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As a special wave mode propagating in the interface between an infinite elastic solid and fluid, the
Scholte waves are well known for their existence and frequency with distinct properties. The analysis
and features are usually presented through the formulation in Cartesian coordinates, while the essential
features of the phase velocity and wave patterns are also similar in other coordinates on the basis of
equivalence. A variation of the Scholte wave features with a coordinate framework should be examined
for possible insights related to mathematical solutions and applications besides the known properties.
Using a systematic formulation with cylindrical coordinates and subsequent solutions in the Bessel func-
tions, it is proved that the Scholte waves will attenuate with the increase of a radius in an axisymmetric
case, which is different from the results in the Cartesian coordinate system. In addition, the particle
trajectory will also vary due to the changes of the waveform. The examination of such features in
a systematic analysis should play a prominent role in engineering applications of wave propagation
associated with cylindrical solids.
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1. Introduction

In elastic solids, there are many different waves
propagating with special features and conditions
like the Rayleigh waves and Stoneley waves, to
name just a few of the popular wave types. Exam-
ining wave propagation in elastic solids, a few typ-
ical wave modes with distinct characteristics and
solutions have been popularly known as part of
the theory and applications of wave propagation
in different configurations of structures and materi-
als. Among the few widely known wave modes, the
Scholte waves are well examined in the literature for
their unique features like being nondispersive with
material properties. If the Stoneley waves propa-
gate between the interface of an infinite elastic solid
and fluid, they are conventionally called the Scholte
waves [1, 2]. Cagniard presented a general condition
for which the Scholte waves exist, which requires no

special condition of material properties [3]. Com-
plete solutions and the examination of properties of
the Scholte waves are available in many textbooks
and monographs, and they are also the topic cov-
ered in the fundamental theory of wave propaga-
tion. Moreover, almost all earlier studies on these
popular wave types are done with Cartesian coor-
dinates, leaving later students and researchers won-
dering whether there would be any special features
if other coordinates, say the axisymmetric ones,
were used.

As far as the wave patterns and properties and
structures with basic configurations different from
rectangular shapes are concerned, it is important
to find the wave propagation with an appropriate
choice of coordinate systems, which have also been
presented in many popular textbooks and mono-
graphs by Ewing [4], Achenbach [5], Graff [6], Erin-
gen [7], Rose [8], and some dissertations [9–12] with
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details on specific wave modes. Strangely enough,
details of axisymmetric waves are not given in ma-
jor literature including the above-mentioned refer-
ences for the essential modes. Of course, it does
not mean that there are difficulties in obtaining the
solutions and making necessary comparisons with
known results in rectangular coordinates. It just
shows a general conviction that the solutions and
essential features are exactly the same and indepen-
dent from the coordinates. This, of course, is cor-
rect to some extent but there are specific features
with coordinate system dependence and it can be
easily hidden if not examined in detail, as shown in
our recent papers [13, 14]. In recent studies of the
Rayleigh waves and Stoneley waves in axisymmet-
ric solids, it is found that the deformation, or the
trajectory of particles, is quite different from solu-
tions in the Cartesian coordinate system, although
the velocities are the same and the wave patterns
are the same for a larger radius. Since the solutions
are in the Bessel functions, there are some special
features to be better understood through compar-
ison with a different coordinate framework. It is
believed that a close examination of the Scholte
waves with axisymmetric coordinates will also re-
veal some special properties from the axisymmetric
solutions.

2. Governing equations and solutions
of axisymmetric Scholte waves

The Scholte waves exist in a liquid–solid in-
terface with a semi-infinite solid in contact with
fluid [15, 16]. To analyze the wave modes, one
begins with the assumption that the axisymmetric
Scholte waves propagate along the radius r and de-
cay along the depth z with cylindrical coordinates
in the liquid–solid interface along the plane z = 0.
This system, schematically shown in Fig. 1, is char-
acterized by the density and Lamé constants ρ̄,
λ̄ for the liquid (Material 1) and ρ, λ for the solid
(Material 2), respectively. Material 2 is described,
in addition, by the parameter µ defined as shear
modulus.

Fig. 1. The interface of a semi-infinite liquid and
solid material in cylindrical coordinates.

