melting simulation (the shock melt-
ing method) has been proposed and it proved to
be able to determine the melting curves based
on the multi-scale shock technique and preheat-
ing and/or pressuring materials before shock [17].
By extensive molecular dynamics simulation of both
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two- and three-dimensional polydisperse Lennard-
Jones solids, it is shown that particles on the small
or large limits of size distribution exhibit substan-
tially different Lindemann ratio at melting [18].
The Debye–Waller factors (DWF) which appeared
due to atomic vibrations play an important role in
studying thermodynamic properties and some phys-
ical effects of materials [9, 19–22]. Therefore, they
can be applied in creating procedures for solving
the melting problems. An effort has been made to
carry out such investigation [23], where the DWFs
presented in terms of the mean square displacement
(MSD, which is ratio A/B, where A — root mean
square, B — distance) and the Lindemann param-
eters of several hexagonal close-packed (hcp) crys-
tals, Co, Ru, and Sc, have been studied using the
lattice-dynamical model. Unfortunately, the results
of this research are still not universal for providing
the Lindemann melting temperatures of the consid-
ered crystals, especially for obtaining those of the
hcp binary alloys.

The purpose of this work is to derive a method for
the calculation and analysis of the melting curves,
eutectic points, and Lindemann’s melting tempera-
tures of hcp binary alloys based on the DWF pre-
sented in terms of MSD. In Sect. 2, the analytical
expressions meeting Lindemann’s criterion on melt-
ing of the considered quantities are given. These
include, for example, the expressions of the atomic
MSD, the atomic mean square fluctuation (MSF),
and then the ratio of the RMSF in atomic positions
and the atomic nearest neighbor distance leading
to the melting curves of hcp binary alloys. Worthy
of noting is that the derived melting curve provides
information about the Lindemann melting points of
the binary hcp alloys. The model has such an ad-
vantage that it gives the melting points with respect
to any proportion of the hcp constituent elements,
as well as information on the possible eutectic melt-
ing and the eutectic point values (minimum melting
point) of the considered binary alloys hcp (see nu-
merical results).

Moreover, our model also provides the melting
temperature of one hcp crystal as the limiting case
when the atoms of another constituent element are
taken out of the binary alloy. To specify the forms
of hcp binary alloys, we create a method due to
which the total atomic number, the numbers of the
host and doping constituent element atoms, as well
as their distributions in each hcp binary alloy ele-
mentary cell with respect to their different atomic
proportions are determined. Numerical calculations
have been carried out for several hcp binary alloys
(see Sect. 3). The melting curves of hcp binary al-
loys calculated using the present theory are com-
pared to their experimental phase diagrams [7] and
the results for Cd1−xZnx are found to be in good
and reasonable agreement with those taken from
their experimental phase diagrams [7]. The con-
clusions and possible applicabilities of the derived
theory are presented in Sect. 4.

2. Formalism

To calculate the melting curve from which Lin-
demann’s melting temperatures and eutectic point
of a binary alloy are obtained, it is necessary to
first calculate the RMSF in atomic positions around
equilibrium lattice positions and the nearest neigh-
bor distance [1–4]. This RMSF is often concerned
with the atomic vibration whose amplitude is char-
acterized by the MSD or DWF [19–24]. Therefore,
we start our consideration from this DWF using its
expression [24]:

W =
1

2

∑
q

|K · ūq|2, (1)

where K is the scattering vector equaling a recip-
rocal lattice vector, and ūq is the mean atomic vi-
bration vector.

If each hcp binary alloy lattice cell contains
n atoms consisting of s being the number of atoms
of type 1 and (n − s) as the atomic number of
type 2, then the averaged vibration atomic vector
ūq is given by

ūq =
su1q + (n− s)u2q

n
. (2)

The potential energy of an oscillator is equal to its
kinetic energy so that the mean energy of atom k
vibrating with the wave number q has the form

ε̄q = Mk |u̇kq|2 . (3)
Then, the mean energy of the crystal consisting of
N lattice cells is given by

Ē =
∑
q

ε̄q = (4)∑
q

N
(
sM1ω

2
q |u1q|2 + (n− s)M2ω

2
q |u2q|2

)
,

where M1, M2 are the masses of atoms of types 1
and 2, respectively, and u2q is related with u1q in
the following way [20]:

u2q = mu1q, m = M1

M2
. (5)

Now, using (2) and (5), the mean energy for the
atomic vibration of the q-th lattice mode is ob-
tained, i.e.,

ε̄q = Nω2
q |u1q|2

(
sM1 + (n− s)M2m

2
)
. (6)

Comparing (6) with the phonon energy of n atoms
in a lattice cell, calculated with

ε̄q = n~ωq

(
n̄q + 1

2

)
, (7)

where n̄q — the mean number of phonons, we get
that

|u1q|2 =
n~

NM1ωq

n̄q + 1
2

s+m(n− s)
. (8)

Using (2) and (4), the square amplitude of the mean
atomic vibration mode can be provided for the q-th
lattice. Namely,

|ūq|2 =
1

n2

(
s+m (n− s)

)2 |u1q|2 =(
s+m(n−s)

)
(n̄q+ 1

2 )

NM1ωqn
. (9)
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In order to determine the DWF presented in terms
of MSD, we should calculate the contribution of
each polarization, take (9) into account and then
use (8). The MSD given in (1) when all three po-
larizations are included, resulted in

W =
~

2NM1n

∑
q

K2 (s+m(n− s))
(
n̄q + 1

2

)
ωq

,

(10)
where K = |K|. The sum over q in (10) can be
transformed into the corresponding integral and ap-
plying it in the area of high temperatures (T � θD)
with respect to melting with the Debye tempera-
ture θD, one obtains the MSD or DWF expression
given by (10). This is

W =
3~2K2T

2nkBθ2
D

sM2 + (n− s)M1

M1M2
. (11)

Note that (11) is linearly proportional to the tem-
perature T , as already mentioned [9, 19–24].

Based on the mean crystal lattice energy obtained
in the form of

Ē =
∑
k,i

Mk

∣∣∣U̇ki

∣∣∣2 =
∑
k,i

∑
q

Mkω
2
q |Ukiq|2 , (12)

where Uki is the atomic fluctuation function, and
on the energy given by (4) as well as on the above
results, the atomic MSF is determined as

1

N

∑
i

|U2i|2 = m2
∑
q

|u1q|2 =

6W

K2

n2m2(
s+m(n− s)

)2 . (13)

With the use of the expression of DWF (11), (13)
can be transformed into

1

N

∑
i

|U2i|2 =
9~2T

kBM1θ2
D

nm2

s+m(n− s)
. (14)

Hence, when T � θD, the MSF in atomic positions
that is determined by (14) bases on the DWF given
by (11). This obtained MSF is linearly proportional
to the temperature T .

Therefore, at a given temperature T , the quan-
tity R is defined as:

R =
1

d

√
9~2T

kBM1θ2
D

nm2

s+m(n− s)
, (15)

i.e., as the ratio of the RMSF in atomic positions
around the equilibrium position in the lattice and
the atomic nearest neighbor distance d.

This expression for R contains the parameter s
describing the number of doping atoms in the host
element and the parameterm concerning the atomic
mass M1 of element 1 and the atomic mass M2 of
element 2 composing the hcp binary alloys.

Based on Lindemann’s criterion on melting, the
binary alloy will be melted when R given by (15)
reaches the threshold value Rm, namely

R2
m =

1

Nd2

∑
i

|U2i|2 . (16)

Then, Lindemann’s melting temperature Tm of the
hcp binary alloy is defined as:

Tm =
sM2 + (n− s)M1

9nm
χ, (17)

χ =
kBθ

2
Dd

2

~2
R2

m. (18)

In order to determine Lindemann’s melting temper-
ature of the hcp binary alloy (17), it is very im-
portant to specify χ (18) at first, which contains
the threshold value Rm of the ratio of the RMSF
in atomic positions around the equilibrium lattice
positions and the nearest neighbor distance at the
melting.