To retain the axisymmetric property in this prob-
lem, the angular coordinate θ and the circum-
ferential displacement component uθ must vanish.
Hence, the displacement vector is simplified to

u (r, z, t) = ur (r, z, t) er + uz (r, z, t) ez, (1)
where the displacements ur and uz are the functions
of the r and z coordinates, while t is the time.

Through the Helmholtz decomposition, a scalar
potential φ and a vector potential H = Hrer +
Hθeθ + Hzez should be introduced to simplify the
problem further for possible solutions [5]. With (1),
it only needs to keep the component Hθ in H, and
the displacements can be decomposed into
u (r, z, t) = ∇φ (r, z, t) +∇× (Hθ (r, z, t) eθ) , (2)
where

∇φ =
∂φ

∂r
er +

∂φ

∂z
ez (3)

∇× (Hθeθ) = −∂Hθ

∂z
er +

1

r

∂(rHθ)

∂r
ez. (4)

Clearly, the displacement components in potentials
are

u (r, z, t) =

(
∂φ

∂r
− ∂Hθ

∂z

)
er

+

(
∂φ

∂z
+

1

r

∂ (rHθ)

∂r

)
ez. (5)

By substituting the displacement vector u into the
Lamé equations of motion in elasticity [17, 18]:

(λ+ µ)∇ · (∇u) + µ∇2u = ρü, (6)
the problem should be reduced further with a sim-
plification of the two governing equations for φ and
Hθ to

∇2φ =
1

c2L
φ̈, (7)

∇2Hθ −
1

r2
Hθ =

1

c2T
Ḧθ, (8)

where cL =
√

(λ+ 2µ) /ρ and cT =
√
µ/ρ are the

longitudinal and transverse wave velocities, respec-
tively. In the cylindrical coordinate system

∇2φ =
1

r

∂

∂r
(rφ) +

∂2φ

∂z2
, (9)

∇2Hθ =
1

r

∂

∂r
(rHθ) +

∂2Hθ

∂z2
. (10)

With an introduction of a further transformation

Hθ = −∂ψ(r, z, t)

∂r
, (11)

the displacements are now

u (r, z) =

(
∂φ

∂r
+
∂2ψ

∂r2

)
er

+

(
∂φ

∂z
+
∂2ψ

∂z2
− 1

c2T
ψ̈

)
ez (12)

and (8) is equivalent to

∇2ψ =
ψ̈

c2T
+ g (z) , (13)

in which g (z) is an arbitrary function of z. Let
g (z) = 0, then one reaches ∇2ψ = 1

c2T
ψ̈.
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Therefore, the equivalence of (7) and (8) is

∇2φ =
1

c2L
φ̈, (14)

∇2ψ =
1

c2T
ψ̈. (15)

We are now dealing with standard wave propaga-
tion equations with wave velocities cL and cT of
longitudinal and transverse waves. Exactly the
same forms as in the case of the wave modes
indicate that only a single equation has to be
solved to obtain solutions to the problem. We will
use the method of separation of variables through
φ (r, z, t) = R (r)Z (z) e iωt, in which ω is the angu-
lar frequency of waves. The simplified form of (14)
is written as

ω2

c2L
RZ +

(
Z

d2R

dr2
+
Z

r

∂R

∂r
+R

d2Z

dz2

)
= 0, (16)

with the wave number k = ω/c and the phase ve-
locity c of the Scholte waves.

Now the potential function φ is obtained as
φ (r, z, t) =

(
C eαz +Ae−αz

)
J0 (kr) e iωt, (17)

where A and C are the undetermined constants,
α is the decaying constant satisfying the relation
k2 = α2 + (ω/cL)2, and J0 (kr) is the zeroth-order
Bessel function of the first kind. The zeroth-order
Bessel function of the second kind Y0 (kr) is ne-
glected because of the singularity at r = 0.

Likewise, the second potential is

ψ (r, z, t) =
(
B e−βz +Deβz

)
J0 (kr) e iωt, (18)

where B andD are also the undetermined constants
and β is the decaying constant from the relation
k2 = β2 + (ω/cT)2.

As it is known, when z > 0, the exponential
function eαz is supposed to vanish because of un-
bounded solution with z →∞, and eβz, too. Thus,
the potential function solutions are

φ = Ae−αzJ0(kr)e iωt,

ψ = B e−βzJ0(kr)e iωt. (19)
With the substitution of (19) into the displace-

ment function (12), the displacement field can be
obtained as

ur =
∂φ

∂r
+
∂2ψ

∂r2
=

−k(Ae−αz − βB e−βz)J1(kr)e iωt, (20)

uz =
∂φ

∂z
+
∂2ψ

∂z2
− 1

c2T
ψ̈ =

−(αAe−αz − k2B e−βz)J0(kr)e iωt. (21)
with α = kp, p =

√
1− (c/cL)2, β = kq, q =√

1− (c/cT)2. Correspondingly, the stress fields are

σz = λ∇ · u + 2µ
∂uz
∂z

= (22)

µ
[
(k2 + β2)Ae−αz − 2k2βB e−βz

]
J0(kr)e iωt

τzr = µ

(
∂ur
∂z

+
∂uz
∂r

)
= (23)

kµ
[
2αAe−αz − (k2 + β2)B e−βz

]
J1(kr)e iωt.

With z < 0, the same procedure can be easily
adapted to obtain — noting that the potential func-
tion ψ̄ in displacement field must disappear because
of no shear displacement in the liquid and similar
materials like sand — the potential function φ̄ as

φ̄ = ĀeᾱzJ0 (kr) e iωt (24)
with ᾱ = kp̄, p̄ =

√
1− (c/c̄L)2. The displacement

field is
ūr = −kĀeᾱzJ1 (kr) e iωt, (25)

ūz = ᾱĀeᾱzJ0 (kr) e iωt. (26)
Then the stress field is

σ̄z = −λ̄
(
k2 − ᾱ2

)
ĀeᾱzJ0(kr)e iωt. (27)

Assuming the perfect interface of two half-spaces,
boundary conditions are

ūz

∣∣∣
z=0

= uz

∣∣∣
z=0

: −αA+ k2B = ᾱĀ, (28)

σ̄z

∣∣∣
z=0

= σz

∣∣∣
z=0

: µ
[
(k2 + β2)A− 2k2βB

]
=

−λ̄Ā(k2 − ᾱ2), (29)

τ̄rz

∣∣∣
z=0

= σz

∣∣∣
z=0

: 2αA− (k2 + β2)B = 0. (30)

The above equations can be reduced to the set
αA(k2 − β2)− ᾱĀ(k2 + β2) = 0, (31)

µA
(

4k2αβ − (k2 + β2)2
)

−λ̄Ā(k2 − ᾱ2)(k2 + β2) = 0. (32)
For nontrivial solution on A and Ā, the determi-
nant of coefficients A and Ā in (31) and (32) must
vanish,∣∣∣∣∣ α(k2 − β2) −ᾱ(k2 + β2)

µ
(

4k2αβ − (k2+β2)2
)
−λ̄(k2 − ᾱ2)(k2+β2)

∣∣∣∣∣ = 0.

(33)
This leads to the relation of phase velocity c, i.e.,

1 =
ρ

ρ̄

(cT
c

)4
√

1− (c/c̄L)2√
1− (c/cL)2

(34)

×

[
4

√(
1− c2

c2T

)(
1− c2

c2L

)
−
(

2− c2

c2T

)2
]
.

Not surprisingly, this is exactly the nondispersive
velocity equation of the Scholte waves in Cartesian
coordinates [19–24]. It concludes that the Scholte
waves have the same velocity with both cylindri-
cal and Cartesian coordinate systems. However,
the solutions used for displacements in the Bessel
functions in the case of axisymmetric Scholte waves
will be different from Cartesian coordinate solu-
tions in trigonometric functions as shown in earlier
studies.
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Naturally, the ultimate forms of the displacement
field and stress field of Scholte waves with the cylin-
drical coordinate systems are

ur = kpA

(
2q e−2πqz/ς

1 + q2
− e−2πpz/ς

p

)
×J1

(
2πr

ς

)
e iωt, (35)

ūz = kpA
1− q2

1 + q2
e2πp̄z/ςJ0

(
2πr

ς

)
e iωt, (36)

uz = kpA

(
2

1 + q2
e−2πqz/ς − e−2πpz/ς

)
×J0

(
2πr

ς

)
e iωt, (37)

and

σ̄z = k2µA

(
(1 + q2)− 4pq

1 + q2

)
e2πp̄z/ς

×J0

(
2πr

ς

)
e iωt (38)