To simplify the computation, we have to intro-
duce an averaging procedure in the present ap-
proach. The average of χ cannot base directly on χ1

and/or χ2 because its form (18) contains R2
m, i.e.,

the second order of Rm, while the other averages
in (18) are based on the first order of the displace-
ment as shown in (17). For this reason, we should
find the averages of the individual √χi for i = 1, 2,
and further use them to obtain

χ =
1

n

(
s
√
χ1 + (n− s)√χ2

)2

. (19)

The above expression contains χ1 — for the first el-
ement, and χ2 — for the second element of the hcp
binary alloy, with the following limiting values:

χ2 = 9Tm(2)/M2, s = 0;

χ1 = 9Tm(1)/M1, s = n. (20)
Here, Tm(1) and Tm(2) denote the melting tempera-
tures of the first or doping element and of the second
or host element, respectively, composing the binary
alloy.

As a result, we have obtained the melting temper-
ature of hcp binary alloys, actually, by calculating
the ratio of the RMSF in atomic positions on the
equilibrium lattice positions and nearest neighbor
distance, given by (15).

The eutectic point is calculated using the condi-
tion for the minimum of the melting curve, i.e.,

dTm

dx
= 0. (21)

The determination of the melting curves allows
to obtain Lindemann’s melting temperatures (us-
ing (17)–(20)) and eutectic points (using (21)) of
hcp binary alloys with respect to any proportions
of their constituent elements. The eutectic isotherm
certainly is the one for which T equals the eutectic
temperature Te.

3. Numerical results and discussions

3.1. Forms of hcp binary alloys

To specify the forms of hcp binary alloys, we pro-
pose a method to determine the total atomic num-
ber n and the numbers of the host (nH) and dop-
ing (nD) constituent element atoms. Also, their
distributions in each elementary cell (EC) of hcp
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Fig. 1. Possible distributions of atoms of the host
element Cd and the doping element Zn in each
hcp EC providing their binary alloys forms for (a)
Cd1.0Zn0.0 with s = 0 (i.e., no Cd atom in EC is
doped by Zn atom), (b) Cd0.5Zn0.5 with s = 3 (i.e.,
3 Cd atoms inside the EC are doped by Zn atoms),
and (c) Cd0.25Zn0.75 with s = 4.5 (i.e., 3 atoms in-
side and all atoms in the top surface of EC of Cd
are doped by Zn atoms), where s = nZn.

TABLE I

Distribution of atomic number nCd = n−s of the host
constituent element Cd and the one (nZn = s) of the
doping constituent element Zn composing the binary
alloy Cd1−xZnx with respect to the proportion x of
the doping element Zn in these binary alloys, where
s = nZn.

hcp binary alloys x nCd nZn

Cd0.92Zn0.08 0.08 5.5 0.5
Cd0.75Zn0.25 0.25 4.5 1.5
Cd0.5Zn0.5 0.50 3.0 3.0
Cd0.25Zn0.75 0.75 1.5 4.5
Cd0.08Zn0.92 0.92 0.5 5.5

binary alloy with respect to their different atomic
proportion x can be determined with our method.
Figure 1a shows that there are 1/6 atom on each of
12 vertexes, 3 atoms inside the EC, and 1/2 atom
in the top and in the bottom surfaces of each EC.
Therefore, the total number of atoms in each hcp
EC is n = 6 and it consists of the atomic num-
ber nH for the host constituent element H = Cd
and the atomic number nD for the doping element
D=Zn, depending on the proportion x of the dop-
ing element. These numbers have been calculated
and written in Table I for binary alloys belonging
to Cd1−xZnx (H = Cd, D = Zn). The proportion x
is based on Zn doped.

For each of the hcp binary alloys, there are sev-
eral possibilities of Zn atoms doped in the EC
of Cd providing the forms of their binary alloys.

Figure 1 illustrates (a) the limiting case described
by Cd1.0Zn0.0 where no Cd atom in the EC is doped
by the Zn atom, (b) the binary alloy Cd0.5Zn0.5 ob-
tained when 3 Cd atoms inside the EC are doped by
the Zn atoms, and (c) the binary alloy Cd0.25Zn0.75

obtained when 3 Cd atoms inside and all atoms in
the top or in the bottom surface of the EC are doped
by the Zn atoms.