σz = k2µA

(
(1+q2)e−2πpz/ς − 4pq

1+q2
e−2πqz/ς

)
×J0

(
2πr

ς

)
e iωt, (39)

τzr = 2pk2µA
(

e−2πpz/ς − e−2πqz/ς
)

×J1

(
2πr

ς

)
e iωt, (40)

where ς is the wavelength and kς = 2π.
The complete solutions of the Scholte waves in ax-

isymmetric mode have been presented in this study.
With the known properties of two materials, one can
systematically calculate the phase velocity along
with displacement and the stress fields. Undoubt-
edly, the solutions in the Bessel functions will re-
veal some special features of the Scholte waves in
the structure.

3. Numerical examples

Now we consider the axisymmetric Scholte
waves in a water–rock interface as an example.
As in Fig. 1, Materials 1 and 2 are water and rock
with properties [25–28]:
ρ̄ = 998 kg/m3, λ̄ = 2.195× 109 Pa,
ρ = 2850 kg/m3, λ = 21.507× 109 Pa,
µ = 21.506× 109 Pa,

which yields
c̄L = 1483 m/s, cL = 4758 m/s,
cT = 2747 m/s.

Then, the phase velocity of the Scholte waves is
calculated from (34) as c = 1475.6349 m/s. There-
fore, the parameters are p̄ = 0.0995, p = 0.9507,
q = 0.8435.

Fig. 2. The displacement ũr vs the normalized
coordinate r/ς and z/ς at t = 0.

Fig. 3. The displacement ˜̄uz vs the normalized
coordinate r/ς and z/ς at t = 0.

Fig. 4. The displacement ũz vs the normalized
coordinate r/ς and z/ς at t = 0.

For convenience in calculations, displacements
(35)–(37) are normalized with kpA. Respec-
tively, these are denoted as ũr = ur/(kpA),˜̄uz = ūz/(kpA), ũz = uz/(kpA). In turn, stresses
(38)–(40) are normalized with k2µA and are de-
noted as ˜̄σz = σ̄z/(k

2µA), σ̃z = σz/(k
2µA),

τ̃zr = τzr/(k
2µA).

Then, the normalized displacements for the
Scholte waves of the structure in Fig. 1 at t = 0
are plotted in Figs. 2–4.
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Fig. 5. The normalized displacement ũr vs r/ς at
z = 0.

Fig. 6. The normalized displacement ũz (or ūz) vs
r/ς at z = 0.

The normalized displacements at z = 0 are plot-
ted in Figs. 5 and 6.

With r = 1.25ς, the displacement ũr varied in
time with the depth as depicted in Fig. 7. The
nodal point G has the value yg = 0.0965. The max-
imum displacements below the interface are marked
as points F1, F2, F3 and F4 with yf = 0.2747 for
different time. The maximum displacements in the
interface are also marked as E1, E2, E3 and E4.

Simultaneously, the displacements ˜̄uz and ũz are
depicted in Fig. 8. However, there is no nodal point
of displacement in the z-direction. The maximum
displacements at the interface are marked as M1,
M2, M3 and M4 with positions xm1 = 2xm2 =
−2xm3 = −xm4 = 0.0344.

Finally, displacement solutions (35)–(37) can be
used for the discussion of axisymmetric Scholte
waves in the far field. From a strictly mathematical
point of view, the wave velocity is defined only by
the function f [k (r − ct)]. Clearly it can be seen at
this stage that displacements ũr, ˜̄uz and ũz do not
have this form. As it is known, however, the Bessel
functions can be written in the following asymptotic
form:

J1 (x) =

√
2

πx
sin
(
x− π

4

)
, (41)

J0 (x) =

√
2

πx
cos
(
x− π

4

)
. (42)

Fig. 7. The displacement ũr at r/ς = 1.25 in the
depth direction.

Fig. 8. The displacement ˜̄uz and ũz at r/ς = 1.25
in the depth direction.