Note that the forms of hcp binary alloys in Table I
have been given based on the total atomic number
n and the atomic numbers nCd and nZn of the host
(Cd) and doping (Zn) constituent elements, respec-
tively, in each hcp EC with respect to the propor-
tion x of the doping element Zn in these binary
alloys.

3.2. Melting curves, eutectic points and
Lindemann’s melting temperatures

The numerical results calculated using the
present theory are focused mainly on the melting
curves that provide information on Lindemann’s
melting temperatures of hcp eutectic binary alloys
with respect to any proportion of the constituent
elements and on the eutectic points of binary al-
loys composed by two different hcp elements. The
eutectic isotherm is apparently T = Te. All input
data have been taken from [25].

Figure 2 illustrates the melting curves provid-
ing information on Lindemann’s melting temper-
atures and eutectic points of eutectic binary al-
loys (a) Cd1−xZnx and (b) Zn1−xTlx that are cal-
culated using the present theory. The results for
Cd1−xZnx are found to be in good and reason-
able agreement with the experimental values taken
from its experimental phase diagram [7]. The melt-
ing curves respond to those of the experimental
phase diagrams [7] where the eutectic temperature
of Cd1−xZnx is smaller than the melting tempera-
tures of the host element Cd and the doping element
Zn (Fig. 2a) and also where the eutectic tempera-
ture of Zn1−xTlx is smaller than the melting tem-
peratures of the host elements Zn and the doping
element Tl (Fig. 2b).

Figure 3 illustrates the melting curves providing
information on Lindemann’s melting temperatures
and eutectic points of eutectic binary alloys (a)
Cd1−xTix and (b) Co1−xZnx. The results are ob-
tained using the present theory for the cases where
the eutectic temperatures are minimal melting tem-
peratures equaling the melting temperature of the
host element Cd for Cd1−xTix (Fig. 3a) and of the
doping element Zn for Co1−xZnx (Fig. 3b).

Notably, the results presented in Figs. 2 and 3
show that Lindemann’s melting temperatures of
the considered hcp binary alloys (i) change from
the melting temperatures of the pure host elements
(when the whole elementary cell is occupied by host
atoms) to those of the binary alloys of different in-
creasing proportions x (when the doping elements
are Zn, Tl, and Ti, Zn, respectively), and (ii) end
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Fig. 2. Melting curves providing information on
Lindemann’s melting temperatures and eutectic
points calculated using the present theory for eutec-
tic binary alloys (a) Cd1−xZnx and (b) Zn1−xTlx
compared to the experimental melting temper-
atures [25] for Cd, Zn, Tl and to the values
taken from the experimental phase diagram [7] for
Cd1−xZnx.

at the melting temperatures of these purely dop-
ing elements (when the atoms of these doping ele-
ments occupy the whole elementary cell). In addi-
tion, Fig. 2 shows the rate at which Cd (Fig. 2a) and
Zn (Fig. 2b) become softer after they were mixed by
the doping elements Zn and Tl, respectively. This
softening takes place because the melting temper-
atures of Cd and Zn decrease up to their eutectic
point. In turn, the hardening of Cd and Zn takes
place after passing the eutectic point because their
melting temperatures increase.

Figure 3a for Cd1−xTix shows the rate at which
the host element Cd becomes harder after it was
doped by Ti. It happens due to the increase of its
melting temperature. In turn, Fig. 3b for Co1−xZnx
shows the rate at which the host element Co be-
comes softer after it was doped by Zn. It happens
due to the decrease of its melting temperature. The
above mentioned property that the hcp element be-
comes either harder or softer after it was mixed by
another hcp element to be a binary alloy can be
attributed to the fact that the atomic bonding be-
comes either tighter or more weakly, respectively, in
the binary alloy depending on the proportion of the
doping element in the binary alloy.

Fig. 3. Melting curves providing information on
Lindemann’s melting temperatures and eutectic
points calculated using the present theory for eutec-
tic binary alloys (a) Cd1−xTix and (b) Co1−xZnx

compared to the experimental melting tempera-
tures [25] of Cd, Ti, Co, and Zn.

TABLE II

Lindemann’s melting temperatures Tm [K] taken from
the melting curve calculated using the present theory
for some hcp binary alloys belonging to Cd1−xZnx

(see Fig. 2a) with respect to their proportion x of
element Zn doped in these binary alloys compared to
the experimental values taken from the experimental
phase diagram [7].

hcp binary
alloys

Proportion x

of Zn
Tm [K]

this work
Tm [K]
exp. [7]

Cd0.92Zn0.08 0.08 576.7 576.0
Cd0.75Zn0.25 0.25 573.0 570.0
Cd0.5Zn0.5 0.50 592.0 590.5
Cd0.25Zn0.75 0.75 626.0 627.0
Cd0.08Zn0.92 0.92 664.2 664.3

Moreover, it is shown in Figs. 2 and 3 that the
calculated melting temperatures of the host con-
stituent element at x = 0 and of the doping con-
stituent element at x = 1 (the limiting cases of bi-
nary alloys), i.e., the melting temperatures of hcp
constituent elements, agree well with their exper-
imental values [25]. The obtained eutectic point
of Cd1−xZnx (Fig. 2a) is close to the experimen-
tal result [7]. Moreover, the localizations of the
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calculated eutectic points of hcp binary alloys also
respond to those predicted by the phenomenological
theory for the phase diagrams of the binary eutectic
systems [8] and in experiment [7].

Lindemann’s melting temperatures taken from
the melting curve calculated using the present
theory for binary alloys belonging to Cd1−xZnx
(Fig. 2a) — with respect to their proportions x of Zn
doped in Cd — are found to be in good and reason-
able agreement with the experimental values taken
from the experimental phase diagram [7]. Some of
these results are given in Table II.

According to the present theory, the eutectic
melting of hcp binary alloys based on providing
their eutectic points (where some values of these
eutectic points are presented in Figs. 2 and 3) are
found and are in good and reasonable agreement
with the experimental values [7, 25].

4. Conclusions

In this work, a method is derived for the calcu-
lation and analysis of the melting curves, eutectic
points and Lindemann’s melting temperatures of bi-
nary alloys composed by any hcp elements based
on the Debye–Waller factors presented in terms of
mean square displacement.

Analytical expressions of the considered quanti-
ties have been derived based on Lindemann’s crite-
rion on melting. They are simplified for the numer-
ical calculations.

Our method has the advantage of providing Lin-
demann’s melting temperatures of hcp binary alloys
respective to any proportion of their constituent el-
ements that compose these binary alloys. Further,
also the melting temperature of a hcp constituent
element can be obtained when the atoms of another
constituent element are taken out of the binary al-
loy. This illustrates the possible eutectic melting of
hcp binary alloys based on providing their eutectic
points.

Our method allows to determine the total atomic
number, the numbers of the host and doping con-
stituent elements atoms, as well as their distri-
butions in each hcp binary alloy elementary cell
with respect to their different atomic proportions.
Therefore, one can quite well specify the binary al-
loys forms.

We have successfully applied our method to study
several hcp binary alloys for which the obtained
results show the rate at which hcp’s binary alloy
atoms become either more tightly or more weakly
bonded. It simply means that the host element be-
comes either harder or softer after it was mixed by
the doping element to be the hcp binary alloy based
on either the increase or decrease of the melting
temperature with respect to increasing the propor-
tion of the doping element in the hcp binary alloy.
This behavior may be useful for technological ap-
plications.

The good agreement of the calculated melting
curves and eutectic points of Cd1−xZnx with their
experimental phase diagrams, as well as of the cal-
culated Lindemann’s melting temperatures of sev-
eral hcp binary alloys with their measured values il-
lustrate the advantage and efficiency of the present
theory for forecasting the melting curves, the eutec-
tic points, Lindemann’s melting temperatures, and
the eutectic isotherms of hcp binary alloys including
those which have not yet been investigated.
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