With this approximation, and for the large ra-
dius r, (35)–(37) can be written as

ur = a(z) sin(kr − π/4) cos (ωt), (43)

ūz = b̄(z) cos(kr − π/4) cos(ωt), (44)

uz = b(z) cos(kr − π/4) cos(ωt), (45)
with

a(z) = pA

√
2k

πr

(
2q

1 + q2
e−βz − 1

p
e−αz

)
(46)

b̄(z) = pA

√
2k

πr

1− q2

1 + q2
eᾱz (47)

b(z) = pA

√
2k

πr

(
2

1 + q2
e−βz − e−αz

)
. (48)

Applying the basic identities of trigonometric
functions, (43)–(45) can be rewritten as

ur =
a(z)

2
[sin(kr − π/4 + ωt)

+ sin(kr − π/4− ωt)], (49)

ūz =
b̄(z)

2
[cos(kr − π/4 + ωt)

+ cos(kr − π/4− ωt)], (50)
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uz =
b(z)

2
[cos(kr − π/4 + ωt)

+ cos(kr − π/4− ωt)], (51)
which are in the waveform of f [k (r − ct)] and are
the superposition of one forward traveling wave
with one backward traveling wave with the wave ve-
locity c = ω/k. Therefore, the axisymmetric Scholte
waves exhibit the property of traveling waves in the
far field away from the origin. Furthermore, the dis-
placements in the far field display a 1/

√
r decaying,

while it is invariant in Cartesian coordinates. Actu-
ally it can be explained by the density of the energy.
As the axisymmetric Scholte waves travel from the
source, the energy is scattered around the cylindri-
cal surface in which each infinitesimal area possesses
the energy proportional to1/ (2πr) if there is no en-
ergy loss in the propagation. Since the displace-
ments are directly proportional to the square root
of energy, the displacements are directly propor-
tional to 1/

√
r. For a large radius, the axisymmet-

ric Scholte waves can be regarded as planar surface
waves in a small range.

With z = 0, using the displacement ũr plots
in Fig. 9, and mark point N as the first intersec-
tion between the exact and asymptotic curves, it
is found that xn = 0.3930 and yn = −0.0334. Using
the numerical comparisons in Table I, the accuracy
of different solutions is clearly shown. Similar com-
parisons can also be made for other displacement
solutions.

Fig. 9. A comparison of ũr with exact and asymp-
totic values at z = 0 and t = 0.

TABLE I

A comparison of ũr with exact and asymptotic values
at z = 0 and t = 0.

r/ς Exact value Asymptotic value Error [%]
0.5 −0.0188 −0.0211 11.84
1 0.0141 0.0149 5.98
1.5 −0.0117 −0.0122 3.99
2 0.0102 0.0105 2.99
2.5 −0.0092 −0.0094 2.39
3 0.0084 0.0086 1.99

The results above indicated that the axisymmet-
ric Scholte waves can be plane waves in the far field,
consistent with the results from Cartesian coordi-
nates. Besides, it also illustrates that the displace-
ment near the origin or the excitation point is larger
than the outer region which is represented by the
solution in Cartesian coordinates. To study waves
generated by point sources, evidently axisymmetric
coordinates and solutions must be used for a better
understanding of the wave propagation, especially
near the wave source, or in near field.

4. Conclusions

With systematically deduced solutions of the
Scholte waves in cylindrical coordinates it is con-
cluded that the wave velocity still maintains the
usual value as with Cartesian coordinates. As
expected, with properties of the Bessel functions,
displacements in the two half-spaces are atten-
uated in the new form in contrast to the con-
stant values known in Cartesian coordinates. In
other words, the trajectory of particle polariza-
tion of the Scholte waves near the origin is dis-
tinct from Cartesian coordinates, but the asymp-
totic expansion of the Bessel function ensures that
the displacement amplitude will remain the same
as Cartesian coordinates when the radius is large
or far from the origin. The results further show
that the axisymmetric solution near the origin is
larger than the solution given by the trigonomet-
ric functions, implying that the axisymmetric de-
scription is more accurate in solving such prob-
lems in the vicinity of a point source. In the case
of a wavelength of kilometers, a better solution
with a radius of kilometers should be obtained by
using the cylindrical coordinate formula proposed
in this study.

Moreover, these results of the Bessel functions
could also serve as the basis for the study of fluid
sensors and actuators of finite structures subjected
to the Scholte waves, such as in seabed explo-
rations. The Scholte waves tested and measured
from a point source also required a better under-
standing on the displacement changes near and
far from the origin for the estimation of damp-
ing. The solutions and analysis in this study are
undoubtedly a good start for studying the Scholte
waves in curved structures, especially in circular
devices, where a systematic optimization is always
expected.
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